Understanding the Radiobiology of Central Nervous System Diseases in the Golden Age of Radiosurgery—Does It Matter?
Abstract
:1. Introduction and a Brief History of Radiosurgery
2. Principles of Radiobiology
“LET of charged particles in a medium is the quotient dE/dl, where dE is the average energy locally imparted to the medium by a charged particle of specified energy in traversing a distance of dl”.
2.1. The Rs of Radiobiology in Conventional Radiotherapy
- SF = survival fraction after RT treatment;
- α = lethal lesions due to single-strand DNA breaks (single hit);
- D = delivered dose;
- β = lethal lesions due to double-strand DNA breaks (double hit).
- D = total dose;
- d = dose per fraction;
- α/β = the alpha–beta ratio, based on the variables in the model above.
2.2. The Radiobiology of Stereotactic Radiosurgery
3. Biological Principles of Radiosurgery in the Central Nervous System
3.1. Acute Cellular Responses to CNS Irradiation (Days to Weeks)
3.2. Normal Tissue Dose Constraints and Long-Term Toxicity of SRS in the Central Nervous System: Subacute and Late Cellular Responses to CNS Irradiation (Weeks to Months)
3.2.1. Brain Parenchyma
3.2.2. Brainstem
3.2.3. Optic Nerve and Chiasm
3.2.4. Cranial Nerves of the Cavernous Sinus
3.2.5. Vestibulococchlear Complex
3.2.6. Facial and Trigeminal Nerves
3.2.7. Blood Vessels
4. Radiobiology of Radiosurgery for Brain Tumors
4.1. Benign Tumors
4.1.1. Vestibular Schwannomas
4.1.2. Meningiomas
4.1.3. Pituitary Adenomas
4.1.4. Craniopharyngioma
4.2. Malignant Tumors
Glial Neoplasms
4.3. Brain Metastases
Emerging Role of the Tumor Microenvironment in Regulating Radiation-Induced Abscopal Effects for Brain Metastases
5. Radiobiology of Radiosurgery for the Treatment of Arteriovenous Malformations
6. Radiobiology of Radiosurgery for Trigeminal Neuralgia
7. Radiobiology of Radiosurgery for the Treatment of Functional Neurological Disorders
Essential Tremor
8. The Future of SRS in the Clinical CNS Space
Future SRS Applications for the Treatment of Brain Metastases
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larson, D.A.; Flickinger, J.C.; Loeffler, J.S. The radiobiology of radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 1993, 25, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Kondziolka, D.; Lunsford, L.D.; Witt, T.C.; Flickinger, J.C. The future of radiosurgery: Radiobiology, technology, and applications. Surg. Neurol. 2000, 54, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Kondziolka, D.; Lunsford, L.D.; Claassen, D.; Maitz, A.H.; Flickinger, J.C. Radiobiology of radiosurgery: Part I. The normal rat brain model. Neurosurgery 1992, 31, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Kondziolka, D.; Lunsford, L.D.; Claassen, D.; Pandalai, S.; Maitz, A.H.; Flickinger, J.C. Radiobiology of radiosurgery: Part II. The rat C6 glioma model. Neurosurgery 1992, 31, 280–287, discussion 287–288. [Google Scholar] [CrossRef]
- Kondziolka, D.; Lunsford, L.D.; Flickinger, J.C. The radiobiology of radiosurgery. Neurosurg. Clin. N. Am. 1999, 10, 157–166. [Google Scholar] [CrossRef]
- Niranjan, A.; Gobbel, G.T.; Kondziolka, D.; Flickinger, J.C.; Lunsford, L.D. Experimental radiobiological investigations into radiosurgery: Present understanding and future directions. Neurosurgery 2004, 55, 495–504, discussion 504–505. [Google Scholar] [CrossRef]
- Leksell, L. The stereotaxic method and radiosurgery of the brain. Acta Chir. Scand. 1951, 102, 316–319. [Google Scholar]
- Clarke, R.H.; Horsely, V. On a method of investigating the deep ganglia and tracts of the central nervous system (cerebellum). Br. Med. J. 1906, 2, 1799–1800. [Google Scholar] [CrossRef]
- Horsley, V.; Clarke, R.H. The structure and functions of the cerebellum investigated by a new method. Brain 1908, 31, 45–124. [Google Scholar] [CrossRef]
- Leksell, L. A stereotaxic apparatus for intracerebral surgery. Acta Chir. Scand. 1949, 99, 229–233. [Google Scholar]
- Knisely, J.P.S.; Apuzzo, M.L.J. Historical Aspects of Stereotactic Radiosurgery: Concepts, People, and Devices. World Neurosurg. 2019, 130, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Larsson, B.; Leksell, L.; Rexed, B.; Sourander, P.; Mair, W.; Andersson, B. The high-energy proton beam as a neurosurgical tool. Nature 1958, 182, 1222–1223. [Google Scholar] [CrossRef]
- Leksell, L.; Larsson, B.; Andersson, B.; Rexed, B.; Sourander, P.; Mair, W. Lesions in the depth of the brain produced by a beam of high energy protons. Acta Radiol. 1960, 54, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Steiner, L.; Leksell, L.; Greitz, T.; Forster, D.M.; Backlund, E.O. Stereotaxic radiosurgery for cerebral arteriovenous malformations. Report of a case. Acta Chir. Scand. 1972, 138, 459–464. [Google Scholar]
- Berkowitz, O.; Kondziolka, D.; Bissonette, D.; Niranjan, A.; Kano, H.; Lunsford, L.D. The evolution of a clinical registry during 25 years of experience with Gamma Knife radiosurgery in Pittsburgh. Neurosurg. Focus 2013, 34, E4. [Google Scholar] [CrossRef]
- Betti, O.; Derechinsky, V. Irradiations stereotaxiques multifaisceaux [Multibeam stereotactic irradiation]. Neurochirurgie 1983, 29, 295–298. [Google Scholar] [PubMed]
- Colombo, F.; Benedetti, A.; Pozza, F.; Avanzo, R.C.; Marchetti, C.; Chierego, G.; Zanardo, A. External stereotactic irradiation by linear accelerator. Neurosurgery 1985, 16, 154–160. [Google Scholar] [CrossRef]
- Barcia Salorio, J.L.; Roldan, P.; Hernandez, G.; Lopez Gomez, L. Radiosurgical treatment of epilepsy. Appl. Neurophysiol. 1985, 48, 400–403. [Google Scholar] [CrossRef]
- Friedman, W.A.; Bova, F.J. The University of Florida radiosurgery system. Surg. Neurol. 1989, 32, 334–342. [Google Scholar] [CrossRef]
- Adler, J.R., Jr. Accuray, incorporated: A neurosurgical business case study. Clin. Neurosurg. 2005, 52, 87–96. [Google Scholar]
- Fatima, N.; Meola, A.; Ding, V.Y.; Pollom, E.; Soltys, S.G.; Chuang, C.F.; Shahsavari, N.; Hancock, S.L.; Gibbs, I.C.; Adler, J.R.; et al. The Stanford stereotactic radiosurgery experience on 7000 patients over 2 decades (1999–2018): Looking far beyond the scalpel. J. Neurosurg. 2021, 135, 1725–1741. [Google Scholar] [CrossRef] [PubMed]
- Adler, J.R.; Schweikard, A.; Achkire, Y.; Blanck, O.; Bodduluri, M.; Ma, L.; Zhang, H. Treatment Planning for Self-Shielded Radiosurgery. Cureus 2017, 9, e1663. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.R. Radiological use of fast protons. Radiology 1946, 47, 487–491. [Google Scholar] [CrossRef]
- Lawrence, J.H.; Tobias, C.A.; Born, J.L.; Mc, C.R.; Roberts, J.E.; Anger, H.O.; Low-Beer, B.V.; Huggins, C.B. Pituitary irradiation with high-energy proton beams: A preliminary report. Cancer Res. 1958, 18, 121–134. [Google Scholar]
- Luhr, A.; von Neubeck, C.; Pawelke, J.; Seidlitz, A.; Peitzsch, C.; Bentzen, S.M.; Bortfeld, T.; Debus, J.; Deutsch, E.; Langendijk, J.A.; et al. “Radiobiology of Proton Therapy”: Results of an international expert workshop. Radiother. Oncol. 2018, 128, 56–67. [Google Scholar] [CrossRef]
- Vincini, M.G.; Zaffaroni, M.; Schwarz, M.; Marvaso, G.; Mastroleo, F.; Volpe, S.; Bergamaschi, L.; Mazzola, G.C.; Corrao, G.; Orecchia, R.; et al. More than Five Decades of Proton Therapy: A Bibliometric Overview of the Scientific Literature. Cancers 2023, 15, 5545. [Google Scholar] [CrossRef] [PubMed]
