Functional Enrichment Analysis of Rare Mutations in Patients with Brain Arteriovenous Malformations
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. DNA Isolation and Whole-Exome Sequencing
2.3. Bioinformatic and Statistical Analyses
2.4. Variant Filtering Criteria
2.5. Gene Ontology Analysis and Prioritization of Genes
2.6. Sanger Validation
3. Results
3.1. Patient Recruitment Data
3.2. WES Results Analysis
3.3. Results of Gene Ontology Analysis and Prioritization of Genes
3.4. Results of Sanger Validation
4. Discussion
4.1. AVM1
4.2. AVM2
4.3. AVM3
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Primer Sequences and PCR Conditions
Name Primers | Sequence (5″–3″) | Tm (°C) | Amplicon Length (bp) |
---|---|---|---|
rs149722210-F | CCTGGATCAGATGGTCTTCC | 59.1 | 395 |
rs149722210-R | CACACATTTGTCTAAGGAACAACTA | 59 | |
rs143417693-F | TTCTCAATCATCCTCCATTCTT | 54.6 | 425 |
rs143417693-R | CTCTCTGTCTCTGTTGCTC | 58.1 | |
rs34778348-F | TTAAGAAGAAAACAAATAGTGATGAC | 56 | 361 |
rs34778348-R | TGATCTGAAAAGATGGTGCT | 56.6 | |
rs200308943-F | AGGTGTGGAGTTTTGAAGAA | 58.4 | 438 |
rs200308943-R | GTGGTGTAATCCTACTGCT | 57.6 | |
rs142456637-F | GGATGGAGGAAGATGAGAATAG | 58.7 | 461 |
rs142456637-R | AAGGCAGGTAGGACCCAG | 61.9 | |
rs115491500-F | ATGCCCAAGTGTGAGAATGA | 60.9 | 301 |
rs115491500-R | GCAGTTTGAGTTTGTGTCCT | 60.1 | |
rs118153230-F | AGTGAATATGCCCCAAGAT | 57.3 | 286 |
rs118153230-R | AAAACCATGAAGACAGAGC | 56.9 | |
rs151124318-F | CTTTCCCCAGACTTTCAGT | 58.1 | 307 |
rs151124318-R | TGAATGGAGTTCTCAGGTATG | 58.3 | |
rs2288792-F | TAGACACAGGAAGGCAGGT | 61.4 | 393 |
rs2288792-R | CCTCATTTGGGTGTTTTTCATG | 59.9 | |
rs183329050-F | GATGAGGATGAGATACTCTGTGTC | 61.3 | 386 |
rs183329050-R | CTCTCGCAGCCGTAGGTG | 63.7 | |
NM_005559.3_F | ATCAGCACCAATGCCACCT | 63.5 | 206 |
NM_005559.3_R | CCTAACAGAAGTCTCAGTCCTC | 60.8 | |
rs55859133-F | CCAAGTCAGACTCCAAAGGT | 59 | 446 |
rs55859133-R | TTCAGCCGCTCCTTAGGTA | 59.8 | |
rs371444691-F | ACTGAGGCAGCAGAATCTGA | 62.5 | 426 |
rs371444691-R | TTCAGCAACTTCCCCTAAAGG | 61.5 |
Appendix A.2. Validation Analysis of the Candidate Variant in the Genes
Appendix A.3
Gene Symbol | Gene ID | GO: Biological Process | Human Phenotype | Mouse Phenotype | Pathway | Interaction | Disease | Average Score | Overall p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Score | p Value | Score | p Value | Score | p Value | Score | p Value | Score | p Value | Score | p Value | ||||
AVM1 | |||||||||||||||
DNAAF2 | 55172 | 6.083 × 10−1 | 2.027 × 10−2 | 7.941 × 10−1 | 5.232 × 10−3 | 9.114 × 10−1 | 1.000 × 10−6 | 0.000 × 100 | 5.043 × 10−1 | 0.000 × 100 | 5.062 × 10−1 | 0.000 × 100 | 5.010 × 10−1 | 3.856 × 10−1 | 3.381 × 10−4 |
LAMA1 | 284217 | 9.995 × 10−1 | 5.886 × 10−3 | 0.000 × 100 | 5.049 × 10−1 | 6.482 × 10−1 | 6.540 × 10−4 | 0.000 × 100 | 5.043 × 10−1 | 0.000 × 100 | 5.062 × 10−1 | 0.000 × 100 | 5.010 × 10−1 | 2.746 × 10−1 | 1.870 × 10−2 |
NPHP3 | 27031 | 9.984 × 10−1 | 7.848 × 10−3 | 9.588 × 10−1 | 2.616 × 10−3 | 0.000 × 100 | 5.056 × 10−1 | 0.000 × 100 | 5.043 × 10−1 | 0.000 × 100 | 5.062 × 10−1 | 0.000 × 100 | 5.010 × 10−1 | 3.262 × 10−1 | 3.532 × 10−2 |
DNAAF1 | 123872 | 9.890 × 10−1 | 8.502 × 10−3 | 7.941 × 10−1 | 5.232 × 10−3 | 0.000 × 100 | 5.056 × 10−1 | 0.000 × 100 | 5.043 × 10−1 | 0.000 × 100 | 5.062 × 10−1 | 0.000 × 100 | 5.010 × 10−1 | 2.972 × 10−1 | 4.702 × 10−2 |
CCDC40 | 55036 | 9.890 × 10−1 | 8.502 × 10−3 | 7.941 × 10−1 | 5.232 × 10−3 | 0.000 × 100 | 5.056 × 10−1 | 0.000 × 100 | 5.043 × 10−1 | 0.000 × 100 | 5.062 × 10−1 | 0.000 × 100 | 5.010 × 10−1 | 2.972 × 10−1 | 4.702 × 10−2 |
AVM2 | |||||||||||||||
PRODH | 5625 | 0.000 × 100 | 5.036 × 10−1 | 0.000 × 100 | 5.199 × 10−1 | 0.000 × 100 | 5.016 × 10−1 | 0.000 × 100 | 5.062 × 10−1 | 0.000 × 100 | 5.056 × 10−1 | 0.000 × 100 | 5.029 × 10−1 | 2.999 × 10−2 | 2.793 × 10−1 |
AVM3 | |||||||||||||||
CTNNB1 | 1499 | 1.000 × 100 | 1.308 × 10−3 | 1.000 × 100 | 1.000 × 10−6 | 6.482 × 10−1 | 1.308 × 10−3 | 9.999 × 10−1 | 1.000 × 10−6 | 9.538 × 10−1 | 1.000 × 10−6 | 8.861 × 10−1 | 6.540 × 10−4 | 7.840 × 10−1 | 4.256 × 10−11 |
COL3A1 | 1281 | 1.000 × 100 | 1.308 × 10−3 | 1.000 × 100 | 1.000 × 10−6 | 4.011 × 10−1 | 4.578 × 10−3 | 0.000 × 100 | 5.023 × 10−1 | 8.651 × 10−1 | 6.540 × 10−4 | 3.839 × 10−1 | 1.243 × 10−2 | 6.036 × 10−1 | 1.437 × 10−7 |
ERBB2 | 2064 | 9.998 × 10−1 | 1.308 × 10−3 | 7.898 × 10−1 | 7.194 × 10−3 | 8.202 × 10−1 | 1.308 × 10−3 | 9.337 × 10−1 | 6.540 × 10−4 | 2.399 × 10−1 | 7.194 × 10−3 | 9.559 × 10−1 | 6.540 × 10−4 | 6.958 × 10−1 | 2.431 × 10−6 |
SMO | 6608 | 1.000 × 100 | 1.308 × 10−3 | 9.934 × 10−1 | 1.962 × 10−3 | 8.858 × 10−1 | 6.540 × 10−4 | 0.000 × 100 | 5.023 × 10−1 | 7.430 × 10−1 | 2.616 × 10−3 | 0.000 × 100 | 5.108 × 10−1 | 5.886 × 10−1 | 1.922 × 10−5 |
MAPK3 | 5595 | 9.999 × 10−1 | 1.308 × 10−3 | 0.000 × 100 | 5.029 × 10−1 | 1.000 × 100 | 1.000 × 10−6 | 8.696 × 10−1 | 6.540 × 10−4 | 0.000 × 100 | 5.108 × 10−1 | 4.783 × 10−1 | 4.221 × 10−5 | ||
TTN | 7273 | 9.068 × 10−1 | 1.112 × 10−2 | 8.880 × 10−1 | 3.924 × 10−3 | 9.274 × 10−1 | 1.000 × 10−6 | 0.000 × 100 | 5.023 × 10−1 | 2.399 × 10−1 | 7.194 × 10−3 | 0.000 × 100 | 5.108 × 10−1 | 4.374 × 10−1 | 6.651 × 10−5 |
PARD3 | 56288 | 6.707 × 10−1 | 2.158 × 10−2 | 5.070 × 10−1 | 3.924 × 10−3 | 7.114 × 10−1 | 6.540 × 10−4 | 2.399 × 10−1 | 7.194 × 10−3 | 3.839 × 10−1 | 1.243 × 10−2 | 4.655 × 10−1 | 1.632 × 10−4 | ||
RNF31 | 55072 | 2.066 × 10−1 | 3.924 × 10−2 | 9.516 × 10−2 | 1.439 × 10−2 | 5.070 × 10−1 | 3.924 × 10−3 | 0.000 × 100 | 5.023 × 10−1 | 6.430 × 10−1 | 3.924 × 10−3 | 8.499 × 10−1 | 1.308 × 10−3 | 3.947 × 10−1 | 3.966 × 10−4 |
CTBP2 | 1488 | 6.164 × 10−1 | 2.158 × 10−2 | 8.980 × 10−1 | 6.540 × 10−4 | 2.781 × 10−1 | 4.578 × 10−3 | 2.399 × 10−1 | 7.194 × 10−3 | 0.000 × 100 | 5.108 × 10−1 | 4.084 × 10−1 | 8.475 × 10−4 | ||
SLIT2 | 9353 | 1.000 × 100 | 1.308 × 10−3 | 5.726 × 10−1 | 3.270 × 10−3 | 0.000 × 100 | 5.023 × 10−1 | 2.399 × 10−1 | 7.194 × 10−3 | 0.000 × 100 | 5.108 × 10−1 | 3.021 × 10−1 | 3.614 × 10−3 | ||
CDH23 | 64072 | 1.974 × 10−1 | 3.924 × 10−2 | 9.929 × 10−1 | 1.962 × 10−3 | 0.000 × 100 | 5.029 × 10−1 | 0.000 × 100 | 5.023 × 10−1 | 2.399 × 10−1 | 7.194 × 10−3 | 3.497 × 10−1 | 1.831 × 10−2 | 2.900 × 10−1 | 4.633 × 10−3 |
NRP2 | 8828 | 1.000 × 100 | 1.308 × 10−3 | 0.000 × 100 | 5.029 × 10−1 | 0.000 × 100 | 5.023 × 10−1 | 6.654 × 10−1 | 3.270 × 10−3 | 3.680 × 10−1 | 1.700 × 10−2 | 3.389 × 10−1 | 5.090 × 10−3 | ||
ARHGEF25 | 115557 | 0.000 × 100 | 5.193 × 10−1 | 0.000 × 100 | 5.029 × 10−1 | 0.000 × 100 | 5.023 × 10−1 | 6.308 × 10−1 | 4.578 × 10−3 | 8.830 × 10−1 | 6.540 × 10−4 | 2.523 × 10−1 | 1.709 × 10−2 | ||
CELSR2 | 1952 | 4.949 × 10−1 | 2.485 × 10−2 | 0.000 × 100 | 5.029 × 10−1 | 0.000 × 100 | 5.023 × 10−1 | 2.399 × 10−1 | 7.194 × 10−3 | 4.493 × 10−1 | 9.810 × 10−3 | 2.321 × 10−1 | 1.790 × 10−2 | ||
LRRK2 | 120892 | 9.253 × 10−1 | 1.112 × 10−2 | 6.594 × 10−2 | 1.439 × 10−2 | 0.000 × 100 | 5.029 × 10−1 | 0.000 × 100 | 5.023 × 10−1 | 2.399 × 10−1 | 7.194 × 10−3 | 0.000 × 100 | 5.108 × 10−1 | 2.084 × 10−1 | 2.159 × 10−2 |
SLIT3 | 6586 | 9.999 × 10−1 | 1.308 × 10−3 | 0.000 × 100 | 5.029 × 10−1 | 0.000 × 100 | 5.023 × 10−1 | 2.399 × 10−1 | 7.194 × 10−3 | 0.000 × 100 | 5.108 × 10−1 | 2.066 × 10−1 | 2.633 × 10−2 | ||
OBSL1 | 23363 | 9.476 × 10−1 | 1.046 × 10−2 | 9.099 × 10−2 | 1.439 × 10−2 | 0.000 × 100 | 5.029 × 10−1 | 0.000 × 100 | 5.023 × 10−1 | 0.000 × 100 | 5.062 × 10−1 | 3.497 × 10−1 | 1.831 × 10−2 | 2.321 × 10−1 | 2.957 × 10−2 |
References
- Wu, E.M.; Ahmadieh, T.Y.E.; McDougall, C.M.; Aoun, S.G.; Mehta, N.; Neeley, O.J.; Plitt, A.; Ban, V.S.; Sillero, R.; White, J.A.; et al. Embolization of Brain Arteriovenous Malformations with Intent to Cure: A Systematic Review. J. Neurosurg. 2019, 132, 388–399. [Google Scholar] [CrossRef]
- Pinheiro, L.C.P.; Wolak Junior, M.; Ferreira, M.Y.; Magalhaes, R.B.; Fernandes, A.Y.; Paiva, W.S.; Zanini, M.A.; Marchesan Rodrigues, M.A. Unruptured Brain Arteriovenous Malformations: A Systematic Review and Meta-Analysis of Mortality and Morbidity in Aruba-Eligible Studies. World Neurosurg. 2024, 185, 381–392.e1. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, M.R.; Bokhari, S.R.A. Arteriovenous Malformation of the Brain. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2025. [Google Scholar]
- Osbun, J.W.; Reynolds, M.R.; Barrow, D.L. Arteriovenous Malformations: Epidemiology, Clinical Presentation, and Diagnostic Evaluation. Handb. Clin. Neurol. 2017, 143, 25–29. [Google Scholar] [CrossRef]
- Bharatha, A.; Faughnan, M.E.; Kim, H.; Pourmohamad, T.; Krings, T.; Bayrak-Toydemir, P.; Pawlikowska, L.; McCulloch, C.E.; Lawton, M.T.; Dowd, C.F.; et al. Brain Arteriovenous Malformation Multiplicity Predicts the Diagnosis of Hereditary Hemorrhagic Telangiectasia: Quantitative Assessment. Stroke 2012, 43, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, B.; Toktaş, Z.O.; Akakın, A.; Işık, S.; Bilguvar, K.; Kılıç, T.; Günel, M. Familial Occurrence of Brain Arteriovenous Malformation: A Novel ACVRL1 Mutation Detected by Whole Exome Sequencing. J. Neurosurg. 2017, 126, 1879–1883. [Google Scholar] [CrossRef]
- Parambil, J.G. Hereditary Hemorrhagic Telangiectasia. Clin. Chest Med. 2016, 37, 513–521. [Google Scholar] [CrossRef]
- Eerola, I.; Boon, L.M.; Mulliken, J.B.; Burrows, P.E.; Dompmartin, A.; Watanabe, S.; Vanwijck, R.; Vikkula, M. Capillary Malformation-Arteriovenous Malformation, a New Clinical and Genetic Disorder Caused by RASA1 Mutations. Am. J. Hum. Genet. 2003, 73, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, M. Pathogenesis of Brain Arteriovenous Malformations. Neurol. Med.-Chir. 2016, 56, 317–325. [Google Scholar] [CrossRef]
- Maddy, K.; Chalamgari, A.; Ariwodo, O.; Nisseau-Bey, Z.; Maldonado, J.; Lucke-Wold, B. An Updated Review on the Genetics of Arteriovenous Malformations. Gene Protein Dis. 2023, 2, 0312. [Google Scholar] [CrossRef]
- Ota, T. An Updated Review on the Pathogenesis of Brain Arteriovenous Malformations and Its Therapeutic Targets. J. Neuroendovascular Ther. 2025, 19, ra.2024-0008. [Google Scholar] [CrossRef]
- Ota, T.; Komiyama, M. Pathogenesis of Non-Hereditary Brain Arteriovenous Malformation and Therapeutic Implications. Interv. Neuroradiol. 2020, 26, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Walcott, B.P.; Winkler, E.A.; Zhou, S.; Birk, H.; Guo, D.; Koch, M.J.; Stapleton, C.J.; Spiegelman, D.; Dionne-Laporte, A.; Dion, P.A.; et al. Identification of a Rare BMP Pathway Mutation in a Non-Syndromic Human Brain Arteriovenous Malformation via Exome Sequencing. Hum. Genome Var. 2018, 5, 18001. [Google Scholar] [CrossRef]
- Scimone, C.; Donato, L.; Alafaci, C.; Granata, F.; Rinaldi, C.; Longo, M.; D’Angelo, R.; Sidoti, A. High-Throughput Sequencing to Detect Novel Likely Gene-Disrupting Variants in Pathogenesis of Sporadic Brain Arteriovenous Malformations. Front. Genet. 2020, 11, 146. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, S.; Xie, Z.; Zhang, M.; Zhao, H.; Cheng, X.; Zhang, Y.; Niu, Y.; Liu, J.; Zhang, T.J.; et al. Exome-Wide Analysis of De Novo and Rare Genetic Variants in Patients with Brain Arteriovenous Malformation. Neurology 2022, 98, e1670–e1678. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, S.; Liu, B.; Zhang, Q.; Li, Y.; Liu, J.; Shen, Y.; Ding, X.; Lin, J.; Wu, Y.; et al. Perturbations of BMP/TGF-β and VEGF/VEGFR Signalling Pathways in Non-Syndromic Sporadic Brain Arteriovenous Malformations (BAVM). J. Med. Genet. 2018, 55, 675–684. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A Simple Salting out Procedure for Extracting DNA from Human Nucleated Cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef]
- Gudmundsson, S.; Singer-Berk, M.; Watts, N.A.; Phu, W.; Goodrich, J.K.; Solomonson, M.; Genome Aggregation Database Consortium; Rehm, H.L.; MacArthur, D.G.; O’Donnell-Luria, A. Variant Interpretation Using Population Databases: Lessons from gnomAD. Hum. Mutat. 2022, 43, 1012–1030. [Google Scholar] [CrossRef]
- Phase 3|1000 Genomes. Available online: https://www.internationalgenome.org/category/phase-3/ (accessed on 11 March 2025).
- Saito, R.; Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.-L.; Lotia, S.; Pico, A.R.; Bader, G.D.; Ideker, T. A Travel Guide to Cytoscape Plugins. Nat. Methods 2012, 9, 1069–1076. [Google Scholar] [CrossRef]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for Gene List Enrichment Analysis and Candidate Gene Prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef]
- Scimone, C.; Granata, F.; Longo, M.; Mormina, E.; Turiaco, C.; Caragliano, A.A.; Donato, L.; Sidoti, A.; D’Angelo, R. Germline Mutation Enrichment in Pathways Controlling Endothelial Cell Homeostasis in Patients with Brain Arteriovenous Malformation: Implication for Molecular Diagnosis. Int. J. Mol. Sci. 2020, 21, 4321. [Google Scholar] [CrossRef]
- Young, W.L.; Yang, G.-Y. Are There Genetic Influences on Sporadic Brain Arteriovenous Malformations? Stroke 2004, 35, 2740–2745. [Google Scholar] [CrossRef] [PubMed]
- Scherschinski, L.; Rahmani, R.; Srinivasan, V.M.; Catapano, J.S.; Oh, S.P.; Lawton, M.T. Genetics and Emerging Therapies for Brain Arteriovenous Malformations. World Neurosurg. 2022, 159, 327–337. [Google Scholar] [CrossRef]
- Steiger, H.-J. Recent Progress Understanding Pathophysiology and Genesis of Brain AVM—A Narrative Review. Neurosurg. Rev. 2021, 44, 3165–3175. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, M.; Zhao, S.; Xie, Z.; Zhang, Y.; Liu, J.; Zhang, Y.; Yang, X.; Wu, N. Mutational Spectrum of Syndromic Genes in Sporadic Brain Arteriovenous Malformation. Chin. Neurosurg. J. 2022, 8, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, X.; Guo, A.-N.; Li, W.; Duan, R.-H.; Fang, J.-H.; Yin, B.; Li, D.-D. De Novo Brain Arteriovenous Malformation Formation and Development: A Case Report. World J. Clin. Cases 2022, 10, 6277–6282. [Google Scholar] [CrossRef]
- Cheong, A.; Degani, R.; Tremblay, K.D.; Mager, J. A Null Allele of Dnaaf2 Displays Embryonic Lethality and Mimics Human Ciliary Dyskinesia. Hum. Mol. Genet. 2019, 28, 2775–2784. [Google Scholar] [CrossRef]
- Eisa-Beygi, S.; Benslimane, F.M.; El-Rass, S.; Prabhudesai, S.; Abdelrasoul, M.K.A.; Simpson, P.M.; Yalcin, H.C.; Burrows, P.E.; Ramchandran, R. Characterization of Endothelial Cilia Distribution During Cerebral-Vascular Development in Zebrafish (Danio Rerio). Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2806–2818. [Google Scholar] [CrossRef]
- Ma, N.; Zhou, J. Functions of Endothelial Cilia in the Regulation of Vascular Barriers. Front. Cell Dev. Biol. 2020, 8, 626. [Google Scholar] [CrossRef]
- Thompson, C.L.; Ng, L.; Menon, V.; Martinez, S.; Lee, C.-K.; Glattfelder, K.; Sunkin, S.M.; Henry, A.; Lau, C.; Dang, C.; et al. A High-Resolution Spatiotemporal Atlas of Gene Expression of the Developing Mouse Brain. Neuron 2014, 83, 309–323. [Google Scholar] [CrossRef]
- Li, G.-J.; Yang, Y.; Yang, G.-K.; Wan, J.; Cui, D.-L.; Ma, Z.-H.; Du, L.-J.; Zhang, G.-M. Slit2 Suppresses Endothelial Cell Proliferation and Migration by Inhibiting the VEGF-Notch Signaling Pathway. Mol. Med. Rep. 2017, 15, 1981–1988. [Google Scholar] [CrossRef]
- Hauer, A.J.; Kleinloog, R.; Giuliani, F.; Rinkel, G.J.E.; de Kort, G.A.; Berkelbach van der Sprenkel, J.W.; van der Zwan, A.; Gosselaar, P.H.; van Rijen, P.C.; de Boer-Bergsma, J.J.; et al. RNA-Sequencing Highlights Inflammation and Impaired Integrity of the Vascular Wall in Brain Arteriovenous Malformations. Stroke 2020, 51, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Hongge, L.; Kexin, G.; Xiaojie, M.; Nian, X.; Jinsha, H. The role of LRRK2 in the regulation of monocyte adhesion to endothelial cells. J. Mol. Neurosci. 2015, 55, 233–239. [Google Scholar] [CrossRef]
- Yan, J.; Yan, F.; Li, Z.; Sinnott, B.; Cappell, K.M.; Yu, Y.; Mo, J.; Duncan, J.A.; Chen, X.; Cormier-Daire, V.; et al. The 3M complex maintains microtubule and genome integrity. Mol. Cell 2014, 54, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.M.; Taroc, E.Z.M.; Frias, J.A.; Prasad, A.; Catizone, A.N.; Sammons, M.A.; Forni, P.E. The transcription factor Tfap2e/AP-2ε plays a pivotal role in maintaining the identity of basal vomeronasal sensory neurons. Dev. Biol. 2018, 441, 67–82. [Google Scholar] [CrossRef]
- Kuivaniemi, H.; Tromp, G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene 2019, 707, 151–171. [Google Scholar] [CrossRef]
- Wang, N.; Cao, Y.; Si, C.; Shao, P.; Su, G.; Wang, K.; Bao, J.; Yang, L. Emerging Role of ERBB2 in Targeted Therapy for Metastatic Colorectal Cancer: Signaling Pathways to Therapeutic Strategies. Cancers 2022, 14, 5160. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Bafor, A.E.; Freeman, B.H.; Chen, P.R.; Park, E.S.; Kim, E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024, 12, 1795. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, W.; Xie, W.; Huang, L.; Xu, Y.; Li, X. The role of SLIT-ROBO signaling in proliferative diabetic retinopathy and retinal pigment epithelial cells. Mol. Vis. 2011, 17, 1526–1536. [Google Scholar]
- Asadolahi, M.; Nikzamir, A.; Sirati-Sabet, M.; Mirfakhraie, R.; Salami, S.; Darbankhales, S.; Saket-Kisomi, K.; Ghadiany, S. Evaluation of the Gene Expression of Hedgehog Signaling Pathway Components in Response to Quinacrine in MDA-MB 231 Cells. Int. J. Cancer Manag. 2020, 13, e92661. [Google Scholar] [CrossRef]
Patient ID | Gender | Age (Years) | Spetzler–Martin Grade | Presenting Symptoms | Lesion Location | Family History of bAVM | Previous Hemorrhage |
---|---|---|---|---|---|---|---|
AVM1 | Female | 37 | II | Cephalalgia, generalized weakness, and seizures | Left frontal lobe | no | no |
AVM2 | Male | 40 | III | Weakness in the left extremities and seizures | Right parietal lobe | no | no |
AVM3 | Female | 25 | II | Vertigo and tinnitus | Right temporal lobe | no | no |
Sample ID | Total Yield (bp) | Total Reads | GC (%) | AT (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|---|
AVM1 | 7,984,584.64 | 452,878,044 | 52.04 | 47.96 | 97.33 | 93.05 |
AVM2 | 7,478,531.09 | 649,526,696 | 51.88 | 48.12 | 97.2 | 92.76 |
AVM3 | 6,884,648.39 | 845,593,698 | 51.56 | 48.44 | 97.21 | 92.82 |
Sanple ID | AVM1 | AVM2 | AVM3 |
---|---|---|---|
Total reads | 52,876,354 | 49,524,628 | 45,592,274 |
Average read length (bp) | 149.38 | 149.54 | 148.93 |
Number of on-target genotypes (≥1×) | 60,319,451 | 60,315,825 | 60,455,735 |
% Coverage of target regions (≥10×) | 99.6 | 99.6 | 99.9 |
% Coverage of target regions (≥30×) | 82.3 | 80.4 | 77.6 |
% Coverage of target regions (≥50×) | 57.0 | 53.2 | 58.7 |
Number of SNPs | 100,575 | 99,054 | 99,231 |
Missense Variants | 12,225 | 12,146 | 12,280 |
Stop Gained | 135 | 120 | 120 |
Stop Lost | 25 | 27 | 33 |
Number of INDELs | 14,140 | 15,754 | 15,628 |
Frameshift Variants | 275 | 291 | 282 |
% Found in dbSNP151 | 98.9 | 99.0 | 99.0 |
Sample ID | GO ID | Term BP | p-Value with Bonferroni Correction | Genes |
---|---|---|---|---|
AVM1 | ||||
GO:0035469 | determination of pancreatic left/right asymmetry | 0.035 | CCDC40; DNAAF1; NPHP3; DNAAF2; ZMYND10 | |
GO:0036159 | inner dynein arm assembly | 0.035 | CCDC40; DNAAF1; NPHP3 | |
GO:0071910 | determination of liver left/right liver asymmetry | 0.035 | CCDC40; DNAAF1; NPHP3 | |
GO:0071907 | determination of digestive tract left/right asymmetry | 0.035 | CCDC40; DNAAF1; DNAAF2; DNAH8; ZMYND10 | |
GO:0070286 | axonemal dynein complex assembly | CCDC40; DNAAF1; DNAAF2; DNAH8; ZMYND10 | ||
GO:0036158 | outer dynein arm assembly | 0.035 | DNAAF1; DNAAF2; DNAH8; ZMYND10 | |
GO:2001044 | regulation of integrin-mediated signaling pathway | 0.035 | BST1; CD177; LAMA1; LMNB2 | |
GO:0003351 | epithelial cilium movement involved in extracellular fluid | 0.035 | BST1; CD177; LAMA1; LMNB2 CCDC40; DNAAF1; DNAAF2; NPHP3; STK36 | |
GO:0006858 | extracellular transport | 0.035 | CCDC40; DNAAF1; DNAAF2; NPHP3; STK36 | |
AVM2 | ||||
GO:0006536 | glutamate metabolic process | 0.0426 | FTCD; PRODH | |
GO:0045222 | CD4 biosynthetic process | 0.0036 | ACOT8 | |
GO:0045223 | regulation of CD4 production | 0.0036 | ACOT8 | |
GO:0045225 | negative regulation of CD4 production | 0.0036 | ACOT8 | |
AVM3 | ||||
GO:0007156 | homophilic cell adhesion via plasma membrane adhesion molecules | 0.00049 | STK36 | |
GO:0048667 | cell morphogenesis involved in neuron differentiation | 0.00002 | CCDC40; DNAAF1; DNAAF2; NPHP3; | |
GO:0055003 | cardiac myofibril assembly | 0.00026 | STK36 | |
GO:0048790 | maintenance of presynaptic active zone structure | 0.00030 | BSN; CTBP2; PCLO | |
GO:0098882 | structural constituent of presynaptic active zone | 0.00030 | BSN; CTBP2; PCLO | |
GO:1904415 | regulation of xenophagy | 0.00049 | LRSAM1; MAPK3; RNF31 | |
GO:1904417 | positive regulation of xenophagy | 0.00049 | LRSAM1; MAPK3; RNF31 | |
GO:0021885 | forebrain cell migration | 0.00029 | COL3A1; CTNNB1; DISC1; LRRK2; RTN4; SLIT2; SLIT3 | |
GO:0022029 | telencephalon cell migration | 0.00029 | COL3A1; CTNNB1; DISC1; LRRK2; RTN4; SLIT2; SLIT3 | |
GO:0022028 | tangential migration from subventricular zone to olfactory bulb | 0.00029 | LRRK2; SLIT2; SLIT3 |
Ontology | Feature | ID | Name | Genes |
---|---|---|---|---|
GO: Biological Process | Vessel development | |||
GO:0001569 | branching involved in blood vessel morphogenesis | CTNNB1 ENG GDF2 TGFBR2 | ||
GO:0048514 | blood vessel morphogenesis | ACVRL1 COL3A1 CTNNB1 ENG ERBB2 GDF2 LAMA1 NRP2 SLIT2 SMO TGFBR2 | ||
GO:0001568 | blood vessel development | ACVRL1 COL3A1 CTNNB1 ENG ERBB2 GDF2 LAMA1 NRP2 SLIT2 SMO TGFBR2 | ||
GO:0001570 | vasculogenesis | CTNNB1 ENG GDF2 SMO TGFBR2 | ||
GO:0001525 | angiogenesis | ACVRL1 CTNNB1 ENG ERBB2 GDF2 NRP2 SLIT2 TGFBR2 | ||
GO:0045765 | regulation of angiogenesis | ACVRL1 CTNNB1 ENG ERBB2 GDF2 TGFBR2 | ||
GO:0001944 | vasculature development | ACVRL1 COL3A1 CTNNB1 ENG ERBB2 GDF2 LAMA1 NRP2 SLIT2 SMO TGFBR2 | ||
GO:0035295 | tube development | ACVRL1 COL3A1 CTNNB1 ENG ERBB2 GDF2 LAMA1 MAPK3 NRP2 SLIT2 SMAD4 SMO TGFBR2 | ||
GO:0035239 | tube morphogenesis | ACVRL1 COL3A1 CTNNB1 ENG ERBB2 GDF2 LAMA1 NRP2 SLIT2 SMAD4 SMO TGFBR2 | ||
GO:1901342 | regulation of vasculature development | ACVRL1 CTNNB1 ENG ERBB2 GDF2 TGFBR2 | ||
GO:0035909; GO:0035904 | aorta development | ACVRL1 COL3A1 ENG TGFBR2 | ||
GO:0048844 | artery morphogenesis | ACVRL1 COL3A1 CTNNB1 ENG TGFBR2 | ||
Heart development | ||||
GO:0003007 | heart morphogenesis | ACVRL1 CTNNB1 ENG NRP2 SLIT2 SLIT3 SMAD4 SMO TGFBR2 TTN | ||
GO:2000136 | regulation of cell proliferation involved in heart morphogenesis | CTNNB1 ENG SMAD4 | ||
GO:0061323 | cell proliferation involved in heart morphogenesis | CTNNB1 ENG SMAD4 TGFBR2 | ||
GO:0003148 | outflow tract septum morphogenesis | ENG NRP2 SMAD4 TGFBR2 | ||
GO:0003181; GO:0003171 | atrioventricular valve morphogenesis | SLIT3 SMAD4 TGFBR2 | ||
GO:0003208 | cardiac ventricle morphogenesis | CTNNB1 ENG SMAD4 TGFBR2 | ||
GO:0060411 | cardiac septum morphogenesis | ENG NRP2 SLIT2 SLIT3 SMAD4 SMO TGFBR2 | ||
GO:0003279 | cardiac septum development | ENG NRP2 SLIT2 SLIT3 SMAD4 SMO TGFBR2 | ||
BMP signaling | ||||
GO:0030509 | BMP signaling pathway | ACVRL1 ENG GDF2 MAPK3 SMAD4 | ||
GO:0071772 | response to BMP | ACVRL1 ENG GDF2 MAPK3 SMAD4 | ||
GO:0071773 | cellular response to BMP stimulus | ACVRL1 ENG GDF2 MAPK3 SMAD4 | ||
TGFBR signaling | ||||
GO:0007179 | transforming growth factor beta receptor signaling pathway | ACVRL1 COL3A1 ENG GDF2 SMAD4 TGFBR2 | ||
GO:0071560 | cellular response to transforming growth factor beta stimulus | ACVRL1 COL3A1 ENG GDF2 SMAD4 TGFBR2 | ||
GO:0071559 | response to transforming growth factor beta | ACVRL1 COL3A1 ENG GDF2 SMAD4 TGFBR2 | ||
GO:0090287 | regulation of cellular response to growth factor stimulus | ACVRL1 CTNNB1 ENG GDF2 SLIT2 SMAD4 | ||
GO:0009719 | response to endogenous stimulus | ACVRL1 COL3A1 CTBP2 CTNNB1 ENG ERBB2 GDF2 LRRK2 MAPK3 NRP2 SLIT2 SMAD4 TGFBR2 | ||
GO:0141091 | transforming growth factor beta receptor superfamily signaling pathway | ACVRL1 COL3A1 ENG GDF2 MAPK3 SMAD4 TGFBR2 | ||
Endothelial/mesenchymal differentiation | ||||
GO:0060429 | epithelium development | ACVRL1 CDH23 CTNNB1 ENG GDF2 LAMA1 PARD3 SLIT2 SMAD4 SMO TGFBR2 | ||
GO:0048754 | branching morphogenesis of an epithelial tube | CTNNB1 ENG GDF2 LAMA1 SLIT2 SMAD4 SMO TGFBR2 | ||
GO:0045603 | positive regulation of endothelial cell differentiation | ACVRL1 CTNNB1 GDF2 | ||
GO:0010718 | positive regulation of epithelial to mesenchymal transition | CTNNB1 ENG SMAD4 TGFBR2 | ||
GO:0010717 | regulation of epithelial to mesenchymal transition | CTNNB1 ENG SMAD4 TGFBR2 | ||
GO:0045595 | regulation of cell differentiation | ACVRL1 CTNNB1 ENG ERBB2 GDF2 LAMA1 LRRK2 OBSL1 SLIT2 SMAD4 SMO TGFBR2 | ||
GO:0045446 | endothelial cell differentiation | ACVRL1 CTNNB1 GDF2 SMAD4 | ||
GO:0003158 | endothelium development | ACVRL1 CTNNB1 GDF2 SMAD4 | ||
GO:0001837 | epithelial to mesenchymal transition | ACVRL1 CTNNB1 ENG SMAD4 TGFBR2 | ||
GO:0001936 | regulation of endothelial cell proliferation | ACVRL1 ENG GDF2 NRP2 | ||
GO:0050680 | negative regulation of epithelial cell proliferation | ACVRL1 ENG GDF2 SMO | ||
GO:0048762 | mesenchymal cell differentiation | ACVRL1 CTNNB1 ENG MAPK3 NRP2 SMAD4 SMO TGFBR2 | ||
GO:0048863 | stem cell differentiation | CTNNB1 ENG MAPK3 NRP2 SMAD4 SMO TGFBR2 | ||
GO:0060485 | mesenchyme development | ACVRL1 CTNNB1 ENG MAPK3 NRP2 SMAD4 SMO TGFBR2 | ||
GO:0060562 | epithelial tube morphogenesis | ACVRL1 CTNNB1 ENG GDF2 LAMA1 SLIT2 SMAD4 SMO TGFBR2 | ||
GO:0010631 | epithelial cell migration | ACVRL1 GDF2 NRP2 SLIT2 SMAD4 TGFBR2 | ||
GO:0090132 | epithelium migration | ACVRL1 GDF2 NRP2 SLIT2 SMAD4 TGFBR2 | ||
GO:0045595 | regulation of cell differentiation | ACVRL1 CTNNB1 ENG ERBB2 GDF2 LAMA1 LRRK2 OBSL1 SLIT2 SMAD4 SMO TGFBR2 | ||
GO:0045595 | regulation of cell differentiation | ACVRL1 CTNNB1 ENG ERBB2 GDF2 LAMA1 LRRK2 OBSL1 SLIT2 SMAD4 SMO TGFBR2 | ||
GO:0090130 | tissue migration | ACVRL1 GDF2 NRP2 SLIT2 SMAD4 TGFBR2 | ||
GO:0002009 | morphogenesis of an epithelium | ACVRL1 CTNNB1 ENG GDF2 LAMA1 PARD3 SLIT2 SMAD4 SMO TGFBR2 |
№ | Gene_Name | Chromosome | HGVS.c | HGVS.p | dbSNP151_ID | p3_1000G_AF | SIFT_pred |
---|---|---|---|---|---|---|---|
1 | CTNNB1 | chr3 | c.2129G>A | p.Arg710His | rs200308943 | 0.0001997 | T |
2 | COL3A1 | chr2 | c.3133G>A | p.Ala1045Thr | rs149722210 | 0.0069 | T |
3 | ERBB2 | chr17 | c.1466C>T | p.Pro489Leu | rs142456637 | 0.000399 | D |
4 | LAMA1 | chr18 | c.181G>A | p.Val61Ile | rs147676957 | 0.0002 | T |
5 | NRP2 | chr2 | c.962A>T | p.Asn321Ile | rs151124318 | 0.001198 | T;D; |
6 | SLIT3 | chr5 | c.1184G>A | p.Arg395Gln | rs2288792 | 0.0045927 | D |
7 | SLIT2 | chr4 | c.4253C>T | p.Ala1418Val | rs143417693 | 0.0003994 | T |
8 | SMO | chr7 | c.536C>T | p.Thr179Met | rs115491500 | 0.001398 | D |
9 | PARD3 | chr10 | c.2402G>A | p.Ser801Asn | rs118153230 | 0.0085863 | T |
10 | LRRK2 | chr12 | c.7153G>A | p.Gly2385Arg | rs34778348 | 0.004792 | T |
11 | OBSL1 | chr2 | c.4361G>A | p.Arg1454Gln | rs183329050 | 0.004792 | T |
12 | MAPK3 | chr16 | c.967G>A | p.Glu323Lys | rs55859133 | 0.000599042 | D |
13 | TTN | chr2 | c.14902G>A | p.Asp4968Asn | rs371444691 | 0.000199681 | D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zholdybayeva, E.; Bekbayeva, A.; Menlibayeva, K.; Gusmaulemova, A.; Kurentay, B.; Tynysbekov, B.; Auganov, A.; Akhmetollayev, I.; Nurimanov, C. Functional Enrichment Analysis of Rare Mutations in Patients with Brain Arteriovenous Malformations. Biomedicines 2025, 13, 1451. https://doi.org/10.3390/biomedicines13061451
Zholdybayeva E, Bekbayeva A, Menlibayeva K, Gusmaulemova A, Kurentay B, Tynysbekov B, Auganov A, Akhmetollayev I, Nurimanov C. Functional Enrichment Analysis of Rare Mutations in Patients with Brain Arteriovenous Malformations. Biomedicines. 2025; 13(6):1451. https://doi.org/10.3390/biomedicines13061451
Chicago/Turabian StyleZholdybayeva, Elena, Ayazhan Bekbayeva, Karashash Menlibayeva, Alua Gusmaulemova, Botakoz Kurentay, Bekbolat Tynysbekov, Almas Auganov, Ilyas Akhmetollayev, and Chingiz Nurimanov. 2025. "Functional Enrichment Analysis of Rare Mutations in Patients with Brain Arteriovenous Malformations" Biomedicines 13, no. 6: 1451. https://doi.org/10.3390/biomedicines13061451
APA StyleZholdybayeva, E., Bekbayeva, A., Menlibayeva, K., Gusmaulemova, A., Kurentay, B., Tynysbekov, B., Auganov, A., Akhmetollayev, I., & Nurimanov, C. (2025). Functional Enrichment Analysis of Rare Mutations in Patients with Brain Arteriovenous Malformations. Biomedicines, 13(6), 1451. https://doi.org/10.3390/biomedicines13061451