Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (763)

Search Parameters:
Keywords = functional gastrointestinal disorders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 432 KiB  
Review
Interplay Between Depression and Inflammatory Bowel Disease: Shared Pathogenetic Mechanisms and Reciprocal Therapeutic Impacts—A Comprehensive Review
by Amalia Di Petrillo, Agnese Favale, Sara Onali, Amit Kumar, Giuseppe Abbracciavento and Massimo Claudio Fantini
J. Clin. Med. 2025, 14(15), 5522; https://doi.org/10.3390/jcm14155522 - 5 Aug 2025
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. Although the aetiology of IBD remains largely unknown, several studies suggest that an individual’s genetic susceptibility, external environmental factors, intestinal microbial flora, and immune responses are all factors involved in [...] Read more.
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. Although the aetiology of IBD remains largely unknown, several studies suggest that an individual’s genetic susceptibility, external environmental factors, intestinal microbial flora, and immune responses are all factors involved in and functionally linked to the pathogenesis of IBD. Beyond the gastrointestinal manifestations, IBD patients frequently suffer from psychiatric comorbidities, particularly depression and anxiety. It remains unclear whether these disorders arise solely from reduced quality of life or whether they share overlapping biological mechanisms with IBD. This review aims to explore the bidirectional relationship between IBD and depressive disorders (DDs), with a focus on four key shared mechanisms: immune dysregulation, genetic susceptibility, alterations in gut microbiota composition, and dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis. By examining recent literature, we highlight how these interconnected systems may contribute to both intestinal inflammation and mood disturbances. Furthermore, we discuss the reciprocal pharmacologic interactions between IBD and DDs: treatments for IBD, such as TNF-alpha and integrin inhibitors, have demonstrated effects on mood and anxiety symptoms, while certain antidepressants appear to exert independent anti-inflammatory properties, potentially reducing the risk or severity of IBD. Overall, this review underscores the need for a multidisciplinary approach to the care of IBD patients, integrating psychological and gastroenterological assessment. A better understanding of the shared pathophysiology may help refine therapeutic strategies and support the development of personalized, gut–brain-targeted interventions. Full article
Show Figures

Figure 1

37 pages, 5366 KiB  
Article
Oral Microbiota Composition and Its Association with Gastrointestinal and Developmental Abnormalities in Children with Autism Spectrum Disorder
by Zuzanna Lewandowska-Pietruszka, Magdalena Figlerowicz and Katarzyna Mazur-Melewska
Microorganisms 2025, 13(8), 1822; https://doi.org/10.3390/microorganisms13081822 - 4 Aug 2025
Abstract
Autism Spectrum Disorder (ASD) is frequently accompanied by gastrointestinal disturbances, dietary selectivity, and altered stress responses, with growing evidence pointing to gut–brain axis involvement. While intestinal microbiota has been extensively studied, the role of the oral microbiota remains underexplored. This study investigates the [...] Read more.
Autism Spectrum Disorder (ASD) is frequently accompanied by gastrointestinal disturbances, dietary selectivity, and altered stress responses, with growing evidence pointing to gut–brain axis involvement. While intestinal microbiota has been extensively studied, the role of the oral microbiota remains underexplored. This study investigates the associations between oral microbiota composition and behavioral, gastrointestinal, dietary, and neuroendocrine parameters in children with ASD. A total of 45 children aged 2–18 years comprised the study group. Data collection included oral swabs for 16S rRNA gene sequencing, salivary cortisol sampling, dietary records, and standardized behavioral assessments using the Vineland Adaptive Behavior Scale. A total of 363 microbial species across 11 phyla were identified. Significant correlations were observed between specific bacterial taxa and functional gastrointestinal disorders (FGIDs), dietary patterns, salivary cortisol rhythms, and functioning. Children with FGIDs, food selectivity, or macronutrient imbalances exhibited enriched pro-inflammatory taxa (e.g., Selenomonas, Megasphaera), whereas those with typical cortisol secretion or higher adaptive functioning showed greater microbial diversity and abundance of health-associated genera (e.g., Bifidobacterium dentium). These findings suggest that oral microbiota profiles may reflect systemic physiological and neurobehavioral traits in children with ASD. Further longitudinal studies are needed to clarify causal relationships and support the development of microbiota-targeted interventions. Full article
(This article belongs to the Special Issue Focus on Pediatric Infectious Diseases)
Show Figures