- Berk, L.B. Fundamentals of radiobiology for radiosurgery. In Radiosurgery of the Skull Base; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461, 1071–1078. [Google Scholar] [CrossRef]
- Lam, F.C. The DNA damage response—From cell biology to human disease. J. Transl. Genet. Genom. 2022, 6, 204–2022. [Google Scholar] [CrossRef]
- Baeyens, A.; Abrantes, A.M.; Ahire, V.; Ainsbury, E.A.; Baatout, S.; Baselet, B.; Botelho, M.F.; Boterberg, T.; Chevalier, F.; Da Pieve, F.; et al. Basic Concepts of Radiation Biology. In Radiobiology Textbook; Springer: Berlin/Heidelberg, Germany, 2023; pp. 25–81. [Google Scholar] [CrossRef]
- Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [CrossRef]
- Hoeijmakers, J.H. DNA damage, aging, and cancer. N. Engl. J. Med. 2009, 361, 1475–1485. [Google Scholar] [CrossRef]
- Santacroce, A.; Kamp, M.A.; Budach, W.; Hanggi, D. Radiobiology of radiosurgery for the central nervous system. Biomed. Res. Int. 2013, 2013, 362761. [Google Scholar] [CrossRef]
- Daigle, J.L.; McBride, W.H.; Withers, H.R. Biological principles of radiotherapy in the central nervous system. In Combined Modality Therapy of Central Nervous System Tumors; Medical Radiology; Springer: Berlin/Heidelberg, Germany, 2003; pp. 53–62. [Google Scholar] [CrossRef]
- Suntharalingam, N.; Podgorsak, E.B.; Hendry, J.H. Basic Radiobiology. In Radiation Oncology Physics: A Handbook for Teachers and Students; Podgorsak, E.B., Ed.; International Atomic Energy Agency: Vienna, Austria, 2005; pp. 485–504. [Google Scholar]
- Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist; LWW: Philadelphia, PA, USA, 2019. [Google Scholar]
- Horsman, M.R.; Martin Brown, J.; van der Kogel, A.J.; Wouters, B.G.; Overgaard, J. The oxygen effect and therapeutic approaches to tumour hypoxia. In Basic Clinical Radiobiology; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9780429490606. [Google Scholar]
- Withers, H.R. The Four Rs of Radiotherapy. Adv. Radiat. Biol. 1975, 5, 241–271. [Google Scholar] [CrossRef]
- Steel, G.G.; McMillan, T.J.; Peacock, J.H. The 5Rs of radiobiology. Int. J. Radiat. Biol. 1989, 56, 1045–1048. [Google Scholar] [CrossRef]
- Brown, J.M.; Carlson, D.J.; Brenner, D.J. The tumor radiobiology of SRS and SBRT: Are more than the 5 Rs involved? Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, M.; Li, X.A. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys. Med. Biol. 2004, 49, 4825–4835. [Google Scholar] [CrossRef]
- Brenner, D.J. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin. Radiat. Oncol. 2008, 18, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.F. 21 years of biologically effective dose. Br. J. Radiol. 2010, 83, 554–568. [Google Scholar] [CrossRef]
- Rothkamm, K.; Kruger, I.; Thompson, L.H.; Lobrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol. 2003, 23, 5706–5715. [Google Scholar] [CrossRef]
- Park, H.J.; Griffin, R.J.; Hui, S.; Levitt, S.H.; Song, C.W. Radiation-induced vascular damage in tumors: Implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat. Res. 2012, 177, 311–327. [Google Scholar] [CrossRef]
- Kirkpatrick, J.P.; Soltys, S.G.; Lo, S.S.; Beal, K.; Shrieve, D.C.; Brown, P.D. The radiosurgery fractionation quandary: Single fraction or hypofractionation? Neuro Oncol. 2017, 19, ii38–ii49. [Google Scholar] [CrossRef]
- Liu, L.; Bassano, D.A.; Prasad, S.C.; Hahn, S.S.; Chung, C.T. The linear-quadratic model and fractionated stereotactic radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Boustani, J.; Grapin, M.; Laurent, P.A.; Apetoh, L.; Mirjolet, C. The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response. Cancers 2019, 11, 860. [Google Scholar] [CrossRef] [PubMed]
- Purbey, P.K.; Scumpia, P.O.; Kim, P.J.; Tong, A.J.; Iwamoto, K.S.; McBride, W.H.; Smale, S.T. Defined Sensing Mechanisms and Signaling Pathways Contribute to the Global Inflammatory Gene Expression Output Elicited by Ionizing Radiation. Immunity 2017, 47, 421–434 e423. [Google Scholar] [CrossRef]
- Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008, 455, 674–678. [Google Scholar] [CrossRef]
- Ishikawa, H.; Ma, Z.; Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 2016, 17, 1142–1149. [Google Scholar] [CrossRef]
- Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity 2014, 41, 843–852. [Google Scholar] [CrossRef]
- Tsai, C.S.; Chen, F.H.; Wang, C.C.; Huang, H.L.; Jung, S.M.; Wu, C.J.; Lee, C.C.; McBride, W.H.; Chiang, C.S.; Hong, J.H. Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef]
- Yovino, S.; Kleinberg, L.; Grossman, S.A.; Narayanan, M.; Ford, E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: Modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Investig. 2013, 31, 140–144. [Google Scholar] [CrossRef]
- Wunderlich, R.; Ernst, A.; Rodel, F.; Fietkau, R.; Ott, O.; Lauber, K.; Frey, B.; Gaipl, U.S. Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin. Exp. Immunol. 2015, 179, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.; Cook, J.A.; Chandramouli, G.V.; DeGraff, W.; Yan, H.; Zhao, S.; Coleman, C.N.; Mitchell, J.B.; Chuang, E.Y. Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res. 2007, 67, 3845–3852. [Google Scholar] [CrossRef] [PubMed]
- Klug, F.; Prakash, H.; Huber, P.E.; Seibel, T.; Bender, N.; Halama, N.; Pfirschke, C.; Voss, R.H.; Timke, C.; Umansky, L.; et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 2013, 24, 589–602. [Google Scholar] [CrossRef]
- Prakash, H.; Klug, F.; Nadella, V.; Mazumdar, V.; Schmitz-Winnenthal, H.; Umansky, L. Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: Lesson from insulinoma. Carcinogenesis 2016, 37, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.B.; Peters, L.J.; Milas, L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J. Natl. Cancer Inst. 1979, 63, 1229–1235. [Google Scholar]
- Turgeon, G.A.; Weickhardt, A.; Azad, A.A.; Solomon, B.; Siva, S. Radiotherapy and immunotherapy: A synergistic effect in cancer care. Med. J. Aust. 2019, 210, 47–53. [Google Scholar] [CrossRef]
- Shevtsov, M.; Sato, H.; Multhoff, G.; Shibata, A. Novel Approaches to Improve the Efficacy of Immuno-Radiotherapy. Front. Oncol. 2019, 9, 156. [Google Scholar] [CrossRef]
- Matsumura, S.; Wang, B.; Kawashima, N.; Braunstein, S.; Badura, M.; Cameron, T.O.; Babb, J.S.; Schneider, R.J.; Formenti, S.C.; Dustin, M.L.; et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 2008, 181, 3099–3107. [Google Scholar] [CrossRef]
- Hallahan, D.; Kuchibhotla, J.; Wyble, C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res. 1996, 56, 5150–5155. [Google Scholar]
- Kim, J.Y.; Son, Y.O.; Park, S.W.; Bae, J.H.; Chung, J.S.; Kim, H.H.; Chung, B.S.; Kim, S.H.; Kang, C.D. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp. Mol. Med. 2006, 38, 474–484. [Google Scholar] [CrossRef]
- Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 2009, 10, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Escamilla, J.; Mok, S.; David, J.; Priceman, S.; West, B.; Bollag, G.; McBride, W.; Wu, L. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013, 73, 2782–2794. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.S.; Fu, S.Y.; Wang, S.C.; Yu, C.F.; Chen, F.H.; Lin, C.M.; Hong, J.H. Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front. Oncol. 2012, 2, 89. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Harden, K.; Gonzalez, L.C.; Francesco, M.; Chiang, E.; Irving, B.; Tom, I.; Ivelja, S.; Refino, C.J.; Clark, H.; et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 2009, 10, 48–57. [Google Scholar] [CrossRef]
