Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (197)

Search Parameters:
Keywords = fullerene derivative

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3214 KiB  
Article
Molecular “Yin-Yang” Machinery of Synthesis of the Second and Third Fullerene C60 Derivatives
by Djuro Lj. Koruga, Lidija R. Matija, Ivana M. Stanković, Vladimir B. Pavlović and Aleksandra P. Dinić
Micromachines 2025, 16(7), 770; https://doi.org/10.3390/mi16070770 - 30 Jun 2025
Viewed by 607
Abstract
To overcome the negative effects of the biochemical application of nano-substances in medicine (toxicity problem), using the example of fullerene C60’s first derivative (fullerenol, FD-C60), we show that their biophysical effect is possible through non-covalent hydrogen bonds when around [...] Read more.
To overcome the negative effects of the biochemical application of nano-substances in medicine (toxicity problem), using the example of fullerene C60’s first derivative (fullerenol, FD-C60), we show that their biophysical effect is possible through non-covalent hydrogen bonds when around FD-C60 water layers are formed. SD-C60 (Zeta potential is −43.29 mV) is much more stable than fullerol (Zeta potential is −25.85 mV), so agglomeration/fragmentation of the fullerol structure, due to instability, can cause toxic effects. When fullerol in solution was exposed to an oscillatory magnetic field with Re (real) part [250/−92 mT, H(ωt) = Acos(ωt)], water layers around FD-C60 (fullerenol) are formed according to the Penrose process of 3D tiling formation, and the second derivative, SD-C60 (or 3HFWC), is self-organized. However, when Im (imaginary) part [250/−92 mT, H(ωt) = Bisin (ωt)] of the external magnetic field is applied in addition to SD-C60, ordered water chains and bubbling of water (“micelle”) are formed as a third derivative (TD-C60). Fullerol (FD-C60) interacts with biological structures biochemically, while the second (SD-C60) and third (TD-C60) derivatives act biophysically via non-covalent hydrogen bond oscillation. SD-C60 and TD-C60 significantly increased water solubility and reduced toxicity. The paper explains the synthesis of SD-C60 and TD-C60 from FD-C60 (fullerol) as a precursor by the influence of an oscillatory magnetic field (“Yin-Yang” principle) on hydrogen bonds in order to create water layers around fullerol. Examples of biomedical applications (cancer and Alzheimer’s) of this synergetic complex are given. This study shows that the “Yin-Yang” machinery, based on the nanophysics of C60 molecules and non-covalent hydrogen bonds, is possible. The first attempt has been composed to synthesize nanomaterial for biophysical vibrational nanomedicine. Full article
Show Figures

Figure 1

28 pages, 4032 KiB  
Article
Synthesis and Characterization of a Water-Soluble Nanomaterial via Deep Nitration of Light Fullerene C60
by Natalya Kulenova, Marzhan Sadenova, Bagdat Azamatov, Bauyrzhan Maratuly, Nikolay Charykov, Mikhail Arshinov and Nail Beisekenov
Inorganics 2025, 13(7), 212; https://doi.org/10.3390/inorganics13070212 - 24 Jun 2025
Viewed by 393
Abstract
A direct non-catalytic synthesis of a new water-soluble polynitro-hydroxylated fullerene derivative, C60(NO2)18(OH)2, was carried out using a mixture of concentrated nitric and sulfuric acids. The resulting poly-nitro adduct was comprehensively characterized by elemental C-H-N analysis, [...] Read more.
A direct non-catalytic synthesis of a new water-soluble polynitro-hydroxylated fullerene derivative, C60(NO2)18(OH)2, was carried out using a mixture of concentrated nitric and sulfuric acids. The resulting poly-nitro adduct was comprehensively characterized by elemental C-H-N analysis, energy-dispersive X-ray spectroscopy, infrared (IR) and electron spectroscopy, nuclear magnetic resonance (NMR), high-performance liquid chromatography (HPLC), and thermogravimetric analysis (TGA). A detailed investigation of the physicochemical properties of aqueous solutions of C60(NO2)18(OH)2 demonstrated that the synthesized compound is a previously undescribed mixed polynitro-hydroxyl adduct of light fullerene C60, featuring a high degree of nitration (18 nitro groups per fullerene core). The composition and structure of the adduct were confirmed by spectroscopic and refractometric analyses. In terms of redox behavior, the compound exhibits significant reducing and antioxidant properties. These physicochemical characteristics suggest the potential of C60(NO2)18(OH)2 for further development as a biocompatible nanomaterial suitable for medical applications. Full article
Show Figures