Figure 1

21 pages, 1024 KiB  
Review
The Impact of Environmental Factors on the Secretion of Gastrointestinal Hormones
by Joanna Smarkusz-Zarzecka, Lucyna Ostrowska and Marcelina Radziszewska
Nutrients 2025, 17(15), 2544; https://doi.org/10.3390/nu17152544 - 2 Aug 2025
Viewed by 216
Abstract
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion [...] Read more.
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion of GI hormones. This study aims to analyze how these factors modulate enteroendocrine function and influence systemic metabolic regulation. This review synthesizes the current scientific literature on the physiology and distribution of enteroendocrine cells and mechanisms of hormone secretion in response to macronutrients, physical activity, and microbial metabolites. Special attention is given to the interactions between gut-derived signals and central nervous system pathways involved in appetite control. Different GI hormones are secreted in specific regions of the digestive tract in response to meal composition and timing. Macronutrients, particularly during absorption, stimulate hormone release, while physical activity influences hormone concentrations, decreasing ghrelin and increasing GLP-1, PYY, and leptin levels. The gut microbiota, through fermentation and metabolite production (e.g., SCFAs and bile acids), modulates enteroendocrine activity. Species such as Akkermansia muciniphila are associated with improved gut barrier integrity and enhanced GLP-1 secretion. These combined effects contribute to appetite regulation and energy balance. Diet composition, physical activity, and gut microbiota are key modulators of gastrointestinal hormone secretion. Their interplay significantly affects appetite regulation and metabolic health. A better understanding of these relationships may support the development of personalized strategies for managing obesity and related disorders. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Graphical abstract

11 pages, 827 KiB  
Study Protocol
The Effect of Faecal Microbiota Transplantation on Cognitive Function in Cognitively Healthy Adults with Irritable Bowel Syndrome: Protocol for a Randomised, Placebo-Controlled, Double-Blinded Pilot Study
by Sara Alaeddin, Yanna Ko, Genevieve Z. Steiner-Lim, Slade O. Jensen, Tara L. Roberts and Vincent Ho
Methods Protoc. 2025, 8(4), 83; https://doi.org/10.3390/mps8040083 (registering DOI) - 1 Aug 2025
Viewed by 198
Abstract
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates [...] Read more.
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates whether FMT is feasible and improves cognition in adults with irritable bowel syndrome (IBS). Participants receive a single dose of FMT or placebo via rectal retention enema. Cognitive performance is the primary outcome, assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Secondary outcomes include IBS symptom severity and mood. Tertiary outcomes include microbiome composition and plasma biomarkers related to inflammation, short-chain fatty acids, and tryptophan metabolism. Outcomes are assessed at baseline and at one, three, six, and twelve months following treatment. We hypothesise that FMT will lead to greater improvements in cognitive performance than placebo, with benefits extending beyond practice effects, emerging at one month and persisting in the long term. The findings will contribute to evaluating the safety and efficacy of FMT and enhance our understanding of gut–brain interactions. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

10 pages, 478 KiB  
Review
Chewing Matters: Masticatory Function, Oral Microbiota, and Gut Health in the Nutritional Management of Aging
by Monia Lettieri, Alessio Rosa, Fabrizio Spataro, Giovanni Capria, Paolo Barnaba, Marco Gargari and Mirko Martelli
Nutrients 2025, 17(15), 2507; https://doi.org/10.3390/nu17152507 - 30 Jul 2025
Viewed by 298
Abstract
Aging is a multifactorial process that affects various physiological functions, including masticatory performance, which is crucial for oral health and nutritional well-being. Impaired masticatory function, often due to factors such as tooth loss, reduced salivation, or muscle atrophy, can lead to significant nutritional [...] Read more.
Aging is a multifactorial process that affects various physiological functions, including masticatory performance, which is crucial for oral health and nutritional well-being. Impaired masticatory function, often due to factors such as tooth loss, reduced salivation, or muscle atrophy, can lead to significant nutritional challenges and compromise the overall health of elderly individuals. Recent research has illuminated the interconnectedness of masticatory function, oral microbiota, and gut health, suggesting that altered chewing ability may disrupt oral microbial communities, which in turn affect gastrointestinal health and systemic inflammation. This commentary review provides a comprehensive analysis of the role of masticatory function in aging, exploring its impact on the oral microbiota, gut health, and broader nutritional status. We discuss the potential consequences of impaired mastication, including malnutrition, dysbiosis, and gastrointestinal disorders, and explore possible strategies for improving masticatory function and maintaining a healthy gut microbiome through interventions like dietary modifications, oral care, and rehabilitation. We aim to underscore the importance of integrating masticatory function management into the broader context of aging-related healthcare, promoting holistic, multidisciplinary approaches to support nutritional needs and quality of life in older adults. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
Show Figures