- Poleszczuk, J.; Enderling, H. The Optimal Radiation Dose to Induce Robust Systemic Anti-Tumor Immunity. Int. J. Mol. Sci. 2018, 19, 3377. [Google Scholar] [CrossRef]
- Grapin, M.; Richard, C.; Limagne, E.; Boidot, R.; Morgand, V.; Bertaut, A.; Derangere, V.; Laurent, P.A.; Thibaudin, M.; Fumet, J.D.; et al. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: A promising new combination. J. Immunother. Cancer 2019, 7, 160. [Google Scholar] [CrossRef]
- Gerweck, L.E.; Zaidi, S.T.; Zietman, A. Multivariate determinants of radiocurability. I: Prediction of single fraction tumor control doses. Int. J. Radiat. Oncol. Biol. Phys. 1994, 29, 57–66. [Google Scholar] [CrossRef]
- van Putten, L.M. Reoxygenation of hypoxic tumour cells. Strahlentherapie 1977, 153, 380–383. [Google Scholar]
- Thomlinson, R.H.; Gray, L.H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 1955, 9, 539–549. [Google Scholar] [CrossRef]
- Hall, J.C.; Chang, S.D.; Gephart, M.H.; Pollom, E.; Butler, S. Stereotactic Radiosurgery for Brain Metastases in Patients With a Heterozygous Germline Ataxia Telangiectasia Mutated Gene. Cureus 2023, 15, e37712. [Google Scholar] [CrossRef]
- Salans, M.; Ni, L.; Morin, O.; Ziemer, B.; Capaldi, D.P.I.; Raleigh, D.R.; Vasudevan, H.N.; Chew, J.; Nakamura, J.; Sneed, P.K.; et al. Adverse radiation effect versus tumor progression following stereotactic radiosurgery for brain metastases: Implications of radiologic uncertainty. J. Neurooncol. 2024, 166, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.A.; Bennett, E.E.; Xiao, R.; Kotecha, R.; Chao, S.T.; Vogelbaum, M.A.; Barnett, G.H.; Angelov, L.; Murphy, E.S.; Yu, J.S.; et al. Association Between Radiation Necrosis and Tumor Biology After Stereotactic Radiosurgery for Brain Metastasis. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Miller, J.A.; Kotecha, R.; Xiao, R.; Juloori, A.; Ward, M.C.; Ahluwalia, M.S.; Mohammadi, A.M.; Peereboom, D.M.; Murphy, E.S.; et al. The risk of radiation necrosis following stereotactic radiosurgery with concurrent systemic therapies. J. Neurooncol. 2017, 133, 357–368. [Google Scholar] [CrossRef]
- Milano, M.T.; Usuki, K.Y.; Walter, K.A.; Clark, D.; Schell, M.C. Stereotactic radiosurgery and hypofractionated stereotactic radiotherapy: Normal tissue dose constraints of the central nervous system. Cancer Treat. Rev. 2011, 37, 567–578. [Google Scholar] [CrossRef]
- Walker, A.J.; Ruzevick, J.; Malayeri, A.A.; Rigamonti, D.; Lim, M.; Redmond, K.J.; Kleinberg, L. Postradiation imaging changes in the CNS: How can we differentiate between treatment effect and disease progression? Future Oncol. 2014, 10, 1277–1297. [Google Scholar] [CrossRef] [PubMed]
- Sminia, P.; Guipaud, O.; Viktorsson, K.; Ahire, V.; Baatout, S.; Boterberg, T.; Cizkova, J.; Dostal, M.; Fernandez-Paloma, C.; Filipova, A.; et al. Clinical Radiobiology for Radiation Oncology. In Radiobiology Textbook; Springer: Berlin/Heidelberg, Germany, 2023; pp. 237–309. [Google Scholar] [CrossRef]
- Shaw, E.; Scott, C.; Souhami, L.; Dinapoli, R.; Kline, R.; Loeffler, J.; Farnan, N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: Final report of RTOG protocol 90-05. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 291–298. [Google Scholar] [CrossRef]
- Minniti, G.; Clarke, E.; Lanzetta, G.; Osti, M.F.; Trasimeni, G.; Bozzao, A.; Romano, A.; Enrici, R.M. Stereotactic radiosurgery for brain metastases: Analysis of outcome and risk of brain radionecrosis. Radiat. Oncol. 2011, 6, 48. [Google Scholar] [CrossRef]
- Korytko, T.; Radivoyevitch, T.; Colussi, V.; Wessels, B.W.; Pillai, K.; Maciunas, R.J.; Einstein, D.B. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 419–424. [Google Scholar] [CrossRef]
- Flickinger, J.C.; Kondziolka, D.; Lunsford, L.D.; Kassam, A.; Phuong, L.K.; Liscak, R.; Pollock, B. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 1143–1148. [Google Scholar] [CrossRef]
- Sneed, P.K.; Mendez, J.; Vemer-van den Hoek, J.G.; Seymour, Z.A.; Ma, L.; Molinaro, A.M.; Fogh, S.E.; Nakamura, J.L.; McDermott, M.W. Adverse radiation effect after stereotactic radiosurgery for brain metastases: Incidence, time course, and risk factors. J. Neurosurg. 2015, 123, 373–386. [Google Scholar] [CrossRef]
- Blonigen, B.J.; Steinmetz, R.D.; Levin, L.; Lamba, M.A.; Warnick, R.E.; Breneman, J.C. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 996–1001. [Google Scholar] [CrossRef]
- Kim, B.S.; Kong, D.S.; Seol, H.J.; Nam, D.H.; Lee, J.I. MGMT promoter methylation status as a prognostic factor for the outcome of gamma knife radiosurgery for recurrent glioblastoma. J. Neurooncol. 2017, 133, 615–622. [Google Scholar] [CrossRef]
- Juloori, A.; Miller, J.A.; Parsai, S.; Kotecha, R.; Ahluwalia, M.S.; Mohammadi, A.M.; Murphy, E.S.; Suh, J.H.; Barnett, G.H.; Yu, J.S.; et al. Overall survival and response to radiation and targeted therapies among patients with renal cell carcinoma brain metastases. J. Neurosurg. 2020, 132, 188–196. [Google Scholar] [CrossRef]
- Shehata, M.K.; Young, B.; Reid, B.; Patchell, R.A.; St Clair, W.; Sims, J.; Sanders, M.; Meigooni, A.; Mohiuddin, M.; Regine, W.F. Stereotatic radiosurgery of 468 brain metastases < or =2 cm: Implications for SRS dose and whole brain radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 87–93. [Google Scholar] [CrossRef]
- Vellayappan, B.; Lim-Fat, M.J.; Kotecha, R.; De Salles, A.; Fariselli, L.; Levivier, M.; Ma, L.; Paddick, I.; Pollock, B.E.; Regis, J.; et al. A Systematic Review Informing the Management of Symptomatic Brain Radiation Necrosis After Stereotactic Radiosurgery and International Stereotactic Radiosurgery Society Recommendations. Int. J. Radiat. Oncol. Biol. Phys. 2024, 118, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Vellayappan, B.; Tan, C.L.; Yong, C.; Khor, L.K.; Koh, W.Y.; Yeo, T.T.; Detsky, J.; Lo, S.; Sahgal, A. Diagnosis and Management of Radiation Necrosis in Patients With Brain Metastases. Front. Oncol. 2018, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; Delsanti, C.; Metellus, P.; Peragut, J.C.; Grisoli, F.; Regis, J. Brainstem metastases: Management using gamma knife radiosurgery. Neurosurgery 2006, 58, 37–42, discussion 37–42. [Google Scholar] [CrossRef]
- Huang, C.F.; Kondziolka, D.; Flickinger, J.C.; Lunsford, L.D. Stereotactic radiosurgery for brainstem metastases. J. Neurosurg. 1999, 91, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Brown, P.D.; Stafford, S.L.; Pollock, B.E. Stereotactic radiosurgery for brainstem metastases: Survival, tumor control, and patient outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 521–524. [Google Scholar] [CrossRef]
- Girkin, C.A.; Comey, C.H.; Lunsford, L.D.; Goodman, M.L.; Kline, L.B. Radiation optic neuropathy after stereotactic radiosurgery. Ophthalmology 1997, 104, 1634–1643. [Google Scholar] [CrossRef]
- Leber, K.A.; Bergloff, J.; Langmann, G.; Mokry, M.; Schrottner, O.; Pendl, G. Radiation sensitivity of visual and oculomotor pathways. Ster. Funct. Neurosurg. 1995, 64 (Suppl. 1), 233–238. [Google Scholar] [CrossRef] [PubMed]
- Mayo, C.; Martel, M.K.; Marks, L.B.; Flickinger, J.; Nam, J.; Kirkpatrick, J. Radiation dose-volume effects of optic nerves and chiasm. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S28–S35. [Google Scholar] [CrossRef] [PubMed]