Figure 1

49 pages, 3785 KiB  
Review
Carbon-Nanotube-Based Nanocomposites in Environmental Remediation: An Overview of Typologies and Applications and an Analysis of Their Paradoxical Double-Sided Effects
by Silvana Alfei and Guendalina Zuccari
J. Xenobiot. 2025, 15(3), 76; https://doi.org/10.3390/jox15030076 - 21 May 2025
Cited by 1 | Viewed by 1370
Abstract
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, [...] Read more.
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, groundwater and industrial waste are continually explored. Carbon-based nanomaterials (CNMs), including quantum dots, nanotubes, fullerenes and graphene, have displayed outstanding effectiveness in the decontamination of the environment by several processes. Carbon nanotubes (CNTs), due to their nonpareil characteristics and architecture, when included in absorbents, filter membranes, gas sensors, etc., have significantly improved the efficiency of these technologies in detecting and/or removing inorganic, organic and gaseous xenobiotics and pathogens from air, soil and aqueous matrices. Moreover, CNT-based membranes have displayed significant potential for efficient, fast and low-energy water desalination. However, despite CNTs serving as very potent instruments for environmental detoxification, their extensive utilization could, paradoxically, be highly noxious to the environment and, therefore, humans, due to their toxicity. The functionalization of CNTs (F-CNTs), in addition to further enhancing their absorption capacity and selectivity, has increased their hydrophilicity, thus minimizing their toxicity and carcinogenic effects. In this scenario, this review aims to provide evidence of both the enormous potential of CNTs in sustainable environmental remediation and the concerning hazards to the environment and living organisms that could derive from their extensive and uncontrolled utilization. To this end, an introduction to CNTs, including their eco-friendly production from biomass, is first reported. Several literature reports on CNTs’ possible utilization for environmental remediation, their potential toxicity due to environmental accumulation and the challenges of their regeneration are provided using several reader-friendly tools, to better capture readers’ attention and make reading easier. Full article
Show Figures

Graphical abstract

11 pages, 3209 KiB  
Article
Induced Effects of Nano-Patterned Substrates on the Electrical and Photo-Electrical Properties of PTB7-Th:ICBA (1:1, wt.%) Bulk-Heterojunction Solar Cells
by Tudor Suteu, Vlad-Andrei Antohe, Stefan Antohe, Ionel Stavarache, Maria Cristina Balasin, Gabriel Socol, Marcela Socol, Oana Rasoga and Sorina Iftimie
Surfaces 2025, 8(2), 30; https://doi.org/10.3390/surfaces8020030 - 1 May 2025
Viewed by 677
Abstract
In this study, we detailed the fabrication and characterization of photovoltaic structures based on PTB7:ICBA (1:1, wt.%) bulk-heterojunction on optical glass substrates by spin-coating. Some samples were deposited on a flat substrate, and others were placed on a patterned substrate obtained by nano-imprinting [...] Read more.
In this study, we detailed the fabrication and characterization of photovoltaic structures based on PTB7:ICBA (1:1, wt.%) bulk-heterojunction on optical glass substrates by spin-coating. Some samples were deposited on a flat substrate, and others were placed on a patterned substrate obtained by nano-imprinting lithography; the induced effects were analyzed. We demonstrated that using a patterned substrate enhanced the maximum output power, primarily because the short-circuit current density increased. This can be considered a direct consequence of reduced optical reflection and improved optical absorption. The topological parameters evaluated by atomic force microscopy, namely, the root mean square, Skewness, and Kurtosis, had small values of around 2 nm and 1 nm, respectively. This proves that the mixture of a conductive polymer and a fullerene derivative creates a thin film network with a high flatness degree. The samples discussed in this paper were fabricated and characterized in air; we can admit that the results are encouraging, but further optimization is needed. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