Graphical abstract

25 pages, 1199 KiB  
Review
Gut-Microbiota-Derived Metabolites and Probiotic Strategies in Colorectal Cancer: Implications for Disease Modulation and Precision Therapy
by Yi-Chu Yang, Shih-Chang Chang, Chih-Sheng Hung, Ming-Hung Shen, Ching-Long Lai and Chi-Jung Huang
Nutrients 2025, 17(15), 2501; https://doi.org/10.3390/nu17152501 - 30 Jul 2025
Viewed by 480
Abstract
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis [...] Read more.
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis is increasingly linked to diverse conditions such as gastrointestinal, metabolic, and neuropsychiatric disorders, cardiovascular diseases, and colorectal cancer (CRC). Probiotics offer therapeutic potential by restoring microbial balance, enhancing epithelial defenses, and modulating immune responses. This review highlights the physiological functions of gut microbiota and SCFAs, with a particular focus on butyrate’s anti-inflammatory and anti-cancer effects in CRC. It also examines emerging microbial therapies like probiotics, synbiotics, postbiotics, and engineered microbes. Emphasis is placed on the need for precision microbiome medicine, tailored to individual host–microbiome interactions and metabolomic profiles. These insights underscore the promising role of gut microbiota modulation in advancing preventive and personalized healthcare. Full article
(This article belongs to the Special Issue Diet, Gut Microbiota, and Gastrointestinal Disease)
Show Figures

Graphical abstract

15 pages, 1216 KiB  
Review
Biomolecular Aspects of Reelin in Neurodegenerative Disorders: An Old Candidate for a New Linkage of the Gut–Brain–Eye Axis
by Bijorn Omar Balzamino, Filippo Biamonte and Alessandra Micera
Int. J. Mol. Sci. 2025, 26(15), 7352; https://doi.org/10.3390/ijms26157352 - 30 Jul 2025
Viewed by 307
Abstract
Recent findings highlight that Reelin, a glycoprotein involved in neural development, synaptic plasticity, and neuroinflammation, plays some specific roles in neurodegenerative disorders associated with aging, such as age-related macular degeneration (AMD) and Alzheimer’s disease (AD). Reelin modulates synaptic function and guarantees homeostasis in [...] Read more.
Recent findings highlight that Reelin, a glycoprotein involved in neural development, synaptic plasticity, and neuroinflammation, plays some specific roles in neurodegenerative disorders associated with aging, such as age-related macular degeneration (AMD) and Alzheimer’s disease (AD). Reelin modulates synaptic function and guarantees homeostasis in neuronal-associated organs/tissues (brain and retina). The expression of Reelin is dysregulated in these neurological disorders, showing common pathways depending on chronic neurogenic inflammation and/or dysregulation of the extracellular matrix in which Reelin plays outstanding roles. Recently, the relationship between AMD and AD has gained increasing attention as they share many common risk factors (aging, genetic/epigenetic background, smoking, and malnutrition) and histopathological lesions, supporting certain pathophysiological crosstalk between these two diseases, especially regarding neuroinflammation, oxidative stress, and vascular complications. Outside the nervous system, Reelin is largely produced at the gastrointestinal epithelial level, in close association with innervated regions. The expression of Reelin receptors inside the gut suggests interesting aspects in the field of the gut–brain–eye axis, as dysregulation of the intestinal microbiota has been frequently described in neurodegenerative and behavioral disorders (AD, autism, and anxiety and/or depression), most probably linked to inflammatory, neurogenic mediators, including Reelin. Herein we examined previous and recent findings on Reelin and neurodegenerative disorders, offering findings on Reelin’s potential relation with the gut–brain and gut–brain–eye axes and providing novel attractive hypotheses on the gut–brain–eye link through neuromodulator and microbiota interplay. Neurodegenerative disorders will represent the ground for a future starting point for linking the common neurodegenerative biomarkers (β-amyloid and tau) and the new proteins probably engaged in counteracting neurodegeneration and synaptic loss. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