- Sughrue, M.E.; Rutkowski, M.J.; Aranda, D.; Barani, I.J.; McDermott, M.W.; Parsa, A.T. Factors affecting outcome following treatment of patients with cavernous sinus meningiomas. J. Neurosurg. 2010, 113, 1087–1092. [Google Scholar] [CrossRef]
- Liscak, R.; Simonova, G.; Vymazal, J.; Janouskova, L.; Vladyka, V. Gamma knife radiosurgery of meningiomas in the cavernous sinus region. Acta Neurochir. 1999, 141, 473–480. [Google Scholar] [CrossRef]
- Nicolato, A.; Foroni, R.; Alessandrini, F.; Bricolo, A.; Gerosa, M. Radiosurgical treatment of cavernous sinus meningiomas: Experience with 122 treated patients. Neurosurgery 2002, 51, 1153–1159, discussion 1159–1161. [Google Scholar] [CrossRef]
- Lee, J.Y.; Niranjan, A.; McInerney, J.; Kondziolka, D.; Flickinger, J.C.; Lunsford, L.D. Stereotactic radiosurgery providing long-term tumor control of cavernous sinus meningiomas. J. Neurosurg. 2002, 97, 65–72. [Google Scholar] [CrossRef]
- Niranjan, A.; Lunsford, L.D.; Flickinger, J.C.; Maitz, A.; Kondziolka, D. Dose reduction improves hearing preservation rates after intracanalicular acoustic tumor radiosurgery. Neurosurgery 1999, 45, 753–762, discussion 762–765. [Google Scholar] [CrossRef] [PubMed]
- Chopra, R.; Kondziolka, D.; Niranjan, A.; Lunsford, L.D.; Flickinger, J.C. Long-term follow-up of acoustic schwannoma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 845–851. [Google Scholar] [CrossRef]
- Yang, I.; Sughrue, M.E.; Han, S.J.; Aranda, D.; Pitts, L.H.; Cheung, S.W.; Parsa, A.T. A comprehensive analysis of hearing preservation after radiosurgery for vestibular schwannoma. J. Neurosurg. 2010, 112, 851–859. [Google Scholar] [CrossRef]
- Foote, K.D.; Friedman, W.A.; Buatti, J.M.; Meeks, S.L.; Bova, F.J.; Kubilis, P.S. Analysis of risk factors associated with radiosurgery for vestibular schwannoma. J. Neurosurg. 2001, 95, 440–449. [Google Scholar] [CrossRef]
- Kondziolka, D.; Lunsford, L.D.; McLaughlin, M.R.; Flickinger, J.C. Long-term outcomes after radiosurgery for acoustic neuromas. N. Engl. J. Med. 1998, 339, 1426–1433. [Google Scholar] [CrossRef]
- Schneider, B.F.; Eberhard, D.A.; Steiner, L.E. Histopathology of arteriovenous malformations after gamma knife radiosurgery. J. Neurosurg. 1997, 87, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Hu, Z.; Chen, Z. Endothelial gene expression and molecular changes in response to radiosurgery in in vitro and in vivo models of cerebral arteriovenous malformations. Biomed. Res. Int. 2013, 2013, 408253. [Google Scholar] [CrossRef]
- Ding, D.; Yen, C.P.; Starke, R.M.; Xu, Z.; Sun, X.; Sheehan, J.P. Outcomes following single-session radiosurgery for high-grade intracranial arteriovenous malformations. Br. J. Neurosurg. 2014, 28, 666–674. [Google Scholar] [CrossRef]
- Abeloos, L.; Levivier, M.; Devriendt, D.; Massager, N. Internal carotid occlusion following gamma knife radiosurgery for cavernous sinus meningioma. Ster. Funct. Neurosurg. 2007, 85, 303–306. [Google Scholar] [CrossRef]
- Lim, Y.J.; Leem, W.; Park, J.T.; Kim, T.S.; Rhee, B.A.; Kim, G.K. Cerebral infarction with ICA occlusion after Gamma Knife radiosurgery for pituitary adenoma: A case report. Ster. Funct. Neurosurg. 1999, 72 (Suppl. 1), 132–139. [Google Scholar] [CrossRef] [PubMed]
- Alomari, A.; Rauch, P.J.; Orsaria, M.; Minja, F.J.; Chiang, V.L.; Vortmeyer, A.O. Radiologic and histologic consequences of radiosurgery for brain tumors. J. Neurooncol. 2014, 117, 33–42. [Google Scholar] [CrossRef]
- Kondziolka, D.; Shin, S.M.; Brunswick, A.; Kim, I.; Silverman, J.S. The biology of radiosurgery and its clinical applications for brain tumors. Neuro Oncol. 2015, 17, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Linskey, M.E.; Martinez, A.J.; Kondziolka, D.; Flickinger, J.C.; Maitz, A.H.; Whiteside, T.; Lunsford, L.D. The radiobiology of human acoustic schwannoma xenografts after stereotactic radiosurgery evaluated in the subrenal capsule of athymic mice. J. Neurosurg. 1993, 78, 645–653. [Google Scholar] [CrossRef]
- Patel, S.; Nuno, M.; Mukherjee, D.; Nosova, K.; Lad, S.P.; Boakye, M.; Black, K.L.; Patil, C.G. Trends in surgical use and associated patient outcomes in the treatment of acoustic neuroma. World Neurosurg. 2013, 80, 142–147. [Google Scholar] [CrossRef]
- Kano, H.; Kondziolka, D.; Khan, A.; Flickinger, J.C.; Lunsford, L.D. Predictors of hearing preservation after stereotactic radiosurgery for acoustic neuroma. J. Neurosurg. 2009, 111, 863–873. [Google Scholar] [CrossRef]
- Niranjan, A.; Mathieu, D.; Flickinger, J.C.; Kondziolka, D.; Lunsford, L.D. Hearing preservation after intracanalicular vestibular schwannoma radiosurgery. Neurosurgery 2008, 63, 1054–1062, discussion 1062–1063. [Google Scholar] [CrossRef] [PubMed]
- Link, M.J.; Pollock, B.E. Chasing the Holy Grail of vestibular schwannoma management. World Neurosurg. 2013, 80, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Lunsford, L.D.; Niranjan, A.; Flickinger, J.C.; Maitz, A.; Kondziolka, D. Radiosurgery of vestibular schwannomas: Summary of experience in 829 cases. J. Neurosurg. 2005, 102 (Suppl.), 195–199. [Google Scholar] [CrossRef]
- Carlson, M.L.; Jacob, J.T.; Pollock, B.E.; Neff, B.A.; Tombers, N.M.; Driscoll, C.L.; Link, M.J. Long-term hearing outcomes following stereotactic radiosurgery for vestibular schwannoma: Patterns of hearing loss and variables influencing audiometric decline. J. Neurosurg. 2013, 118, 579–587. [Google Scholar] [CrossRef]
- Yomo, S.; Carron, R.; Thomassin, J.M.; Roche, P.H.; Regis, J. Longitudinal analysis of hearing before and after radiosurgery for vestibular schwannoma. J. Neurosurg. 2012, 117, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Wang, Y.; Yang, H.; Lai, C.; Yu, J.; Sun, Y. High doses of radiation cause cochlear immunological stress and sensorineural hearing loss. Heliyon 2024, 10, e37223. [Google Scholar] [CrossRef]
- Kondziolka, D.; Mathieu, D.; Lundsford, L.D.; Martin, J.J.; Madhok, R.; Niranjan, A.; Flickinger, J.C. Radiosurgery as definitive management of intracranial meningiomas. Neurosurgery 2008, 62, 53–58, discussion 58–60. [Google Scholar] [CrossRef]
- Lall, R.R.; Smith, T.R.; Lee, K.H.; Mao, Q.; Kalapurakal, J.A.; Marymont, M.H.; Chandler, J.P. Delayed malignant transformation of petroclival meningioma to chondrosarcoma after stereotactic radiosurgery. J. Clin. Neurosci. 2014, 21, 1225–1228. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, J.H.; Lee, J.I. Glioblastoma following radiosurgery for meningioma. J. Korean Neurosurg. Soc. 2012, 51, 98–101. [Google Scholar] [CrossRef]
- Sheehan, J.P.; Niranjan, A.; Sheehan, J.M.; Jane, J.A., Jr.; Laws, E.R.; Kondziolka, D.; Flickinger, J.; Landolt, A.M.; Loeffler, J.S.; Lunsford, L.D. Stereotactic radiosurgery for pituitary adenomas: An intermediate review of its safety, efficacy, and role in the neurosurgical treatment armamentarium. J. Neurosurg. 2005, 102, 678–691. [Google Scholar] [CrossRef] [PubMed]
- Gupta, T.; Chatterjee, A. Modern Radiation Therapy for Pituitary Adenoma: Review of Techniques and Outcomes. Neurol. India 2020, 68, S113–S122. [Google Scholar] [CrossRef] [PubMed]