17 pages, 4677 KiB  
Article
Fullerene-Functionalized Cellulosic Hydrogel Biosensor with Bacterial Turn-on Fluorescence Response Derived from Carboxymethyl Cellulose for Intelligent Food Packaging with DFT Calculations and Molecular Docking
by Hebat-Allah S. Tohamy
Gels 2025, 11(5), 329; https://doi.org/10.3390/gels11050329 - 28 Apr 2025
Cited by 2 | Viewed by 718
Abstract
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed [...] Read more.
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed the successful grafting of AMPS and incorporation of N-fullerenes, indicated by characteristic peaks and a shift in the N–H/O–H stretching frequency. Density Functional Theory (DFT) calculations revealed that the CMC–N-fullerene–AMPS hydrogel exhibited higher stability and a lower band gap energy (0.0871 eV) compared to the CMC–AMPS hydrogel, which means a high reactivity of CMC–N-fullerene–AMPS. The incorporation of N-fullerenes significantly enhanced the hydrogel’s antibacterial activity, demonstrating a 22 mm inhibition zone against E. coli and a 24 mm zone against S. aureus, suggesting potential for active food packaging applications. Critically, the hydrogel displayed a unique “turn-on” fluorescence response in the presence of bacteria, with distinct color changes observed upon interaction with E. coli (orange-red) and S. aureus (bright green). This fluorescence enhancement, coupled with the porous morphology observed via SEM (pore size 377–931 µm), suggests the potential of this hydrogel as a sensing platform for bacterial contamination within food packaging. These combined properties of enhanced antibacterial activity and a distinct, bacteria-induced fluorescence signal make the CMC–N-fullerene–AMPS hydrogel a promising candidate for developing intelligent food packaging materials capable of detecting bacterial spoilage. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Graphical abstract

28 pages, 12369 KiB  
Review
Raman Spectroscopy of Fullerenes: From C60 to Functionalized Derivatives
by Yifan Qin, Jilian Xu, Zhewen Liang, Haijun Teng, Da Zhan and Hai Xu
Molecules 2025, 30(3), 738; https://doi.org/10.3390/molecules30030738 - 6 Feb 2025
Cited by 2 | Viewed by 1863
Abstract
Fullerenes, a unique allotrope of carbon, have captured significant attention in multiple scientific fields. As a non-destructive characterization technique, Raman spectroscopy has proven indispensable for investigating fullerenes and their derivatives, offering detailed insights into their vibrational properties. This review discusses the broad utility [...] Read more.
Fullerenes, a unique allotrope of carbon, have captured significant attention in multiple scientific fields. As a non-destructive characterization technique, Raman spectroscopy has proven indispensable for investigating fullerenes and their derivatives, offering detailed insights into their vibrational properties. This review discusses the broad utility of Raman spectroscopy in revealing the structural and physicochemical characteristics of fullerenes—from the iconic C60 molecule to an array of its derivatives—highlighting its capacity to detect functionalization-induced changes in molecular structure and electronic properties, while also assessing environmental influences such as solvent effects and temperature variations. Particular emphasis is placed on advanced Raman-based techniques, including enhanced Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and tip-enhanced Raman spectroscopy (TERS), for the characterization of fullerenes and their derivatives. These cutting-edge methods offer high sensitivity and ultra-high spatial resolution, greatly expanding the scope of fullerene research and delivering deeper insights into their structural and functional properties. Full article
Show Figures