25 pages, 1301 KiB  
Review
Going with the Flow: Sensorimotor Integration Along the Zebrafish GI Tract
by Millie E. Rogers, Lidia Garcia-Pradas, Simone A. Thom, Roberto A. Vazquez and Julia E. Dallman
Cells 2025, 14(15), 1170; https://doi.org/10.3390/cells14151170 - 30 Jul 2025
Viewed by 455
Abstract
Sensorimotor integration along the gastrointestinal (GI) tract is crucial for normal gut function yet remains poorly understood in the context of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). The genetic tractability of zebrafish allows investigators to generate molecularly defined models that [...] Read more.
Sensorimotor integration along the gastrointestinal (GI) tract is crucial for normal gut function yet remains poorly understood in the context of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). The genetic tractability of zebrafish allows investigators to generate molecularly defined models that provide a means of studying the functional circuits of digestion in vivo. Optical transparency during development allows for the use of optogenetics and calcium imaging to elucidate the mechanisms underlying GI-related symptoms associated with ASD. The array of commonly reported symptoms implicates altered sensorimotor integration at various points along the GI tract, from the pharynx to the anus. We will examine the reflex arcs that facilitate swallowing, nutrient-sensing, absorption, peristalsis, and evacuation. The high level of conservation of these processes across vertebrates also enables us to explore potential therapeutic avenues to mitigate GI distress in ASD and other NDDs. Full article
(This article belongs to the Special Issue Modeling Developmental Processes and Disorders in Zebrafish)
Show Figures

Figure 1

15 pages, 540 KiB  
Review
Achalasia and Gut Microbiota: Is Dysbiosis an Overlooked Factor in Postoperative Surgical Outcomes?
by Agostino Fernicola, Giuseppe Palomba, Armando Calogero, Antonella Sciarra, Annachiara Cavaliere, Felice Crocetto, Caterina Sagnelli, Antonio Alvigi, Raffaele Basile, Domenica Pignatelli, Andrea Paolillo, Federico Maria D’Alessio, Giacomo Benassai, Gennaro Quarto and Michele Santangelo
Surgeries 2025, 6(3), 63; https://doi.org/10.3390/surgeries6030063 - 28 Jul 2025
Viewed by 278
Abstract
Background: Esophageal achalasia is a rare motility disorder characterized by impaired lower esophageal sphincter (LES) relaxation and food stasis. Surgical interventions, including Heller myotomy with fundoplication or peroral endoscopic myotomy (POEM), effectively alleviate symptoms but induce significant anatomical and functional alterations. In [...] Read more.
Background: Esophageal achalasia is a rare motility disorder characterized by impaired lower esophageal sphincter (LES) relaxation and food stasis. Surgical interventions, including Heller myotomy with fundoplication or peroral endoscopic myotomy (POEM), effectively alleviate symptoms but induce significant anatomical and functional alterations. In various gastrointestinal surgeries, microbiota have been implicated in modulating clinical outcomes; however, their role in achalasia surgery remains unexplored. Methods: We performed a narrative literature search of various databases to identify studies exploring potential interactions between the gastroesophageal microbiota, achalasia pathophysiology, and surgical treatment, proposing clinical implications and future research avenues. Results: Chronic esophageal stasis in achalasia promotes local dysbiosis by facilitating aberrant bacterial colonization. Surgical restoration of esophageal motility and gastroesophageal transit induces substantial shifts in the microbial ecosystem. Analogous microbiota alterations following procedures such as fundoplication, gastrectomy, and bariatric surgery underscore the significant impact of mechanical modifications on microbial composition. Comprehensive microbiota profiling in patients with achalasia may enable the identification of dysbiotic phenotypes predisposed to complications, thereby providing personalized therapeutic interventions including probiotics, prebiotics, dietary modulation, or targeted antibiotic therapy. These insights hold promise for clinical benefits, including the mitigation of inflammation and infection, monitoring of surgical efficacy through microbial biomarkers, and optimization of postoperative nutritional strategies to reestablish microbial homeostasis, ultimately enhancing patient outcomes beyond conventional treatment paradigms. Conclusions: The gastroesophageal microbiota is a compelling mediator of surgical outcomes in achalasia. Future investigations integrating microbiological and inflammatory profiling are warranted to elucidate the functional role of the gastroesophageal microbiota and assess its potential as a biomarker and therapeutic target. Full article
Show Figures

Figure 1

13 pages, 694 KiB  
Article
Lifestyle and SSRI Interventions in Pediatric Cyclic Vomiting Syndrome: Rethinking First-Line Management
by Cansu Altuntaş, Doğa Sevinçok, Merve Hilal Dolu and Ece Gültekin
Children 2025, 12(8), 964; https://doi.org/10.3390/children12080964 (registering DOI) - 23 Jul 2025
Viewed by 221
Abstract
Background: Cyclic vomiting syndrome (CVS) is a functional gastrointestinal disorder characterized by recurrent episodes of intense nausea and vomiting. Despite increasing awareness, a standardized treatment approach remains lacking in pediatric populations. Lifestyle factors and anxiety are common triggers, yet their systematic management [...] Read more.
Background: Cyclic vomiting syndrome (CVS) is a functional gastrointestinal disorder characterized by recurrent episodes of intense nausea and vomiting. Despite increasing awareness, a standardized treatment approach remains lacking in pediatric populations. Lifestyle factors and anxiety are common triggers, yet their systematic management has not been fully incorporated into therapeutic strategies. Objective: To evaluate the effectiveness of lifestyle modifications and selective serotonin reuptake inhibitors (SSRIs) in the management of pediatric CVS and to compare their outcomes with standard cyproheptadine prophylaxis. Methods: This retrospective study included 119 patients aged 1.2–17.5 years who were diagnosed with CVS according to Rome IV criteria between September 2021 and January 2025. Clinical, psychiatric, and lifestyle data were retrieved from the university’s digital medical records. Patients were grouped according to treatment modality: cyproheptadine, SSRI, or acute attack management alone. Treatment success at 12 weeks was defined as complete cessation of vomiting episodes or absence of hospitalization, prolonged attacks, and school/work absenteeism. Results: Anxiety symptoms were present in 78.2% of patients. SSRIs were prescribed to 34 patients with moderate to severe anxiety, all of whom achieved treatment success. Lifestyle adherence was observed in 73.9% and was found to be a predictor of treatment success. Cyproheptadine was administered to 66 patients but did not provide additional benefit over effective lifestyle modification. Six patients discontinued cyproheptadine due to drowsiness or weight gain. Conclusions: Lifestyle interventions significantly improve outcomes in pediatric CVS. SSRIs represent a safe and effective prophylactic option for patients with comorbid anxiety or poor adherence to behavioral recommendations. These findings support the integration of psychosocial and lifestyle-based strategies into standard CVS treatment protocols. Full article
(This article belongs to the Section Pediatric Mental Health)
Show Figures

Figure 1

25 pages, 3050 KiB  
Review
REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer
by Jamila Faivre, Hala Shalhoub, Tung Son Nguyen, Haishen Xie and Nicolas Moniaux
Cancers 2025, 17(14), 2395; https://doi.org/10.3390/cancers17142395 - 19 Jul 2025
Viewed by 483
Abstract
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. [...] Read more.
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. It also functions as a potent non-enzymatic antioxidant, protecting tissues from oxidative stress. REG3A expression is tightly regulated by inflammatory stimuli and is robustly induced during immune activation, where it limits microbial invasion, dampens tissue injury, and promotes epithelial repair. Beyond its antimicrobial and immunomodulatory properties, REG3A contributes to the resolution of inflammation and the maintenance of tissue homeostasis. However, its role in cancer is highly context-dependent. In some tumor types, REG3A fosters malignant progression by enhancing cell survival, proliferation, and invasiveness. In others, it acts as a tumor suppressor, inhibiting growth and metastatic potential. These opposing effects are likely dictated by a combination of factors, including the tissue of origin, the composition and dynamics of the tumor microenvironment, and the stage of disease progression. Additionally, the secreted nature of REG3A implies both local and systemic effects, further modulated by organ-specific physiology. Experimental variability may also reflect differences in methodologies, analytical tools, and model systems used. This review synthesizes current knowledge on the pleiotropic functions of REG3A, emphasizing its roles in epithelial defense, immune regulation, redox homeostasis, and oncogenesis. A deeper understanding of REG3A’s pleiotropic effects could open up new therapeutic avenues in both inflammatory disorders and cancer. Full article
(This article belongs to the Special Issue Lectins in Cancer)
Show Figures

Figure 1

14 pages, 2691 KiB  
Article
Probiotic Lacticaseibacillus paracasei E10 Ameliorates Dextran Sulfate Sodium-Induced Colitis by Enhancing the Intestinal Barrier and Modulating Microbiota
by Yuanyuan Dai, Ziming Lin, Xiaoyue Zhang, Yiting Wang, Yingyue Sheng, Ruonan Gao, Yan Geng, Yuzheng Xue and Yilin Ren
Foods 2025, 14(14), 2526; https://doi.org/10.3390/foods14142526 - 18 Jul 2025
Viewed by 300
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder associated with gut microbiota dysbiosis and impaired intestinal barrier function. Probiotic interventions have shown potential in alleviating intestinal inflammation and restoring microbial balance. This study explores the protective effects of Lacticaseibacillus paracasei (L. [...] Read more.
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder associated with gut microbiota dysbiosis and impaired intestinal barrier function. Probiotic interventions have shown potential in alleviating intestinal inflammation and restoring microbial balance. This study explores the protective effects of Lacticaseibacillus paracasei (L. paracasei) E10 in mice. L. paracasei E10 demonstrated strong gastrointestinal transit tolerance, high mucosal adhesion, and probiotic properties such as hydrophobicity and aggregation ability (p < 0.05). The oral administration of L. paracasei E10 significantly alleviated colitis symptoms by reducing the disease activity index, preserving colonic architecture, increasing goblet cell density, and upregulating tight junction proteins, thereby enhancing intestinal barrier integrity. 16S rRNA sequencing revealed that L. paracasei E10 supplementation enriched microbial diversity, increased the abundance of Muribaculaceae, and modulated the Firmicutes/Bacteroidetes ratio, contributing to gut homeostasis. These findings indicate that L. paracasei E10 is a potential candidate for IBD management. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

21 pages, 506 KiB  
Article
Fermented Milk Supplemented with Sodium Butyrate and Inulin: Physicochemical Characterization and Probiotic Viability Under In Vitro Simulated Gastrointestinal Digestion
by Katarzyna Szajnar, Małgorzata Pawlos, Magdalena Kowalczyk, Julita Drobniak and Agata Znamirowska-Piotrowska
Nutrients 2025, 17(13), 2249; https://doi.org/10.3390/nu17132249 - 7 Jul 2025
Viewed by 596
Abstract
Background/Objectives: Probiotics are increasingly recognized for their role in managing gastrointestinal disorders through modulation of gut microbiota. Restoring microbial balance remains a therapeutic challenge. Recent strategies combine probiotics, inulin, and sodium butyrate as synergistic agents for gut health. This study aimed to evaluate [...] Read more.
Background/Objectives: Probiotics are increasingly recognized for their role in managing gastrointestinal disorders through modulation of gut microbiota. Restoring microbial balance remains a therapeutic challenge. Recent strategies combine probiotics, inulin, and sodium butyrate as synergistic agents for gut health. This study aimed to evaluate the effects of milk supplementation with inulin and sodium butyrate on physicochemical properties, sensory characteristics, and the survival of selected probiotic strains during in vitro simulated gastrointestinal digestion. Methods: Fermented milk samples were analyzed for color, pH, titratable acidity, and syneresis. A trained sensory panel evaluated aroma, texture, and acceptability. Samples underwent a standardized in vitro digestion simulating oral, gastric, and intestinal phases. Viable probiotic cells were counted before digestion and at each stage, and survival rates were calculated. Results: Physicochemical and sensory attributes varied depending on probiotic strain and supplementation. Inulin and the inulin–sodium butyrate combination influenced syneresis and acidity. Lacticaseibacillus casei 431 and Lactobacillus johnsonii LJ samples showed the highest viable counts before digestion. Two-way ANOVA confirmed that probiotic strain, supplementation type, and their interactions significantly affected bacterial survival during digestion (p < 0.05). Conclusions: The addition of inulin and sodium butyrate did not impair probiotic viability under simulated gastrointestinal conditions. The effects on product characteristics were strain-dependent (Bifidobacterium animalis subsp. lactis BB-12, L. casei 431, L. paracasei L26, L. acidophilus LA-5, L. johnsonii LJ). These findings support the use of inulin–butyrate fortification in dairy matrices to enhance the functional potential of probiotic foods targeting gut health. Full article
(This article belongs to the Special Issue Probiotics, Postbiotics, Gut Microbiota and Gastrointestinal Health)
Show Figures

Figure 1

19 pages, 1100 KiB  
Systematic Review
The Impact of Fecal Microbiota Transplantation on Gastrointestinal and Behavioral Symptoms in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review
by Anna Liber and Małgorzata Więch
Nutrients 2025, 17(13), 2250; https://doi.org/10.3390/nu17132250 - 7 Jul 2025
Viewed by 524
Abstract
Background: Gastrointestinal (GI) symptoms, often reported by individuals with autism spectrum disorders (ASD), may impair functionality and exacerbate behavioral symptoms. Gut dysbiosis has been identified as a potential environmental factor influencing these symptoms through gut-brain axis dysregulation. Fecal microbiota transplantation (FMT) is [...] Read more.
Background: Gastrointestinal (GI) symptoms, often reported by individuals with autism spectrum disorders (ASD), may impair functionality and exacerbate behavioral symptoms. Gut dysbiosis has been identified as a potential environmental factor influencing these symptoms through gut-brain axis dysregulation. Fecal microbiota transplantation (FMT) is a promising therapeutic strategy with potential to alleviate symptoms. This review systematically evaluates the efficacy and safety of FMT in GI and ASD-related symptoms. Methods: This systematic review followed PRISMA 2020 guidelines and was registered in PROSPERO. The review included clinical trials on FMT in children and adolescents with ASD, published up to October 2024. The bias assessments were performed using Cochrane tools. Outcomes focused on changes in GI and ASD-related symptoms using scales selected by the authors. Results: This systematic review included two RCTs and seven before-and-after studies. Improvements in GI and ASD-related outcomes were reported in all before-and-after studies, whereas the results of RCTs were inconsistent. The before-and-after studies showed a high risk of bias, while the RCTs demonstrated a low risk. Conclusions: Although many studies have been conducted, the methodological limitations of some and contradictory findings of others make it difficult to draw clear conclusions about the effectiveness of FMT in children with ASD. Variations in intervention protocols underscore the importance of establishing standardized FMT procedures in future rigorously designed trials. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

12 pages, 977 KiB  
Article
Vitamin D Deficiency and Supplementation in Irritable Bowel Syndrome: Retrospective Evaluation of Subtype and Sex-Based Differences
by Nur Düzen Oflas and Yonca Yılmaz Ürün
Medicina 2025, 61(7), 1229; https://doi.org/10.3390/medicina61071229 - 7 Jul 2025
Viewed by 420
Abstract
Background and Objectives: Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder with diverse subtypes. Recent evidence has suggested a link between vitamin D deficiency and IBS; however, the associations between vitamin D levels, IBS subtypes, and hematological–biochemical parameters remain unclear. The [...] Read more.
Background and Objectives: Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder with diverse subtypes. Recent evidence has suggested a link between vitamin D deficiency and IBS; however, the associations between vitamin D levels, IBS subtypes, and hematological–biochemical parameters remain unclear. The aim of this research was to investigate the associations between vitamin D status, IBS subtypes, and sex, along with their relationships with biochemical and hematological parameters. Materials and Methods: This retrospective study included 240 patients diagnosed with IBS according to the Rome IV criteria at Van Yüzüncü Yıl University Medical Faculty Hospital. The patients were classified as diarrhea-predominant (IBS-D), constipation-predominant (IBS-C), or mixed-type (IBS-M). The patients’ serum vitamin D levels and hematological (hemoglobin, white blood cell and platelet counts, and mean corpuscular volume) and biochemical (ferritin, iron, calcium, magnesium, and vitamin B12 levels) parameters were evaluated at baseline and after vitamin D supplementation. Sex-related differences were assessed. Results: Baseline vitamin D levels were low in all IBS subtypes, with no significant differences between the groups. Vitamin D supplementation resulted in a significant increase in serum vitamin D levels across all subtypes (p = 0.001). No significant correlations were identified between vitamin D levels and hematological or biochemical parameters. Sex differences in vitamin D levels were only significant in the IBS-M group, both at baseline and post-treatment (p < 0.05). Conclusions: Vitamin D deficiency is prevalent among all IBS subtypes and significantly improves with supplementation, independently of the subtype. Although no associations were found between vitamin D levels and laboratory parameters, the observed sex differences in patients with IBS-M highlight the need for further research into potential sex-related pathophysiological mechanisms. These findings support the integration of routine vitamin D assessment and supplementation into the clinical management of IBS, especially in patients with the IBS-M subtype and female sex, to potentially improve patient outcomes. Full article
(This article belongs to the Section Gastroenterology & Hepatology)
Show Figures

Figure 1

Back to TopTop