- Mingione, V.; Yen, C.P.; Vance, M.L.; Steiner, M.; Sheehan, J.; Laws, E.R.; Steiner, L. Gamma surgery in the treatment of nonsecretory pituitary macroadenoma. J. Neurosurg. 2006, 104, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, J.P.; Starke, R.M.; Mathieu, D.; Young, B.; Sneed, P.K.; Chiang, V.L.; Lee, J.Y.; Kano, H.; Park, K.J.; Niranjan, A.; et al. Gamma Knife radiosurgery for the management of nonfunctioning pituitary adenomas: A multicenter study. J. Neurosurg. 2013, 119, 446–456. [Google Scholar] [CrossRef]
- Kondziolka, D.; Nathoo, N.; Flickinger, J.C.; Niranjan, A.; Maitz, A.H.; Lunsford, L.D. Long-term results after radiosurgery for benign intracranial tumors. Neurosurgery 2003, 53, 815–821, discussion 821–822. [Google Scholar] [CrossRef]
- Sheehan, J.P.; Xu, Z.; Salvetti, D.J.; Schmitt, P.J.; Vance, M.L. Results of gamma knife surgery for Cushing’s disease. J. Neurosurg. 2013, 119, 1486–1492. [Google Scholar] [CrossRef]
- Liu, X.; Kano, H.; Kondziolka, D.; Park, K.J.; Iyer, A.; Shin, S.; Niranjan, A.; Flickinger, J.C.; Lunsford, L.D. Gamma knife stereotactic radiosurgery for drug resistant or intolerant invasive prolactinomas. Pituitary 2013, 16, 68–75. [Google Scholar] [CrossRef]
- Pollock, B.E.; Cochran, J.; Natt, N.; Brown, P.D.; Erickson, D.; Link, M.J.; Garces, Y.I.; Foote, R.L.; Stafford, S.L.; Schomberg, P.J. Gamma knife radiosurgery for patients with nonfunctioning pituitary adenomas: Results from a 15-year experience. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1325–1329. [Google Scholar] [CrossRef]
- Sheehan, J.P.; Pouratian, N.; Steiner, L.; Laws, E.R.; Vance, M.L. Gamma Knife surgery for pituitary adenomas: Factors related to radiological and endocrine outcomes. J. Neurosurg. 2011, 114, 303–309. [Google Scholar] [CrossRef]
- Jones, A. Radiation oncogenesis in relation to the treatment of pituitary tumours. Clin. Endocrinol. 1991, 35, 379–397. [Google Scholar] [CrossRef]
- Hamblin, R.; Vardon, A.; Akpalu, J.; Tampourlou, M.; Spiliotis, I.; Sbardella, E.; Lynch, J.; Shankaran, V.; Mavilakandy, A.; Gagliardi, I.; et al. Risk of second brain tumour after radiotherapy for pituitary adenoma or craniopharyngioma: A retrospective, multicentre, cohort study of 3679 patients with long-term imaging surveillance. Lancet Diabetes Endocrinol. 2022, 10, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, R.; Abe, E.; Sato, T.; Hayano, A.; Takashima, Y. Secondary Intracranial Tumors Following Radiotherapy for Pituitary Adenomas: A Systematic Review. Cancers 2017, 9, 103. [Google Scholar] [CrossRef]
- Minniti, G.; Traish, D.; Ashley, S.; Gonsalves, A.; Brada, M. Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: Update after an additional 10 years. J. Clin. Endocrinol. Metab. 2005, 90, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, R.; Hayano, A. Radiation-Induced Sarcomas of the Central Nervous System: A Systematic Review. World Neurosurg. 2017, 98, 818–828 e817. [Google Scholar] [CrossRef]
- Wolf, A.; Naylor, K.; Tam, M.; Habibi, A.; Novotny, J.; Liscak, R.; Martinez-Moreno, N.; Martinez-Alvarez, R.; Sisterson, N.; Golfinos, J.G.; et al. Risk of radiation-associated intracranial malignancy after stereotactic radiosurgery: A retrospective, multicentre, cohort study. Lancet Oncol. 2019, 20, 159–164. [Google Scholar] [CrossRef]
- Niranjan, A.; Kano, H.; Mathieu, D.; Kondziolka, D.; Flickinger, J.C.; Lunsford, L.D. Radiosurgery for craniopharyngioma. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 64–71. [Google Scholar] [CrossRef]
- Suh, J.H.; Gupta, N. Role of radiation therapy and radiosurgery in the management of craniopharyngiomas. Neurosurg. Clin. N. Am. 2006, 17, 143–148. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tanaka, T.; Kida, Y. Stereotactic gamma radiosurgery of craniopharyngiomas. Pediatr. Neurosurg. 1994, 21 (Suppl. 1), 69–74. [Google Scholar] [CrossRef] [PubMed]
- Veeravagu, A.; Lee, M.; Jiang, B.; Chang, S.D. The role of radiosurgery in the treatment of craniopharyngiomas. Neurosurg. Focus 2010, 28, E11. [Google Scholar] [CrossRef]
- Gopalan, R.; Dassoulas, K.; Rainey, J.; Sherman, J.H.; Sheehan, J.P. Evaluation of the role of Gamma Knife surgery in the treatment of craniopharyngiomas. Neurosurg. Focus 2008, 24, E5. [Google Scholar] [CrossRef]
- Xu, Z.; Yen, C.P.; Schlesinger, D.; Sheehan, J. Outcomes of Gamma Knife surgery for craniopharyngiomas. J. Neurooncol. 2011, 104, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, C. Gamma knife surgery for recurrent solitary metastasis of a cerebral hypernephroma: Case report. Neurosurgery 1989, 25, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro Oncol. 2019, 21, v1–v100. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Kondziolka, D.; Flickinger, J.C.; Bissonette, D.J.; Bozik, M.; Lunsford, L.D. Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 1997, 41, 776–783, discussion 783–785. [Google Scholar] [CrossRef]
- Souhami, L.; Seiferheld, W.; Brachman, D.; Podgorsak, E.B.; Werner-Wasik, M.; Lustig, R.; Schultz, C.J.; Sause, W.; Okunieff, P.; Buckner, J.; et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: Report of Radiation Therapy Oncology Group 93-05 protocol. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 853–860. [Google Scholar] [CrossRef]
- Tanaka, S.; Shin, M.; Mukasa, A.; Hanakita, S.; Saito, K.; Koga, T.; Saito, N. Stereotactic radiosurgery for intracranial gliomas. Neurosurg. Clin. N. Am. 2013, 24, 605–612. [Google Scholar] [CrossRef]
- Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.M.; Gallia, G.L.; et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008, 321, 1807–1812. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Gessler, F.; Bernstock, J.D.; Braczynski, A.; Lescher, S.; Baumgarten, P.; Harter, P.N.; Mittelbronn, M.; Wu, T.; Seifert, V.; Senft, C. Surgery for Glioblastoma in Light of Molecular Markers: Impact of Resection and MGMT Promoter Methylation in Newly Diagnosed IDH-1 Wild-Type Glioblastomas. Neurosurgery 2019, 84, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Marchi, F.; Sahnane, N.; Cerutti, R.; Cipriani, D.; Barizzi, J.; Stefanini, F.M.; Epistolio, S.; Cerati, M.; Balbi, S.; Mazzucchelli, L.; et al. The Impact of Surgery in IDH 1 Wild Type Glioblastoma in Relation With the MGMT Deregulation. Front. Oncol. 2019, 9, 1569. [Google Scholar] [CrossRef] [PubMed]
- Bunevicius, A.; Pikis, S.; Kondziolka, D.; Patel, D.N.; Bernstein, K.; Sulman, E.P.; Lee, C.C.; Yang, H.C.; Delabar, V.; Mathieu, D.; et al. Stereotactic radiosurgery for IDH wild type glioblastoma: An international, multicenter study. J. Neurooncol. 2021, 155, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.S.; Lee, J.I.; Park, K.; Kim, J.H.; Lim, D.H.; Nam, D.H. Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 2008, 112, 2046–2051. [Google Scholar] [CrossRef]
- Niranjan, A.; Monaco, E.A., III; Kano, H.; Flickinger, J.C.; Lunsford, L.D. Stereotactic Radiosurgery in the Multimodality Management of Residual or Recurrent Glioblastoma Multiforme. Prog. Neurol. Surg. 2018, 31, 48–61. [Google Scholar] [CrossRef]
- Sharma, M.; Schroeder, J.L.; Elson, P.; Meola, A.; Barnett, G.H.; Vogelbaum, M.A.; Suh, J.H.; Chao, S.T.; Mohammadi, A.M.; Stevens, G.H.J.; et al. Outcomes and prognostic stratification of patients with recurrent glioblastoma treated with salvage stereotactic radiosurgery. J. Neurosurg. 2019, 131, 489–499. [Google Scholar] [CrossRef]
- Elliott, R.E.; Parker, E.C.; Rush, S.C.; Kalhorn, S.P.; Moshel, Y.A.; Narayana, A.; Donahue, B.; Golfinos, J.G. Efficacy of gamma knife radiosurgery for small-volume recurrent malignant gliomas after initial radical resection. World Neurosurg. 2011, 76, 128–140, discussion 61–62. [Google Scholar] [CrossRef]
- Imber, B.S.; Kanungo, I.; Braunstein, S.; Barani, I.J.; Fogh, S.E.; Nakamura, J.L.; Berger, M.S.; Chang, E.F.; Molinaro, A.M.; Cabrera, J.R.; et al. Indications and Efficacy of Gamma Knife Stereotactic Radiosurgery for Recurrent Glioblastoma: 2 Decades of Institutional Experience. Neurosurgery 2017, 80, 129–139. [Google Scholar] [CrossRef]
- Dono, A.; Amsbaugh, M.; Martir, M.; Smilie, R.H.; Riascos, R.F.; Zhu, J.J.; Hsu, S.; Kim, D.H.; Tandon, N.; Ballester, L.Y.; et al. Genomic alterations predictive of response to radiosurgery in recurrent IDH-WT glioblastoma. J. Neurooncol. 2021, 152, 153–162. [Google Scholar] [CrossRef]
- Azoulay, M.; Chang, S.D.; Gibbs, I.C.; Hancock, S.L.; Pollom, E.L.; Harsh, G.R.; Adler, J.R.; Harraher, C.; Li, G.; Hayden Gephart, M.; et al. A phase I/II trial of 5-fraction stereotactic radiosurgery with 5-mm margins with concurrent temozolomide in newly diagnosed glioblastoma: Primary outcomes. Neuro Oncol. 2020, 22, 1182–1189. [Google Scholar] [CrossRef]
- Frischer, J.M.; Marosi, C.; Woehrer, A.; Hainfellner, J.A.; Dieckmann, K.U.; Eiter, H.; Wang, W.T.; Mallouhi, A.; Ertl, A.; Knosp, E.; et al. Gamma Knife Radiosurgery in Recurrent Glioblastoma. Ster. Funct. Neurosurg. 2016, 94, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Waitkus, M.S.; Diplas, B.H.; Yan, H. Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell 2018, 34, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.R.; Kim, M.S.; Oh, J.E.; Kim, Y.R.; Song, S.Y.; Seo, S.I.; Lee, J.Y.; Yoo, N.J.; Lee, S.H. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int. J. Cancer 2009, 125, 353–355. [Google Scholar] [CrossRef]
- Yang, H.; Ye, D.; Guan, K.L.; Xiong, Y. IDH1 and IDH2 mutations in tumorigenesis: Mechanistic insights and clinical perspectives. Clin. Cancer Res. 2012, 18, 5562–5571. [Google Scholar] [CrossRef]
- Dang, L.; Su, S.M. Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annu. Rev. Biochem. 2017, 86, 305–331. [Google Scholar] [CrossRef]
- Duncan, C.G.; Barwick, B.G.; Jin, G.; Rago, C.; Kapoor-Vazirani, P.; Powell, D.R.; Chi, J.T.; Bigner, D.D.; Vertino, P.M.; Yan, H. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome. Res. 2012, 22, 2339–2355. [Google Scholar] [CrossRef]
- Figueroa, M.E.; Abdel-Wahab, O.; Lu, C.; Ward, P.S.; Patel, J.; Shih, A.; Li, Y.; Bhagwat, N.; Vasanthakumar, A.; Fernandez, H.F.; et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010, 18, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhou, H.; Sun, W.; Hou, L.; Wang, Y.; Wang, H.; Lv, Z.; Xue, X. IDH1(R132H) mutation increases radiotherapy efficacy and a 4-gene radiotherapy-related signature of WHO grade 4 gliomas. Sci. Rep. 2023, 13, 19659. [Google Scholar] [CrossRef]
- Yin, N.; Xie, T.; Zhang, H.; Chen, J.; Yu, J.; Liu, F. IDH1-R132H mutation radiosensitizes U87MG glioma cells via epigenetic downregulation of TIGAR. Oncol. Lett. 2020, 19, 1322–1330. [Google Scholar] [CrossRef]
- Molenaar, R.J.; Botman, D.; Smits, M.A.; Hira, V.V.; van Lith, S.A.; Stap, J.; Henneman, P.; Khurshed, M.; Lenting, K.; Mul, A.N.; et al. Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198. Cancer Res. 2015, 75, 4790–4802. [Google Scholar] [CrossRef]
- Mayer, R.; Sminia, P. Reirradiation tolerance of the human brain. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1350–1360. [Google Scholar] [CrossRef] [PubMed]
- Andratschke, N.; Heusel, A.; Albert, N.L.; Alongi, F.; Baumert, B.G.; Belka, C.; Castellano, A.; Dhermain, F.; Erridge, S.C.; Grosu, A.-L.; et al. ESTRO/EANO recommendation on reirradiation of glioblastoma. Radiother. Oncol. 2024, 204, 110696. [Google Scholar] [CrossRef]
- Milano, M.T.; Grimm, J.; Niemierko, A.; Soltys, S.G.; Moiseenko, V.; Redmond, K.J.; Yorke, E.; Sahgal, A.; Xue, J.; Mahadevan, A.; et al. Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 68–86. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, E.J.; Ruiz-Garcia, H.; Nehlsen, A.D.; Sindhu, K.K.; Estrada, R.S.; Borst, G.R.; Sheehan, J.P.; Quinones-Hinojosa, A.; Trifiletti, D.M. Preoperative Stereotactic Radiosurgery for Glioblastoma. Biology 2022, 11, 194. [Google Scholar] [CrossRef]
- Klein, B.; Loven, D.; Lurie, H.; Rakowsky, E.; Nyska, A.; Levin, I.; Klein, T. The effect of irradiation on expression of HLA class I antigens in human brain tumors in culture. J. Neurosurg. 1994, 80, 1074–1077. [Google Scholar] [CrossRef]
- Newcomb, E.W.; Demaria, S.; Lukyanov, Y.; Shao, Y.; Schnee, T.; Kawashima, N.; Lan, L.; Dewyngaert, J.K.; Zagzag, D.; McBride, W.H.; et al. The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin. Cancer Res. 2006, 12, 4730–4737. [Google Scholar] [CrossRef]
- Zeng, J.; See, A.P.; Phallen, J.; Jackson, C.M.; Belcaid, Z.; Ruzevick, J.; Durham, N.; Meyer, C.; Harris, T.J.; Albesiano, E.; et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 343–349. [Google Scholar] [CrossRef]
- Sturm, V.; Kober, B.; Hover, K.H.; Schlegel, W.; Boesecke, R.; Pastyr, O.; Hartmann, G.H.; Schabbert, S.; zum Winkel, K.; Kunze, S.; et al. Stereotactic percutaneous single dose irradiation of brain metastases with a linear accelerator. Int. J. Radiat. Oncol. Biol. Phys. 1987, 13, 279–282. [Google Scholar] [CrossRef]
- Loeffler, J.S.; Kooy, H.M.; Wen, P.Y.; Fine, H.A.; Cheng, C.W.; Mannarino, E.G.; Tsai, J.S.; Alexander, E., 3rd. The treatment of recurrent brain metastases with stereotactic radiosurgery. J. Clin. Oncol. 1990, 8, 576–582. [Google Scholar] [CrossRef]
- Bhatnagar, A.K.; Flickinger, J.C.; Kondziolka, D.; Lunsford, L.D. Stereotactic radiosurgery for four or more intracranial metastases. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 898–903. [Google Scholar] [CrossRef]
- Firlik, K.S.; Kondziolka, D.; Flickinger, J.C.; Lunsford, L.D. Stereotactic radiosurgery for brain metastases from breast cancer. Ann. Surg. Oncol. 2000, 7, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Flickinger, J.C.; Kondziolka, D. Radiosurgery instead of resection for solitary brain metastasis: The gold standard redefined. Int. J. Radiat. Oncol. Biol. Phys. 1996, 35, 185–186. [Google Scholar] [CrossRef]
- Hasegawa, T.; Kondziolka, D.; Flickinger, J.C.; Germanwala, A.; Lunsford, L.D. Brain metastases treated with radiosurgery alone: An alternative to whole brain radiotherapy? Neurosurgery 2003, 52, 1318–1326, discussion 1326. [Google Scholar] [CrossRef]
- Andrews, D.W.; Scott, C.B.; Sperduto, P.W.; Flanders, A.E.; Gaspar, L.E.; Schell, M.C.; Werner-Wasik, M.; Demas, W.; Ryu, J.; Bahary, J.P.; et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: Phase III results of the RTOG 9508 randomised trial. Lancet 2004, 363, 1665–1672. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Kondziolka, D.; Flickinger, J.C.; Lunsford, L.D. Stereotactic radiosurgery for brain metastases from gastrointestinal tract cancer. Surg. Neurol. 2003, 60, 506–514, discussion 514–515. [Google Scholar] [CrossRef] [PubMed]
- Kondziolka, D.; Martin, J.J.; Flickinger, J.C.; Friedland, D.M.; Brufsky, A.M.; Baar, J.; Agarwala, S.; Kirkwood, J.M.; Lunsford, L.D. Long-term survivors after gamma knife radiosurgery for brain metastases. Cancer 2005, 104, 2784–2791. [Google Scholar] [CrossRef]
- Chang, E.L.; Wefel, J.S.; Maor, M.H.; Hassenbusch, S.J., 3rd; Mahajan, A.; Lang, F.F.; Woo, S.Y.; Mathews, L.A.; Allen, P.K.; Shiu, A.S.; et al. A pilot study of neurocognitive function in patients with one to three new brain metastases initially treated with stereotactic radiosurgery alone. Neurosurgery 2007, 60, 277–283, discussion 283–284. [Google Scholar] [CrossRef]
- Kondziolka, D.; Niranjan, A.; Flickinger, J.C.; Lunsford, L.D. Radiosurgery with or without whole-brain radiotherapy for brain metastases: The patients’ perspective regarding complications. Am. J. Clin. Oncol. 2005, 28, 173–179. [Google Scholar] [CrossRef]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516. [Google Scholar] [CrossRef]
- Schiff, D.; Messersmith, H.; Brastianos, P.K.; Brown, P.D.; Burri, S.; Dunn, I.F.; Gaspar, L.E.; Gondi, V.; Jordan, J.T.; Maues, J.; et al. Radiation Therapy for Brain Metastases: ASCO Guideline Endorsement of ASTRO Guideline. J. Clin. Oncol. 2022, 40, 2271–2276. [Google Scholar] [CrossRef]
- Gondi, V.; Bauman, G.; Bradfield, L.; Burri, S.H.; Cabrera, A.R.; Cunningham, D.A.; Eaton, B.R.; Hattangadi-Gluth, J.A.; Kim, M.M.; Kotecha, R.; et al. Radiation Therapy for Brain Metastases: An ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2022, 12, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.L.; Hassenbusch, S.J., 3rd; Shiu, A.S.; Lang, F.F.; Allen, P.K.; Sawaya, R.; Maor, M.H. The role of tumor size in the radiosurgical management of patients with ambiguous brain metastases. Neurosurgery 2003, 53, 272–280, discussion 280–281. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Arooj, S.; Li, R.; Tian, Y.; Zhang, J.; Lin, J.; Liang, Y.; Xu, A.; Zheng, R.; Liu, M.; et al. Tumor Primary Site and Histology Subtypes Role in Radiotherapeutic Management of Brain Metastases. Front. Oncol. 2020, 10, 781. [Google Scholar] [CrossRef]
- Brown, P.D.; Brown, C.A.; Pollock, B.E.; Gorman, D.A.; Foote, R.L. Stereotactic radiosurgery for patients with “radioresistant” brain metastases. Neurosurgery 2008, 62 (Suppl. 2), 790–801. [Google Scholar] [CrossRef]
- Lwu, S.; Goetz, P.; Monsalves, E.; Aryaee, M.; Ebinu, J.; Laperriere, N.; Menard, C.; Chung, C.; Millar, B.A.; Kulkarni, A.V.; et al. Stereotactic radiosurgery for the treatment of melanoma and renal cell carcinoma brain metastases. Oncol. Rep. 2013, 29, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Ene, C.I.; Abi Faraj, C.; Beckham, T.H.; Weinberg, J.S.; Andersen, C.R.; Haider, A.S.; Rao, G.; Ferguson, S.D.; Alvarez-Brenkenridge, C.A.; Kim, B.Y.S.; et al. Response of treatment-naive brain metastases to stereotactic radiosurgery. Nat. Commun. 2024, 15, 3728. [Google Scholar] [CrossRef]
- Upadhyay, R.; Palmer, J.D.; Klamer, B.G.; Perlow, H.K.; Schoenhals, J.E.; Ghose, J.; Rajappa, P.; Blakaj, D.M.; Beyer, S.; Grecula, J.C.; et al. Safety and Feasibility of Stereotactic Radiosurgery for Patients with 15 or more Brain Metastases. Adv. Radiat. Oncol. 2024, 9, 101509. [Google Scholar] [CrossRef]
- Mole, R.H. Whole body irradiation; radiobiology or medicine? Br. J. Radiol. 1953, 26, 234–241. [Google Scholar] [CrossRef]
- Gui, C.; Kleinberg, L.R.; Lim, M.; Redmond, K.J. Extracranial Abscopal Responses after Radiation Therapy for Intracranial Metastases: A Review of the Clinical Literature and Commentary on Mechanism. Cureus 2019, 11, e4207. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Elmali, A.; Yazici, G. Abscopal Effect, From Myth to Reality: From Radiation Oncologists’ Perspective. Cureus 2019, 11, e3860. [Google Scholar] [CrossRef]
- Dewan, M.Z.; Galloway, A.E.; Kawashima, N.; Dewyngaert, J.K.; Babb, J.S.; Formenti, S.C.; Demaria, S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 2009, 15, 5379–5388. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Formenti, S.C. Can abscopal effects of local radiotherapy be predicted by modeling T cell trafficking? J. Immunother. Cancer 2016, 4, 29. [Google Scholar] [CrossRef]
- Suek, N.; Campesato, L.F.; Merghoub, T.; Khalil, D.N. Targeted APC Activation in Cancer Immunotherapy to Enhance the Abscopal Effect. Front. Immunol. 2019, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Wang, X.; Teng, F.; Kong, L.; Yu, J. Abscopal effect of metastatic pancreatic cancer after local radiotherapy and granulocyte-macrophage colony-stimulating factor therapy. Cancer Biol. Ther. 2017, 18, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Trommer, M.; Yeo, S.Y.; Persigehl, T.; Bunck, A.; Grull, H.; Schlaak, M.; Theurich, S.; von Bergwelt-Baildon, M.; Morgenthaler, J.; Herter, J.M.; et al. Abscopal Effects in Radio-Immunotherapy-Response Analysis of Metastatic Cancer Patients With Progressive Disease Under Anti-PD-1 Immune Checkpoint Inhibition. Front. Pharmacol. 2019, 10, 511. [Google Scholar] [CrossRef]
- Pangal, D.J.; Yarovinsky, B.; Cardinal, T.; Cote, D.J.; Ruzevick, J.; Attenello, F.J.; Chang, E.L.; Ye, J.; Neman, J.; Chow, F.; et al. The abscopal effect: Systematic review in patients with brain and spine metastases. Neurooncol. Adv. 2022, 4, vdac132. [Google Scholar] [CrossRef]
- Tracz, J.A.; Donnelly, B.M.; Ngu, S.; Vojnic, M.; Wernicke, A.G.; D’Amico, R.S. The abscopal effect: Inducing immunogenicity in the treatment of brain metastases secondary to lung cancer and melanoma. J. Neurooncol. 2023, 163, 1–14. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F. “Reinforcement” by Tumor Microenvironment: The Seventh “R” of Radiobiology. Int. J. Radiat. Oncol. Biol. Phys. 2024, 119, 727–733. [Google Scholar] [CrossRef]
- Kondziolka, D.; Lunsford, L.D.; Flickinger, J.C. The application of stereotactic radiosurgery to disorders of the brain. Neurosurgery 2008, 62 (Suppl. 2), 707–719, discussion 719–720. [Google Scholar] [CrossRef]
- Flickinger, J.C.; Kondziolka, D.; Lunsford, L.D.; Pollock, B.E.; Yamamoto, M.; Gorman, D.A.; Schomberg, P.J.; Sneed, P.; Larson, D.; Smith, V.; et al. A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 67–74. [Google Scholar] [CrossRef]
- Flickinger, J.C.; Kondziolka, D.; Pollock, B.E.; Maitz, A.H.; Lunsford, L.D. Complications from arteriovenous malformation radiosurgery: Multivariate analysis and risk modeling. Int. J. Radiat. Oncol. Biol. Phys. 1997, 38, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Regis, J.; Tuleasca, C.; Resseguier, N.; Carron, R.; Donnet, A.; Gaudart, J.; Levivier, M. Long-term safety and efficacy of Gamma Knife surgery in classical trigeminal neuralgia: A 497-patient historical cohort study. J. Neurosurg. 2016, 124, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Tuleasca, C.; Regis, J.; Sahgal, A.; De Salles, A.; Hayashi, M.; Ma, L.; Martinez-Alvarez, R.; Paddick, I.; Ryu, S.; Slotman, B.J.; et al. Stereotactic radiosurgery for trigeminal neuralgia: A systematic review. J. Neurosurg. 2019, 130, 733–757. [Google Scholar] [CrossRef]
- Regis, J.; Tuleasca, C.; Resseguier, N.; Carron, R.; Donnet, A.; Yomo, S.; Gaudart, J.; Levivier, M. The Very Long-Term Outcome of Radiosurgery for Classical Trigeminal Neuralgia. Ster. Funct. Neurosurg. 2016, 94, 24–32. [Google Scholar] [CrossRef]
- Kihlstrom, L.; Hindmarsh, T.; Lax, I.; Lippitz, B.; Mindus, P.; Lindquist, C. Radiosurgical lesions in the normal human brain 17 years after gamma knife capsulotomy. Neurosurgery 1997, 41, 396–401, discussion 401–402. [Google Scholar] [CrossRef]
- Andersson, B.; Larsson, B.; Leksell, L.; Mair, W.; Rexed, B.; Sourander, P.; Wennerstrand, J. Histopathology of late local radiolesions in the goat brain. Acta Radiol. Ther. Phys. Biol. 1970, 9, 385–394. [Google Scholar] [CrossRef]
- Niranjan, A.; Kondziolka, D.; Baser, S.; Heyman, R.; Lunsford, L.D. Functional outcomes after gamma knife thalamotomy for essential tremor and MS-related tremor. Neurology 2000, 55, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Moreno, N.E.; Sahgal, A.; De Salles, A.; Hayashi, M.; Levivier, M.; Ma, L.; Paddick, I.; Regis, J.; Ryu, S.; Slotman, B.J.; et al. Stereotactic radiosurgery for tremor: Systematic review. J. Neurosurg. 2019, 130, 589–600. [Google Scholar] [CrossRef]
- Perez-Sanchez, J.R.; Martinez-Alvarez, R.; Martinez Moreno, N.E.; Torres Diaz, C.; Rey, G.; Parees, I.; Del Barrio, A.A.; Alvarez-Linera, J.; Kurtis, M.M. Gamma Knife(R) stereotactic radiosurgery as a treatment for essential and parkinsonian tremor: Long-term experience. Neurol. (Engl. Ed.) 2023, 38, 188–196. [Google Scholar] [CrossRef]
- Tuleasca, C.; Witjas, T.; Levivier, M.; Girard, N.; Cretol, A.; Levy, N.; Thiran, J.P.; Guedj, E.; Van de Ville, D.; Regis, J. The Brain Connectome after Gamma Knife Radiosurgery of the Ventro-Intermediate Nucleus for Tremor: Marseille-Lausanne Radiobiology Study Protocol. Ster. Funct. Neurosurg. 2021, 99, 387–392. [Google Scholar] [CrossRef]
- Crouzen, J.A.; Petoukhova, A.L.; Broekman, M.L.D.; Fiocco, M.; Fisscher, U.J.; Franssen, J.H.; Gadellaa-van Hooijdonk, C.G.M.; Kerkhof, M.; Kiderlen, M.; Mast, M.E.; et al. SAFESTEREO: Phase II randomized trial to compare stereotactic radiosurgery with fractionated stereotactic radiosurgery for brain metastases. BMC Cancer 2023, 23, 273. [Google Scholar] [CrossRef]
- Vallerga, A.K.; Zarling, D.A.; Kinsella, T.J. New radiosensitizing regimens, drugs, prodrugs, and candidates. Clin. Adv. Hematol. Oncol. 2004, 2, 793–805. [Google Scholar]
- Iliakis, G.; Wu, W.; Wang, M. DNA double strand break repair inhibition as a cause of heat radiosensitization: Re-evaluation considering backup pathways of NHEJ. Int. J. Hyperth. 2008, 24, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Harrison, L.B.; Chadha, M.; Hill, R.J.; Hu, K.; Shasha, D. Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 2002, 7, 492–508. [Google Scholar] [CrossRef] [PubMed]
- Beg, U.; Snyder, B.M.; Madhani, S.I.; Hamidi, N.; Padmanaban, V.; Tuanquin, L.C.; Kruser, T.J.; Connor, J.; Mansouri, A. Current Landscape and Future Prospects of Radiation Sensitizers for Malignant Brain Tumors: A Systematic Review. World Neurosurg. 2021, 151, e839–e856. [Google Scholar] [CrossRef] [PubMed]
- Barker, C.A.; Powell, S.N. Enhancing radiotherapy through a greater understanding of homologous recombination. Semin. Radiat. Oncol. 2010, 20, 267–273 e263. [Google Scholar] [CrossRef]
- Vens, C.; Begg, A.C. Targeting base excision repair as a sensitization strategy in radiotherapy. Semin. Radiat. Oncol. 2010, 20, 241–249. [Google Scholar] [CrossRef]
- Luo, Y.; Leverson, J.D. New opportunities in chemosensitization and radiosensitization: Modulating the DNA-damage response. Expert Rev. Anticancer. Ther. 2005, 5, 333–342. [Google Scholar] [CrossRef]
- Baschnagel, A.M.; Elnaggar, J.H.; VanBeek, H.J.; Kromke, A.C.; Skiba, J.H.; Kaushik, S.; Abel, L.; Clark, P.A.; Longhurst, C.A.; Nickel, K.P.; et al. ATR Inhibitor M6620 (VX-970) Enhances the Effect of Radiation in Non-Small Cell Lung Cancer Brain Metastasis Patient-Derived Xenografts. Mol. Cancer Ther. 2021, 20, 2129–2139. [Google Scholar] [CrossRef]
- Ene, C.I.; Kreuser, S.A.; Jung, M.; Zhang, H.; Arora, S.; White Moyes, K.; Szulzewsky, F.; Barber, J.; Cimino, P.J.; Wirsching, H.G.; et al. Anti-PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro Oncol. 2020, 22, 639–651. [Google Scholar] [CrossRef]
- Ko, E.C.; Formenti, S.C. Radiation therapy to enhance tumor immunotherapy: A novel application for an established modality. Int. J. Radiat. Biol. 2019, 95, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Formenti, S.C.; Rudqvist, N.P.; Golden, E.; Cooper, B.; Wennerberg, E.; Lhuillier, C.; Vanpouille-Box, C.; Friedman, K.; Ferrari de Andrade, L.; Wucherpfennig, K.W.; et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 2018, 24, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Nagasawa, S. Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. Int. J. Mol. Sci. 2020, 21, 9324. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.; Qian, J.M.; Yu, J.B.; Chiang, V.L. Local tumor response and survival outcomes after combined stereotactic radiosurgery and immunotherapy in non-small cell lung cancer with brain metastases. J. Neurosurg. 2020, 132, 512–517. [Google Scholar] [CrossRef]
- Fang, P.; Jiang, W.; Allen, P.; Glitza, I.; Guha, N.; Hwu, P.; Ghia, A.; Phan, J.; Mahajan, A.; Tawbi, H.; et al. Radiation necrosis with stereotactic radiosurgery combined with CTLA-4 blockade and PD-1 inhibition for treatment of intracranial disease in metastatic melanoma. J. Neurooncol. 2017, 133, 595–602. [Google Scholar] [CrossRef]
- Salari, E.; Elsamaloty, H.; Ray, A.; Hadziahmetovic, M.; Parsai, E.I. Differentiating Radiation Necrosis and Metastatic Progression in Brain Tumors Using Radiomics and Machine Learning. Am. J. Clin. Oncol. 2023, 46, 486–495. [Google Scholar] [CrossRef]
- Nichelli:, L.; Casagranda, S. Current emerging MRI tools for radionecrosis and pseudoprogression diagnosis. Curr. Opin. Oncol. 2021, 33, 597–607. [Google Scholar] [CrossRef]
The R’s of Radiobiology in Radiotherapy |
---|
Wither’s “Four R’s of Fractionated Radiotherapy” |
Repair of sublethal cellular damage |
Repopulation of cells after radiation |
Redistribution of cells within the cell cycle |
Reoxygenation of the surviving cells |
Steel’s “Fifth R” |
Radiosensitivity (intrinsic) |
Boustani’s “Sixth R” |
Reactivation of the anti-tumor immune response |
Taghizadeh-Hesary’s “Seventh R” |
Reinforcement by the tumor microenvironment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, F.C.; Byun, J.; Guru, S.; AbuReesh, D.; Hori, Y.S.; Rahimy, E.; Pollom, E.L.; Soltys, S.; Park, D.J.; Chang, S.D. Understanding the Radiobiology of Central Nervous System Diseases in the Golden Age of Radiosurgery—Does It Matter? Brain Sci. 2025, 15, 649. https://doi.org/10.3390/brainsci15060649
Lam FC, Byun J, Guru S, AbuReesh D, Hori YS, Rahimy E, Pollom EL, Soltys S, Park DJ, Chang SD. Understanding the Radiobiology of Central Nervous System Diseases in the Golden Age of Radiosurgery—Does It Matter? Brain Sciences. 2025; 15(6):649. https://doi.org/10.3390/brainsci15060649
Chicago/Turabian StyleLam, Fred C., John Byun, Santosh Guru, Deyaldeen AbuReesh, Yusuke S. Hori, Elham Rahimy, Erqi Liu Pollom, Scott Soltys, David J. Park, and Steven D. Chang. 2025. "Understanding the Radiobiology of Central Nervous System Diseases in the Golden Age of Radiosurgery—Does It Matter?" Brain Sciences 15, no. 6: 649. https://doi.org/10.3390/brainsci15060649
APA StyleLam, F. C., Byun, J., Guru, S., AbuReesh, D., Hori, Y. S., Rahimy, E., Pollom, E. L., Soltys, S., Park, D. J., & Chang, S. D. (2025). Understanding the Radiobiology of Central Nervous System Diseases in the Golden Age of Radiosurgery—Does It Matter? Brain Sciences, 15(6), 649. https://doi.org/10.3390/brainsci15060649