Figure 1

17 pages, 5810 KiB  
Article
Near-Infrared Responsive Composites of Poly-3,4-Ethylenedioxythiophene with Fullerene Derivatives
by Oxana Gribkova, Varvara Kabanova, Ildar Sayarov, Alexander Nekrasov and Alexey Tameev
Polymers 2025, 17(1), 14; https://doi.org/10.3390/polym17010014 - 25 Dec 2024
Viewed by 763
Abstract
Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of water-soluble fullerene derivatives was investigated. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly(3,4-ethylenedioxythiophene) with fullerenes were studied for the first time. It was shown that fullerene with hydroxyl [...] Read more.
Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of water-soluble fullerene derivatives was investigated. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly(3,4-ethylenedioxythiophene) with fullerenes were studied for the first time. It was shown that fullerene with hydroxyl groups creates favorable conditions for the formation of PEDOT chains and more effectively compensates for the positive charges on the PEDOT chains. The near-IR photoconductivity results from the generation of charge carriers due to electron transfer from the photoexcited PEDOT molecule to the fullerene acceptor. Full article
(This article belongs to the Special Issue Polymers/Their Hybrid Materials for Optoelectronic Applications)
Show Figures

Figure 1

15 pages, 2348 KiB  
Article
Fine Tuning the Glass Transition Temperature and Crystallinity by Varying the Thiophene-Quinoxaline Copolymer Composition
by Xun Pan and Mats R. Andersson
Materials 2024, 17(24), 6031; https://doi.org/10.3390/ma17246031 - 10 Dec 2024
Viewed by 1059
Abstract
In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high [...] Read more.
In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high cost. For the upscaling of OPVs, it is also important to focus on conjugated polymers that can be made via fewer simple synthetic steps. Therefore, an easily synthesised amorphous thiophene−quinoxaline donor polymer, TQ1, has attracted our attention. An analogue, TQ-EH that has the same polymer backbone as TQ1 but with short branched side-chains, was previously reported as a donor polymer with increased crystallinity. We have synthesised copolymers with varied ratios between octyloxy and branched (2-ethylhexyl)oxy-substituted quinoxaline units having the same polymer backbone, with the aim to control the aggregation/crystallisation behaviour of the resulting copolymers. The optical properties, glass transition temperatures and degree of crystallinity of the new copolymers were systematically examined in relation to their copolymer composition, revealing that the composition can be used to fine-tune these properties of conjugated polymers. In addition, multiple sub-Tg transitions were found from some of the polymers, which are not commonly or clearly seen in other conjugated polymers. The new copolymers were tested in photovoltaic devices with a fullerene derivative as the acceptor, achieving slightly higher performances compared to the homopolymers. This work demonstrates that side-chain modification by copolymerisation can fine-tune the properties of conjugated polymers without requiring complex organic synthesis, thereby expanding the number of easily synthesised polymers for future upscaling of OPVs. Full article
Show Figures

Figure 1

4 pages, 1261 KiB  
Proceeding Paper
Functionalization of Fullerene C60 with Organic Carbonates in the Presence of a Grignard Reagent and Ti(Oi-Pr)4 
by Liliya Khuzina and Artur Khuzin
Chem. Proc. 2024, 16(1), 66; https://doi.org/10.3390/ecsoc-28-20108 - 14 Nov 2024
Viewed by 385
Abstract
Fullerene C60 is by far the most studied of all allotropic modifications of carbon. Chemical modification of the double bond over the years has led to the emergence of a variety of fullerene derivatives. These derivatives have now found numerous applications in [...] Read more.
Fullerene C60 is by far the most studied of all allotropic modifications of carbon. Chemical modification of the double bond over the years has led to the emergence of a variety of fullerene derivatives. These derivatives have now found numerous applications in medicine, materials and supramolecular chemistry, and as efficient electron acceptors in organic photovoltaic devices. The main method for the functionalization of C60 fullerenes, which makes it possible to obtain its derivatives in a preparative volume, is the Bingel–Hirsch reaction. But this method makes it possible to obtain fullerocyclopropanes containing only carboxyl substituents at the bridging carbon atom. Therefore, in order to obtain new materials, we began to study the interaction with organic carbonates in combination with Grignard reagents in the presence of Ti-containing complex catalysts. We hope that replacing the olefin in the Kulinkovich reaction with a C60 fullerene molecule will lead to new and hard-to-find functionalization products of the latter. Organic carbonates were chosen as the object of study due to the fact that they are used in the industry as solvents for natural and synthetic resins, cellulose ethers, dispersants, blowing agents, emulsifiers, absorbents of hydrogen sulfide and carbon dioxide, starting materials for the industrial synthesis of fibers and plastics, as well as plasticizers, pharmaceuticals and plant protection products. Full article
Show Figures

