Correlates of Rehabilitation Length of Stay in Asian Traumatic Brain Injury Inpatients in a Superaged Country: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Ethics Statement
2.3. Study Participants
2.4. Description of Rehabilitation Programme
2.5. Study Variables
- (i)
- Demographic variables:
- (ii)
- Pre-admission comorbidities:
- (iii)
- Acute TBI characteristics:
- (iv)
- Acute TBI management:
- (v)
- Intra-rehabilitation characteristics:
- (vi)
- Intra-rehabilitation complications:
- (vii)
- Functional status during rehabilitation
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Demographic, Acute TBI Characteristics and Rehabilitation Length of Stay (RLOS)
4.2. Acute and Rehabilitation Correlates of Prolonged Rehabilitation Length of Stay (PRLOS < 30)
4.3. Regression Analyses of Factors Impacting PRLOS > 30 Days and Mean RLOS (Days)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. TBI Data. In Traumatic Brain Injury & Concussion. Available online: https://www.cdc.gov/traumatic-brain-injury/data-research/index.html (accessed on 23 June 2025).
- GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.F.; Ma, S.F.; Jiang, X.H.; Song, R.J.; Li, M.; Zhang, J.; Sun, T.J.; Hu, Q.; Wang, W.R.; Yu, A.Y.; et al. Causes and global, regional, and national burdens of traumatic brain injury from 1990 to 2019. Chin. J. Traumatol. 2024, 27, 311–322. [Google Scholar] [CrossRef]
- Ministry of Health. Principal Causes of Death. Ministry of Health. 2024. Available online: https://www.moh.gov.sg/others/resources-and-statistics/principal-causes-of-death (accessed on 11 September 2021).
- Lee, K.K.; Seow, W.T.; Ng, I. Demographical profiles of adult severe traumatic brain injury patients: Implications for healthcare planning. Singap. Med. J. 2006, 47, 31–36. [Google Scholar]
- Wee, J.Z.; Yang, Y.R.; Lee, Q.Y.; Cao, K.; Chong, C.T. Demographic profile and extent of healthcare resource utilisation of patients with severe traumatic brain injury: Still a major public health problem. Singap. Med. J. 2016, 57, 491–496. [Google Scholar] [CrossRef]
- Chua, K.S.; Ng, Y.S.; Yap, S.G.; Bok, C.W. A brief review of traumatic brain injury rehabilitation. Ann. Acad. Med. Singap. 2007, 36, 31–42. [Google Scholar] [CrossRef]
- Mackay, L.E.; Bernstein, B.A.; Chapman, P.E.; Morgan, A.S.; Milazzo, L.S. Early intervention in severe head injury: Long-term benefits of a formalized programme. Arch. Phys. Med. Rehabil. 1992, 73, 635–641. [Google Scholar]
- Mackay, L.E. Benefits of a formalized traumatic brain injury programme within a trauma center. J. Head Trauma Rehabil. 1994, 9, 11–19. [Google Scholar] [CrossRef]
- Cope, D.N.; Hall, K. Head injury rehabilitation: Benefit of early intervention. Arch. Phys. Med. Rehabil. 1982, 63, 433–437. [Google Scholar]
- Kuerban, A.; Dams-O’Connor, K. Effect of Race and Nativity on Functional Outcomes Following Traumatic Brain Injury Among Asian, Hispanic, and Non-Hispanic White Survivors in the United States: A NIDILRR TBI Model Systems Study. J. Head Trauma Rehabil. 2022, 37, E310–E318. [Google Scholar] [CrossRef]
- Brenner, E.K.; Grossner, E.C.; Johnson, B.N.; Bernier, R.A.; Soto, J.; Hillary, F.G. Race and ethnicity considerations in traumatic brain injury research: Incidence, reporting, and outcome. Brain Inj. 2020, 34, 799–808. [Google Scholar] [CrossRef]
- Chua, K.S.; Earnest, A.; Chiong, Y.; Kong, K.H. Characteristics and correlates of rehabilitation charges during inpatient traumatic brain injury rehabilitation in Singapore. J. Rehabil. Med. 2010, 42, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Teo, J.H.; Chong, S.L.; Chiang, L.W.; Ng, Z.M. Cost of inpatient rehabilitation for children with moderate to severe traumatic brain injury. Ann. Acad. Med. Singap. 2021, 50, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Uniform Data System for Medical Rehabilitation. The FIM® Instrument: Its Background, Structure, and Usefulness. Available online: https://pdfcoffee.com/the-fim-instrument-its-background-structure-and-usefulness-pdf-free.html (accessed on 9 January 2025).