Figure 1

18 pages, 7084 KiB  
Review
Innovative Materials for High-Performance Tin-Based Perovskite Solar Cells: A Review
by Xiansheng Wang, Jianjun Yang, Jian Zhong, Junsheng Yu and Xinjian Pan
Polymers 2024, 16(21), 3053; https://doi.org/10.3390/polym16213053 - 30 Oct 2024
Cited by 1 | Viewed by 3040
Abstract
With the rapid development of lead-based perovskite solar cells, tin-based perovskite solar cells are emerging as a non-toxic alternative. Material engineering has been an effective approach for the fabrication of efficient perovskite solar cells. This paper summarizes the novel materials used in tin-based [...] Read more.
With the rapid development of lead-based perovskite solar cells, tin-based perovskite solar cells are emerging as a non-toxic alternative. Material engineering has been an effective approach for the fabrication of efficient perovskite solar cells. This paper summarizes the novel materials used in tin-based perovskite solar cells over the past few years and analyzes the roles of various materials in tin-based devices. It is found that self-assembling materials and fullerene derivatives have shown remarkable performance in tin-based perovskite solar cells. Finally, this article discusses design strategies for new materials, providing constructive suggestions for the development of innovative materials in the future. Full article
Show Figures

Figure 1

17 pages, 4413 KiB  
Article
MAPLE-Deposited Perylene Diimide Derivative Based Layers for Optoelectronic Applications
by Carmen Breazu, Mihaela Girtan, Anca Stanculescu, Nicoleta Preda, Oana Rasoga, Andreea Costas, Ana Maria Catargiu, Gabriel Socol, Andrei Stochioiu, Gianina Popescu-Pelin, Sorina Iftimie, Gabriela Petre and Marcela Socol
Nanomaterials 2024, 14(21), 1733; https://doi.org/10.3390/nano14211733 - 29 Oct 2024
Cited by 1 | Viewed by 1093
Abstract
Nowadays, the development of devices based on organic materials is an interesting research challenge. The performance of such devices is strongly influenced by material selection, material properties, design, and the manufacturing process. Usually, buckminsterfullerene (C60) is employed as electron transport material in organic [...] Read more.
Nowadays, the development of devices based on organic materials is an interesting research challenge. The performance of such devices is strongly influenced by material selection, material properties, design, and the manufacturing process. Usually, buckminsterfullerene (C60) is employed as electron transport material in organic photovoltaic (OPV) devices due to its high mobility. However, considering its low solubility, there have been many attempts to replace it with more soluble non-fullerene compounds. In this study, bulk heterojunction thin films with various compositions of zinc phthalocyanine (ZnPc), a perylene diimide derivative, or C60 were prepared by matrix-assisted pulsed laser evaporation (MAPLE) technique to assess the influence of C60 replacement on fabricated heterostructure properties. The investigations revealed that the optical features and the electrical parameters of the organic heterostructures based on this perylene diimide derivative used as an organic acceptor were improved. An increase in the JSC value (4.3 × 10−4 A/cm2) was obtained for the structures where the perylene diimide derivative acceptor entirely replaced C60 compared to the JSC value (7.5 × 10−8 A/cm2) for the heterostructure fabricated only with fullerene. These results are encouraging, demonstrating the potential of non-fullerene compounds as electron transport material in OPV devices. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

17 pages, 2816 KiB  
Article
Z-Scheme BiVO4/g-C3N4 Photocatalyst—With or Without an Electron Mediator?
by Tomasz Łęcki, Kamila Zarębska, Ewelina Wierzyńska, Krzysztof P. Korona, Paulina Chyży, Piotr Piotrowski and Magdalena Skompska
Molecules 2024, 29(21), 5092; https://doi.org/10.3390/molecules29215092 - 28 Oct 2024
Cited by 2 | Viewed by 1453
Abstract
The hybrid system BiVO4/g-C3N4 is a prospective photocatalyst because of the favorable mutual alignment of the energy bands of both semiconductors. However, the path of the photocatalytic process is still unclear because of contradictory information in the literature [...] Read more.
The hybrid system BiVO4/g-C3N4 is a prospective photocatalyst because of the favorable mutual alignment of the energy bands of both semiconductors. However, the path of the photocatalytic process is still unclear because of contradictory information in the literature on whether the mechanism of charge carrier separation at the BiVO4/g-C3N4 interface is band-to-band or Z-scheme. In this work, we clarified this issue by comparative photocatalytic studies with the use of systems without a mediator and with different kinds of mediators including Au nanoparticles, fullerene derivatives, and the Fe3+/Fe2+ redox couple. Additionally, the charge transfer dynamics at the BiVO4/g-C3N4 and BiVO4/mediator/g-C3N4 interfaces were investigated by time-resolved photoluminescence (TRPL) measurements, while the influence of the mediator on the surface recombination of the charge carriers was verified by intensity-modulated photocurrent spectroscopy (IMPS). We proved that the charge carrier separation at the BiVO4/g-C3N4 interface occurs according to the mechanism typical for a heterojunction of type II, while the incorporation of the mediator between BiVO4 and g-C3N4 leads to the Z-scheme mechanism. Moreover, a very strong synergetic effect on caffeine (CAF) degradation rate was found for the system BiVO4/Au/g-C3N4 in the presence of Fe3+ ions in the CAF solution. Full article
(This article belongs to the Special Issue Advances in Composite Photocatalysts)
Show Figures

Figure 1

14 pages, 3318 KiB  
Article
A Quantum Mechanical MP2 Study of the Electronic Effect of Nonplanarity on the Carbon Pyramidalization of Fullerene C60
by Yuemin Liu, Yunxiang Gao, Tariq Altalhi, Di-Jia Liu and Boris I. Yakobson
Nanomaterials 2024, 14(19), 1576; https://doi.org/10.3390/nano14191576 - 29 Sep 2024
Cited by 1 | Viewed by 1560
Abstract
Among C60’s diverse functionalities, its potential application in CO2 sequestration has gained increasing interest. However, the processes involved are sensitive to the molecule’s electronic structure, aspects of which remain debated and require greater precision. To address this, we performed structural [...] Read more.
Among C60’s diverse functionalities, its potential application in CO2 sequestration has gained increasing interest. However, the processes involved are sensitive to the molecule’s electronic structure, aspects of which remain debated and require greater precision. To address this, we performed structural optimization of fullerene C60 using the QM MP2/6–31G* method. The nonplanarity of the optimized icosahedron is characterized by two types of dihedral angles: 138° and 143°. The 120 dihedrals of 138° occur between two hexagons intersecting at C–C bonds of 1.42 Å, while the 60 dihedrals of 143° are observed between hexagons and pentagons at C–C bonds of 1.47 Å. NBO analysis reveals less pyramidal sp1.78 hybridization for carbons at the 1.42 Å bonds and more pyramidal sp2.13 hybridization for the 1.47 Å bonds. Electrostatic potential charges range from −0.04 a.u. to 0.04 a.u. on the carbon atoms. Second-order perturbation analysis indicates that delocalization interactions in the C–C bonds of 1.42 Å (143.70 kcal/mol) and 1.47 Å (34.98 kcal/mol) are 22% and 38% higher, respectively, than those in benzene. MP2/Def2SVP calculations yield a correlation energy of 13.49 kcal/mol per electron for C60, slightly higher than the 11.68 kcal/mol for benzene. However, the results from HOMO-LUMO calculations should be interpreted with caution. This study may assist in the rational design of fullerene C60 derivatives for CO2 reduction systems. Full article
Show Figures