- Granger, C.V.; Markello, S.J.; Graham, J.E.; Deutsch, A.; Reistetter, T.A.; Ottenbacher, K.J. The Uniform Data System for Medical Rehabilitation. Am. J. Phys. Med. Rehabil. 2010, 89, 265–278. [Google Scholar] [CrossRef]
- Ministry of Health Singapore. MediSave. 2024. Available online: https://www.moh.gov.sg/managing-expenses/schemes-and-subsidies/medisave (accessed on 23 June 2025).
- Yap, S.G.; Chua, K.S. Rehabilitation outcomes in elderly patients with traumatic brain injury in Singapore. J. Head Trauma Rehabil. 2008, 23, 158–163. [Google Scholar] [CrossRef]
- Ratha Krishnan, R.; Ting, S.W.X.; Teo, W.S.; Lim, C.J.; Chua, K.S.G. Rehabilitation of Older Asian Traumatic Brain Injury Inpatients: A Retrospective Study Comparing Functional Independence between Age Groups. Life 2023, 13, 2047. [Google Scholar] [CrossRef]
- Chua, K.S.G.; Kwan, H.X.; Teo, W.S.; Cao, R.X.; Heng, C.P.; Ratha Krishnan, R. Changing Epidemiology and Functional Outcomes of Inpatient Rehabilitation in Asian Traumatic Brain Injury Cases before and during the COVID-19 Pandemic: A Retrospective Cohort Study. Life 2023, 13, 1475. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef]
- Shores, E.A.; Marosszeky, J.E.; Sandanam, J.; Batchelor, J. Preliminary validation of a clinical scale for measuring the duration of post-traumatic amnesia. Med. J. Aust. 1986, 144, 569–572. [Google Scholar] [CrossRef]
- Shores, E.A. Further concurrent validity data on the Westmead PTA Scale. Appl. Neuropsychol. 1995, 2, 167–169. [Google Scholar] [CrossRef]
- Frey, K.L.; Rojas, D.C.; Anderson, C.A.; Arciniegas, D.B. Comparison of the O-Log and GOAT as measures of posttraumatic amnesia. Brain Inj. 2007, 21, 513–520. [Google Scholar] [CrossRef]
- Ong, P.L.; Rosiana, A.; Chua, K.S.G. Characteristics and Functional Impact of Unplanned Acute Care Unit Readmissions during Inpatient Traumatic Brain Injury Rehabilitation: A Retrospective Cohort Study. Life 2023, 13, 1720. [Google Scholar] [CrossRef]
- Kiong, T.C. The Chinese in Singapore. In The Singapore Ethnic Mosaic: Many Cultures, One People; World Scientific Publishing Co. Pte Ltd.: Singapore, 2017; pp. 3–8. [Google Scholar] [CrossRef]
- Asia-Pacific Report on Population Ageing 2022 Trends, Policies and Good Practices Regarding Older Persons and Population Ageing. Available online: https://www.unescap.org/sites/default/d8files/knowledge-products/AP-Ageing-2022-report.pdf (accessed on 23 June 2025).
- Lamm, A.G.; Goldstein, R.; Giacino, J.T.; Niewczyk, P.; Schneider, J.C.; Zafonte, R. Changes in Patient Demographics and Outcomes in the Inpatient Rehabilitation Facility Traumatic Brain Injury Population from 2002 to 2016: Implications for Patient Care and Clinical Trials. J. Neurotrauma 2019, 36, 2513–2520. [Google Scholar] [CrossRef]
- Beninato, M.; Gill-Body, K.M.; Salles, S.; Stark, P.C.; Black-Schaffer, R.M.; Stein, J. Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch. Phys. Med. Rehabil. 2006, 87, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Nakase-Richardson, R.; Sepehri, A.; Sherer, M.; Yablon, S.A.; Evans, C.; Mani, T. Classification schema of posttraumatic amnesia duration-based injury severity relative to 1-year outcome: Analysis of individuals with moderate and severe traumatic brain injury. Arch. Phys. Med. Rehabil. 2009, 90, 17–19. [Google Scholar] [CrossRef] [PubMed]
- Kosch, Y.; Browne, S.; King, C.; Fitzgerald, J.; Cameron, I. Post-traumatic amnesia and its relationship to the functional outcome of people with severe traumatic brain injury. Brain Inj. 2010, 24, 479–485. [Google Scholar] [CrossRef]
- Nakase-Richardson, R.; Sherer, M.; Seel, R.T.; Hart, T.; Hanks, R.; Arango-Lasprilla, J.C.; Yablon, S.A.; Sander, A.M.; Barnett, S.D.; Walker, W.C.; et al. Utility of post-traumatic amnesia in predicting 1-year productivity following traumatic brain injury: Comparison of the Russell and Mississippi PTA classification intervals. J. Neurol. Neurosurg. Psychiatry 2011, 82, 494–499. [Google Scholar] [CrossRef]
- Walker, W.C.; Ketchum, J.M.; Marwitz, J.H.; Chen, T.; Hammond, F.; Sherer, M.; Meythaler, J. A multicentre study on the clinical utility of post-traumatic amnesia duration in predicting global outcome after moderate-severe traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 2010, 81, 87–89. [Google Scholar] [CrossRef]
- van der Vlegel, M.; Mikolic, A.; Lee Hee, Q.; Kaplan, Z.L.R.; Retel Helmrich, I.R.A.; van Veen, E.; Andelic, N.; Steinbuechel, N.V.; Plass, A.M.; Zeldovich, M.; et al. Health care utilization and outcomes in older adults after Traumatic Brain Injury: A CENTER-TBI study. Injury 2022, 53, 2774–2782. [Google Scholar] [CrossRef]
- Peters, M.E.; Gardner, R.C. Traumatic brain injury in older adults: Do we need a different approach? Concussion 2018, 3, CNC56. [Google Scholar] [CrossRef]
- Frankel, J.E.; Marwitz, J.H.; Cifu, D.X.; Kreutzer, J.S.; Englander, J.; Rosenthal, M. A follow-up study of older adults with traumatic brain injury: Taking into account decreasing length of stay. Arch. Phys. Med. Rehabil. 2006, 87, 57–62. [Google Scholar] [CrossRef]
- Muakkassa, F.F.; Marley, R.A.; Billue, K.L.; Marley, M.; Horattas, S.; Yetmar, Z.; Salvator, A.; Hayek, A. Effect of Hospital Length of Stay on Functional Independence Measure Score in Trauma Patients. Am. J. Phys. Med. Rehabil. 2016, 95, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Avesani, R.; Carraro, E.; Armani, G.; Masiero, S. Exploring variables associated with rehabilitation length of stay in brain injuries patients. Eur. J. Phys. Rehabil. Med. 2012, 48, 433–441. [Google Scholar] [PubMed]
- Tardif, P.A.; Moore, L.; Boutin, A.; Dufresne, P.; Omar, M.; Bourgeois, G.; Bonaventure, P.L.; Kuimi, B.L.; Turgeon, A.F. Hospital length of stay following admission for traumatic brain injury in a Canadian integrated trauma system: A retrospective multicenter cohort study. Injury 2017, 48, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Tooth, L.; McKenna, K.; Strong, J.; Ottenbacher, K.; Connell, J.; Cleary, M. Rehabilitation outcomes for brain injured patients in Australia: Functional status, length of stay and discharge destination. Brain Inj. 2001, 15, 613–631. [Google Scholar] [CrossRef]
- Zarshenas, S.; Colantonio, A.; Alavinia, S.M.; Jaglal, S.; Tam, L.; Cullen, N. Predictors of Discharge Destination From Acute Care in Patients with Traumatic Brain Injury: A Systematic Review. J. Head Trauma Rehabil. 2019, 34, 52–64. [Google Scholar] [CrossRef]
- Arango-Lasprilla, J.C.; Ketchum, J.M.; Cifu, D.; Hammond, F.; Castillo, C.; Nicholls, E.; Watanabe, T.; Lequerica, A.; Deng, X. Predictors of extended rehabilitation length of stay after traumatic brain injury. Arch. Phys. Med. Rehabil. 2010, 91, 1495–1504. [Google Scholar] [CrossRef]
- Taylor, S.V.; Loo, G.T.; Richardson, L.D.; Legome, E. Patient Factors Associated with Prolonged Length of Stay After Traumatic Brain Injury. Cureus 2024, 16, e59989. [Google Scholar] [CrossRef]
- Ingraham, A.M.; Xiong, W.; Hemmila, M.R.; Shafi, S.; Goble, S.; Neal, M.L.; Nathens, A.B. The attributable mortality and length of stay of trauma-related complications: A matched cohort study. Ann. Surg. 2010, 252, 358–362. [Google Scholar] [CrossRef]
- Micek, S.T.; Schramm, G.; Morrow, L.; Frazee, E.; Personett, H.; Doherty, J.A.; Hampton, N.; Hoban, A.; Lieu, A.; McKenzie, M.; et al. Clostridium difficile infection: A multicenter study of epidemiology and outcomes in mechanically ventilated patients. Crit. Care Med. 2013, 41, 1968–1975. [Google Scholar] [CrossRef]
- Forster, A.J.; Taljaard, M.; Oake, N.; Wilson, K.; Roth, V.; van Walraven, C. The effect of hospital-acquired infection with Clostridium difficile on length of stay in hospital. CMAJ Can. Med. Assoc. J. J. L’association Medicale Can. 2012, 184, 37–42. [Google Scholar] [CrossRef]
Variable | Total (n = 289) | RLOS < = 30 (n = 174) | RLOS >30 (n = 115) | p-Value |
---|---|---|---|---|
Age | ||||
Age (years, median (IQR) [95% CI]) | 64 (28) [61–66] | 61.5 (29.8) [58–66] | 66 (26.5) [64–70] | 0.217 a |
Gender, n(%) | ||||
Male | 228 (78.9) | 139 (48.1) | 89 (30.8) | 0.525 a |
Female | 61 (21.1) | 35 (12.1) | 26 (9) | |
Race, n(%) | ||||
Chinese | 230 (79.6) | 135 (46.7) | 95 (32.9) | 0.0738 a |
Non-Chinese | 59 (20.4) | 39 (13.5) | 20 (6.9) | |
AA-CCI, n(%) | ||||
AA-CCI = 0,1, 2 | 148 (51.2) | 96 (33.2) | 52 (18) | 0.0215 a |
AA-CCI ≥ 3 | 141 (48.8) | 78 (27.0) | 63 (21.8) | |
Employed, n(%), n = 284 * | ||||
Yes | 172 (59.5) | 112 (38.8) | 60 (20.8) | 0.014 a |
No | 112 (38.8) | 61 (21.1) | 51 (17.6) | |
Pre-Injury Comorbidities, n(%) | ||||
Present | 206 (71.3) | 122 (42.2) | 84 (29.1) | 0.0554 a |
Hypertension | 118 (40.8) | 72 (24.9) | 46 (15.9) | 0.502 a |
Hyperlipidemia | 109 (37.7) | 61 (21.1) | 48 (16.6) | 0.0474 a |
Diabetes Mellitus, Type II | 68 (23.5) | 35 (12.1) | 33 (11.4) | 0.0821 a |
Previous TBI | 11 (3.8) | 4 (1.4%) | 7 (2.4) | 0.14 a |
Injury Mechanism, n(%) | ||||
Falls | 177 (61.2) | 108 (37.4) | 69 (23.9) | 0.171 b |
Road Traffic Accident | 103 (35.6) | 59 (20.4) | 44 (15.2) | |
Others | 9 (3.1) | 7 (2.4) | 2 (0.7) | |
Admission GCS, n(%), n = 281 * | ||||
Mild (13- 15) | 168 (58.1) | 113 (39.1) | 55 (19) | 0.0722 a |
Moderate and Severe (3–12) | 113 (39.1) | 56 (19.4) | 57 (19.7) | |
ICU Admission, n(%), n = 272 * | ||||
Present | 179 (61.9) | 100 (34.6) | 79 (27.3) | 0.0118 a |
Acute Neurosurgery Type, n(%) | ||||
Craniotomy | 64 (22.1) | 33 (11.4) | 31 (10.7) | 0.139 a |
Decompressive Craniectomy | 31 (10.7) | 18 (6.2) | 13 (4.5) | 0.657 a |
ALOS | ||||
Acute LOS (days, median (IQR) [95% CI]) | 18 (16) [16–19] | 16 (12.8) [14–18] | 22 (21) [18–26] | <0.001 a |
Variable | Total (n = 289) | RLOS ≤ 30 (n = 174) | RLOS >30 (n = 115) | p-Value |
---|---|---|---|---|
LOS Rehab (days, median (IQR) [95% CI]) | 28 (21) [25–29] | 21 (10) [19–22] | 44 (19.5) [40–48] | <0.001 a |
PTA Duration (days, median (IQR) [95% CI]), n = 266 * | 31 (18) [30–32] | 28 (10.8) [26–30] | 40.5 (31.5) [33–45.5] | <0.001 a |
PTA Emergence, n(%), n = 265 * | ||||
Present | 214 (74) | 136 (47.1) | 78 (27) | 0.898 a |
PTA ≥ 28 Days, n(%), n = 266 * | ||||
Yes | 165 (57.1) | 79 (27.3) | 86 (29.8) | <0.001 a |
Motor Impairment, n(%) | ||||
Present | 106 (36.7) | 47 (16.3) | 59 (20.4) | <0.001 a |
Medical Complications, n(%) | ||||
Present | 149 (51.6) | 75 (26) | 74 (25.6) | <0.001 a |
Neurosurgical Complications, n(%) | ||||
Present | 25 (8.7) | 6 (2.1) | 19 (6.6) | <0.001 a |
Discharge Destination, n(%), n = 288 * | ||||
Home | 239 (82.7) | 159 (55) | 80 (27.7) | <0.001 a |
Others | 49 (17) | 14 (4.8) | 35 (12.1) | |
ACUR, n(%) | ||||
Present | 42 (14.5) | 16 (5.5) | 26 (9%) | 0.0015 a |
FIM (Admission), n = 287 * | ||||
Total FIM, median (IQR) [95% CI] | 57 (37.5) [53–63] | 66 (30) [63–71] | 37.5 (35.3) [32–45] | <0.001 a |
Motor FIM, median (IQR) [95% CI] | 39 (29.5) [36–42] | 46 (24) [43–49] | 25 (24) [22–28] | <0.001 a |
Cognitive FIM, median (IQR) [95% CI] | 17 (13.5) [16–19] | 21 (12) [17–22] | 13 (11.8) [10.5–14.5] | <0.001 a |
FIM (Discharge), n = 287 * | ||||
Total FIM, median (IQR) [95% CI] | 91 (34) [87–95] | 100 (28) [95–104] | 78.5 (31) [69.5–81.5] | <0.001 a |
Motor FIM, median (IQR) [95% CI] | 67 (28) [53–81] | 74 (23) [71–77] | 56 (24.6) [50–58] | <0.001 a |
Cognitive FIM, median (IQR) [95% CI] | 25 (10) [23–26] | 27 (8) [25–28] | 22 (11) [20–23] | <0.001 a |
Calculated FIM Scores, n = 287 * | ||||
FIM Gain, median (IQR) [95% CI] | 27 (29.5) [24–31] | 27 (27) [25–31] | 24.5 (33.8) [22–34] | 0.766 a |
FIM Efficiency, median (IQR) [95% CI] | 1.1 (1.2) [0.9–1.3] | 1.4 (1.2) [1.2–1.6] | 0.6 (0.9) [0.5–0.7] | <0.001 a |
Ta-FIM ≤ 40, n(%) | 85 (29.4) | 24 (8.3) | 61 (21.1) | <0.001 a |
Td-FIM ≥ 91, n(%) | 147 (50.9) | 117 (40.5) | 30 (10.4) | <0.001 a |
Variable | Admission | Discharge | p-Value |
---|---|---|---|
Total FIM, median (IQR) [95% CI] | 57 (37.5) [53–63] | 91 (34) [87–95] | <0.001 a |
Motor FIM, median (IQR) [95% CI] | 39 (29.5) [36–42] | 67 (28) [53–81] | <0.001 a |
Cognitive FIM, median (IQR) [95% CI] | 17 (13.5) [16–19] | 25 (10) [23–26] | <0.001 a |
Exp(β) | 95% CI | p-Value | |
---|---|---|---|
AA-CCI (1 = CCI ≥ 3) | 1.165 | (0.609, 2.230) | 0.644 |
ICU Admission (1 = Present) | 1.424 | (0.696, 2.914) | 0.334 |
Motor Impairment (1 = Present) | 1.707 | (0.878, 3.320) | 0.115 |
PTA Duration (1 = PTA Duration > 28 Days) | 4.010 | (1.903, 8.448) | <0.001 |
Ta-FIM (1 = Ta-FIM ≤40) | 4.711 | (2.315, 9.586) | <0.001 |
Medical Complications (1 = Present) | 1.248 | (0.651, 2.394) | 0.505 |
Neurosurgical Complications (1 = Present) | 4.737 | (1.277, 17.57) | 0.020 |
Discharge Destination (1 = Non-Home) | 2.745 | (1.115, 6.759) | 0.028 |
β | 95% CI | p-Value | |
---|---|---|---|
Employed Before TBI (1 = Yes) | 0.525 | (−2.799, 3.849) | 0.757 |
ICU Duration (days) | −0.298 | (−0.701, 0.104) | 0.148 |
ALOS (days) | 0.138 | (−0.014, 0.291) | 0.077 |
Motor Impairment (1 = Present) | 1.863 | (−1.546, 5.270) | 0.285 |
PTA Duration (days) | 0.276 | (0.173, 0.380) | <0.001 |
Admission FIM (Motor) | −0.394 | (−0.515, −0.273) | <0.001 |
Admission FIM (Cognitive) | 0.273 | (0.026, 0.519) | 0.031 |
Medical Complications (1 = Present) | 3.380 | (0.243, 6.518) | 0.036 |
Neurosurgical Complications (1 = Present) | 7.579 | (1.637, 13.52) | 0.013 |
Discharge Destination (1 = Non-Home) | 5.128 | (0.418, 9.838) | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chua, K.S.G.; Cheong, Z.J.; Yee, E.; Krishnan, R.R. Correlates of Rehabilitation Length of Stay in Asian Traumatic Brain Injury Inpatients in a Superaged Country: A Retrospective Cohort Study. Life 2025, 15, 1136. https://doi.org/10.3390/life15071136
Chua KSG, Cheong ZJ, Yee E, Krishnan RR. Correlates of Rehabilitation Length of Stay in Asian Traumatic Brain Injury Inpatients in a Superaged Country: A Retrospective Cohort Study. Life. 2025; 15(7):1136. https://doi.org/10.3390/life15071136
Chicago/Turabian StyleChua, Karen Sui Geok, Zachary Jieyi Cheong, Emily Yee, and Rathi Ratha Krishnan. 2025. "Correlates of Rehabilitation Length of Stay in Asian Traumatic Brain Injury Inpatients in a Superaged Country: A Retrospective Cohort Study" Life 15, no. 7: 1136. https://doi.org/10.3390/life15071136
APA StyleChua, K. S. G., Cheong, Z. J., Yee, E., & Krishnan, R. R. (2025). Correlates of Rehabilitation Length of Stay in Asian Traumatic Brain Injury Inpatients in a Superaged Country: A Retrospective Cohort Study. Life, 15(7), 1136. https://doi.org/10.3390/life15071136