Figure 1

4 pages, 1012 KiB  
Short Note
1-(Dicyanomethylene)-3-hydroxy-1H-indene-2-carboxylic Acid
by Sofia D. Usova, Ekaterina A. Knyazeva and Oleg A. Rakitin
Molbank 2024, 2024(3), M1871; https://doi.org/10.3390/M1871 - 19 Aug 2024
Viewed by 1447
Abstract
Bulk heterojunction solar cells are among the most promising organic solar cells (OSCs). One of the two important parts of OSCs are acceptors, and the development of the design and synthesis of non-fullerene acceptors involves an electron-deficient heterocyclic central core and anchor acceptor [...] Read more.
Bulk heterojunction solar cells are among the most promising organic solar cells (OSCs). One of the two important parts of OSCs are acceptors, and the development of the design and synthesis of non-fullerene acceptors involves an electron-deficient heterocyclic central core and anchor acceptor malonitrile derivatives of 3-methylene-2,3-dihydro-1H-inden-1-ones. In this communication, an intermediate for the synthesis of this compound, 1-(dicyanomethylene)-3-hydroxy-1H-indene-2-carboxylic acid, was prepared by the Perkin reaction of 2-(3-oxoisobenzofuran-1(3H)-ylidene)malononitrile with tert-butyl acetoacetate in the presence of acetic anhydride and triethylamine. The structure of the newly synthesized compound was established by means of elemental analysis, high-resolution mass spectrometry, 1H NMR, 13C NMR and IR spectroscopy, and mass spectrometry. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Scheme 1

12 pages, 10730 KiB  
Article
Fluorinated Fullerenes as Electrolyte Additives for High Ionic Conductivity Lithium-Ion Batteries
by Haoyu Pan, Zhanlin Yang, Jianhui Chen, Hengyi Li, Cuilian Wen and Baisheng Sa
Molecules 2024, 29(13), 2955; https://doi.org/10.3390/molecules29132955 - 21 Jun 2024
Cited by 2 | Viewed by 1902
Abstract
Currently, lithium-ion batteries have an increasingly urgent need for high-performance electrolytes, and additives are highly valued for their convenience and cost-effectiveness features. In this work, the feasibilities of fullerenes and fluorinated fullerenes as typical bis(fluorosulfonyl)imide/1,2-dimethoxymethane (LiFSI/DME) electrolyte additives are rationally evaluated based on [...] Read more.
Currently, lithium-ion batteries have an increasingly urgent need for high-performance electrolytes, and additives are highly valued for their convenience and cost-effectiveness features. In this work, the feasibilities of fullerenes and fluorinated fullerenes as typical bis(fluorosulfonyl)imide/1,2-dimethoxymethane (LiFSI/DME) electrolyte additives are rationally evaluated based on density functional theory calculations and molecular dynamic simulations. Interestingly, electronic structures of C60, C60F2, C60F4, C60F6, 1-C60F8, and 2-C60F8 are found to be compatible with the properties required as additives. It is noted that that different numbers and positions of F atoms lead to changes in the deformation and electronic properties of fullerenes. The F atoms not only show strong covalent interactions with C cages, but also affect the C-C covalent interaction in C cages. In addition, molecular dynamic simulations unravel that the addition of trace amounts of C60F4, C60F6, and 2-C60F8 can effectively enhance the Li+ mobility in LiFSI/DME electrolytes. The results expand the range of applications for fullerenes and their derivatives and shed light on the research into novel additives for high-performance electrolytes. Full article
(This article belongs to the Special Issue Computational Studies of Novel Function Materials—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop