MAPLE-Deposited Perylene Diimide Derivative Based Layers for Optoelectronic Applications
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
3.1. Surface Morphology
3.2. Optical Characterization
3.2.1. FTIR Spectroscopy
ZnPc | AMC14 | ||
---|---|---|---|
Wavenumber (cm−1) | Assignment | Wavenumber (cm−1) | Assignment |
724 | C–H out-of-plane deformation | 730 | C–H bend |
750 | C–H in-plane bending | 775 | C–H bend |
889 | Isoindole stretching | 808 | C–H bend |
1063 | C–H bending | 862 | C–H bend |
1092 | C–H in-plane bending | 1088 | C–C bend |
1117 | C–H in-plane bending | 1254 | C–C bend |
1167 | C–H bending | 1338 | C–N stretching |
1286 | C–H in-plane bending | 1366 | C–N stretching |
1328 | In-plane pyrrole stretching | 1595 | C=C stretching in aromatic |
1412 | Isoindole stretching | 1656 | Imide C=O out-of-plane asymmetric stretching |
1451 | Isoindole stretching | 1696 | Imide C=O in-plane asymmetric stretching |
1488 | C=C benzene stretching | 2851 | C–H aliphatic stretching |
2925 | C–H aromatic stretching |
3.2.2. UV-Vis Spectroscopy
3.2.3. Photoluminescence
3.3. Electrical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azizi, N.; Esmaeilion, F.; Moosavian, S.F.; Yaghoubirad, M.; Ahmadi, A.; Aliehyaei, M.; Soltani, M. Critical review of multigeneration system powered by geothermal energy resource from the energy, exergy, and economic point of views. Energy Sci. Eng. 2022, 10, 4859–4889. [Google Scholar] [CrossRef]
- Seroka, N.S.; Taziwa, R.; Khotseng, L. Solar Energy Materials-Evolution and Niche Applications: A Literature Review. Materials 2022, 15, 5338. [Google Scholar] [CrossRef] [PubMed]
- Riede, M.; Spoltore, D.; Leo, K. Organic solar cells—The path to commercial success. Adv. Energy Mater. 2021, 11, 2002653. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Zuo, C.; Yang, W.; Fang, X. Supersaturation-Controlled Growth of Monolithically Integrated Lead-Free Halide Perovskite Single-Crystalline Thin Film for High-Sensitivity Photodetectors. Adv. Mater. 2021, 33, 2103010. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Cao, F.; Hong, E.; Fang, X. Woven Fibrous Photodetectors for Scalable UV Optical Communication Device. Adv. Funct. Mater. 2023, 33, 2213334. [Google Scholar] [CrossRef]
- Liu, X.-L.; Guo, J.-W.; Wang, Y.-W.; Wang, A.-Z.; Yu, X.; Ding, L.-H. A flexible electrochemical sensor for paracetamol based on porous honeycomb-like NiCo-MOF nanosheets. Rare Met. 2023, 42, 3311–3317. [Google Scholar] [CrossRef]
- Yin, R.; Lv, J.-J. New Functional Organic Materials and Their Photoelectric Applications: A New Open Special Issue of Materials. Materials 2022, 15, 3444. [Google Scholar] [CrossRef]
- Qaid, S.M.H.; Shaker, A.; Okil, M.; Gontrand, C.; Alkadi, M.; Ghaithan, H.M.; Salah, M.M. Optoelectronic Device Modeling and Simulation of Selenium-Based Solar Cells under LED Illumination. Crystals 2023, 13, 1668. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.Q.; Li, C.; Yan, J.; Zhou, G.Q.; Zhong, W.K.; Hao, T.Y.; Song, J.L.; Xue, X.N.; et al. Single-Junction Organic Solar Cells with over 19% Efficiency Enabled by a Refined Double-Fibril Network Morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Zhao, D.; Wang, L.; Jiao, Z.; Huang, Q.; Wang, P.; Sun, M.; Yuan, G. Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules 2022, 27, 1800. [Google Scholar] [CrossRef]
- Burgués-Ceballos, I.; Lucera, L.; Tiwana, P.; Ocytko, K.; Tan, L.W.; Kowalski, S.; Snow, J.; Pron, A.; Bürckstümmer, H.; Blouin, N. Transparent Organic Photovoltaics: A Strategic Niche to Advance Commercialization. Joule 2021, 5, 2261–2272. [Google Scholar] [CrossRef]
- Li, G.; Chang, W.-H.; Yang, Y. Low-Bandgap Conjugated Polymers Enabling Solution-Processable Tandem Solar Cells. Nat. Rev. Mater. 2017, 2, 17043. [Google Scholar] [CrossRef]
- Felter, K.M.; Caselli, V.M.; Günbaş, D.D.; Savenije, T.J.; Grozema, F.C. Interplay between charge carrier mobility, exciton diffusion, crystal packing, and charge separation in perylene diimide-based heterojunctions. ACS Appl. Energy Mater. 2019, 2, 8010–8021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Materials for Energy, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; p. 528. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef]
- Xiong, M.; Wu, J.; Fan, Q.; Liu, Q.; Lv, J.; Ou, X.; Guo, X.; Zhang, M. Ternary organic solar cells with improved efficiency and stability enabled by compatible dual-acceptor strategy. Org. Electron. 2021, 96, 106227. [Google Scholar] [CrossRef]
- Tan, C.A.-W.; Wong, B.T. Unraveling the mystery of ternary organic solar cells: A review on the influence of third component on structure–morphology–performance relationships. Sol. RRL 2021, 5, 2100503. [Google Scholar] [CrossRef]
- Yu, R.N.; Yao, H.F.; Hou, J.H. Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors. Adv. Energy Mater. 2018, 8, 1702814. [Google Scholar] [CrossRef]
- Bi, P.; Hao, X. Versatile ternary approach for novel organic solar cells: A review. Sol. RRL 2019, 3, 1800263. [Google Scholar] [CrossRef]
- Gasparini, N.; Salleo, A.; McCulloch, I.; Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 2019, 4, 229–242. [Google Scholar] [CrossRef]
- Dayneko, S.V.; Hendsbee, A.D.; Cann, J.R.; Cabanetos, C.; Welch, G.C. Ternary organic solar cells: Using molecular donor or acceptor third components to increase open circuit voltage. New J. Chem. 2019, 43, 10442–10448. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G. Functional third components in nonfullerene acceptor-based ternary organic solar cells. Acc. Mater. Res. 2020, 1, 158–171. [Google Scholar] [CrossRef]
- Gao, H.H.; Sun, Y.; Li, S.; Ke, X.; Cai, Y.; Wan, X.; Zhang, H.; Li, C.; Chen, Y. An All Small Molecule Organic Solar Cell Based on a Porphyrin Donor and a Non-Fullerene Acceptor with Complementary and Broad Absorption. Dye. Pigment. 2020, 176, 108250. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, F.; Zhang, Q.; Lau, T.-K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; et al. Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. J. Am. Chem. Soc. 2017, 139, 1336–1343. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, K.; Yang, G.; Lai, J.Y.L.; Ma, T.; Zhao, J.; Ma, W.; Yan, H. Donor polymer design enables efficient non-fullerene organic solar cells. Nat. Commun. 2016, 7, 13094. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Yuan, J.; Leclerc, M.; Zou, Y.; Li, Y. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett. 2021, 6, 598–608. [Google Scholar] [CrossRef]
- Qu, J.; Mu, Z.; Lai, H.; Xie, M.; Liu, L.; Lu, W.; Chen, W.; He, F. Effect of the Molecular Configuration of Perylene Diimide Acceptors on Charge Transfer and Device Performance. ACS Appl. Energy. Mater. 2018, 2, 833–840. [Google Scholar] [CrossRef]
- Roy, R.; Khan, A.; Chatterjee, O.; Bhunia, S.; Koner, A.L. Perylene monoimide as a versatile fluoroprobe: The past, present, and future. Org. Mater. 2021, 3, 417–454. [Google Scholar] [CrossRef]
- Li, C.; Wonneberger, H. Perylene imides for organic photovoltaics: Yesterday, today, and tomorrow. Adv. Mater. 2012, 24, 613–636. [Google Scholar] [CrossRef]
- Langhals, H. Cyclic Carboxylic Imide Structures as Structure Elements of High Stability. Novel Developments in Perylene Dye Chemistry. Heterocycles 1995, 40, 477. [Google Scholar] [CrossRef]
- Scholz, M.; Schmidt, R.; Krause, S.; Schöll, A.; Reinert, F.; Würthner, F. Electronic structure of epitaxial thin films of bay-substituted perylene bisimide dyes. Appl. Phys. A 2009, 95, 285–290. [Google Scholar] [CrossRef]
- Stanculescu, A.; Breazu, C.; Socol, M.; Rasoga, O.; Preda, N.; Petre, G.; Solonaru, A.M.; Grigoras, M.; Stanculescu, F.; Socol, G.; et al. Effect of ITO electrode patterning on the properties of organic heterostructures based on non-fullerene acceptor prepared by MAPLE. Appl. Surf. Sci. 2020, 509, 145351. [Google Scholar] [CrossRef]
- Stanculescu, F.; Rasoga, O.; Catargiu, A.M.; Vacareanu, L.; Socol, M.; Breazu, C.; Preda, N.; Socol, G.; Stanculescu, A. MAPLE prepared heterostructures with arylene based polymer active layer for photovoltaic applications. Appl. Surf. Sci. 2015, 336, 240–248. [Google Scholar] [CrossRef]
- Rasoga, O.; Breazu, C.; Socol, M.; Solonaru, A.-M.; Vacareanu, L.; Petre, G.; Preda, N.; Stanculescu, F.; Socol, G.; Girtan, M.; et al. Effect of Aluminum Nanostructured Electrode on the Properties of Bulk Heterojunction Based Heterostructures for Electronics. Nanomaterials 2022, 12, 4230. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Li, N.K.; McCormick, R.D.; Lichtenberg, E.; Yingling, Y.G.; Stiff-Roberts, A.D. Emulsion-Based RIR-MAPLE Deposition of Conjugated Polymers: Primary Solvent Effect and Its Implications on Organic Solar Cell Performance. ACS Appl. Mater. Interfaces 2016, 8, 19494–19506. [Google Scholar] [CrossRef] [PubMed]
- Marturano, V.; Abate, F.; Ambrogi, V.; Califano, V.; Cerruti, P.; Pepe, G.P.; Vicari, L.R.M.; Ausanio, G. Smart Coatings Prepared via MAPLE Deposition of Polymer Nanocapsules for Light-Induced Release. Molecules 2021, 26, 2736. [Google Scholar] [CrossRef]
- Ringeisen, B.R.; Callahan, J.; Wu, P.K.; PiquØ, A.; Spargo, B.; McGill, R.A.; Bucaro, M.; Kim, H.; Bubb, D.M.; Chrisey, D.B. Novel Laser-Based Deposition of Active Protein Thin Films. Langmuir 2001, 17, 3472. [Google Scholar] [CrossRef]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Dong, B.X.; Strzalka, J.; Jiang, Z.; Li, H.; Stein, G.E.; Green, P.F. Crystallization Mechanism and Charge Carrier Transport in MAPLE-Deposited Conjugated Polymer Thin Films. ACS Appl. Mater. Interfaces 2017, 9, 44799–44810. [Google Scholar] [CrossRef]
- Rella, R.; Cozzoli, P.D.; Arima, V.; Taurino, A.; Tunno, T.; Cesaria, M.; Catalano, M.; Martino, M.; Zacheo, A.; Caricato, A.P.; et al. MAPLE deposition of nanomaterials. Appl. Surf. Sci. 2013, 302, 92–98. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Breazu, C.; Stanculescu, A.; Costas, A.; Stanculescu, F.; Girtan, M.; Gherendi, F.; Popescu-Pelin, G.; Socol, G. Flexible organic heterostructures obtained by MAPLE. Appl. Phys. A 2018, 124, 602. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Chang, C.-W.; Chen, K.-Y. 1,6- and 1,7-Regioisomers of Asymmetric and Symmetric Perylene Bisimides: Synthesis, Characterization and Optical Properties. Molecules 2014, 19, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Kampen, T.U.; Salvan, G.; Paraian, A.; Himcinschi, C.; Kobitski, A.Y.; Friedrich, M.; Zahn, D.R.T. Orientation of perylene derivatives on semiconductor surfaces. Appl. Surf. Sci. 2013, 212–213, 501–507. [Google Scholar] [CrossRef]
- Senthilarasu, S.; Sathyamoorthy, R.; Kulkarni, S. Substrate temperature effects on structural orientations and optical properties of ZincPthalocyanine (ZnPc) thin films. Mater. Sci. Eng. B 2005, 122, 100–105. [Google Scholar] [CrossRef]
- Piryatinski, Y.P.; Malynovskyi, M.B.; Sevryukova, M.M.; Verbitsky, A.B.; Kapush, O.A.; Rozhin, A.G.; Lutsyk, P.M. Mixing of Excitons in Nanostructures Based on a Perylene Dye with CdTe Quantum Dots. Materials 2023, 16, 552. [Google Scholar] [CrossRef]
- Ghani, F.; Kristen, J.; Riegler, H. Solubility Properties of Unsubstituted Metal Phthalocyanines in Different Types of Solvents. J. Chem. Eng. Data 2012, 57, 439–449. [Google Scholar] [CrossRef]
- Khatib, N.; Boudjema, B.; Maitrot, M.; Chermette, H.; Porte, L. Electronic structure of zinc phthalocyanine. Can. J. Chem. 1988, 66, 2313–2324. [Google Scholar] [CrossRef]
- Velentzas, A.; Stavrou, D. Exploring fullerenes and nanotubes in the classroom. Chem. Teach. Int. 2021, 3, 45–55. [Google Scholar] [CrossRef]
- Pu, J.; Mo, Y.; Wan, S.; Wang, L. Fabrication of novel graphene–fullerene hybrid lubricating films based on self-assembly for MEMS applications. Chem. Commun. 2014, 50, 469–471. [Google Scholar] [CrossRef]
- Canulescu, S.; Schou, J.; Fæster, S.; Hansen, K.V.; Conseil, H. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE). Chem. Phys. Lett. 2013, 588, 119–123. [Google Scholar] [CrossRef]
- Gaffo, L.; Cordeiro, M.R.; Freitas, A.R.; Moreira, W.C.; Girotto, E.M.; Zucolotto, V. The effects of temperature on the molecular orientation of zinc phthalocyanine films. J. Mater. Sci. 2010, 45, 1366–1370. [Google Scholar] [CrossRef]
- Samanta, M.; Ghorai, U.K.; Das, B.; Howli, P.; Das, S.; Senb, D.; Chattopadhyay, K.K. Facile synthesis of ZnPc nanoflakes for cold cathode emission. RSC Adv. 2016, 6, 42739–42744. [Google Scholar] [CrossRef]
- Meena, S.; Chhillar, P.; Pathak, S.; Roose, B.; Jacob, J. Perylene diimide based low band gap copolymers: Synthesis, characterization and their applications in perovskite solar cells. J. Polym. Res. 2020, 27, 226. [Google Scholar] [CrossRef]
- Asir, S.; Demir, A.S.; Icĭl, H. The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimide: Photophysical, electrochemical, chiroptical and intramolecular charge transfer properties. Dye. Pigment. 2010, 84, 1–13. [Google Scholar] [CrossRef]
- Slam, Z.U.; Tahir, M.; Syed, W.A.; Aziz, F.; Wahab, F.; Said, S.M.; Sarker, M.R.; Ali, S.H.M.; Sabri, M.F.M. Fabrication and photovoltaic properties of organic solar cell based on zinc phthalocyanine. Energies 2020, 13, 962. [Google Scholar] [CrossRef]
- Wei, W.; Ouyang, S.; Zhang, T. Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications. J. Semicond. 2020, 41, 0917084. [Google Scholar] [CrossRef]
- Balambiga, B.; Dheepika, R.; Devibala, P.; Imran, P.M.; Nagarajan, S. Picene and PTCDI based solution processable ambipolar OFETs. Sci. Rep. 2020, 10, 22029. [Google Scholar] [CrossRef]
- Adel, R.; Gala, E.; Navarro, M.J.A.; Fernandez, E.G.; Martín, J.; Stella, M.; Ferrero, E.M.; Peña, A.; Harbuzaru, A.; Ramos, M.M.; et al. Comparing the microstructure and photovoltaic performance of 3 perylene imide acceptors with similar energy levels but different packing tendencie. J. Mater. Chem. C 2020, 10, 1698–1710. [Google Scholar] [CrossRef]
- Farr, E.P.; Fontana, M.T.; Zho, C.C.; Wu, P.; Li, Y.P.; Knutson, N.; Rubin, Y.; Schwartz, B. Bay-Linked Perylenediimides are Two Molecules in One: Insights from Ultrafast Spectroscopy, Temperature Dependence, and Time-Dependent Density Functional Theory Calculations. J. Phys. Chem. C 2019, 123, 2127–2138. [Google Scholar] [CrossRef]
- Oltean, M.; Calborean, A.; Mile, G.; Vidrighin, M.; Iosin, M.; Leopold, L.; Maniu, D.; Leopold, N.; Chiş, V. Absorption spectra of PTCDI: A combined UV-Vis and TD-DFT study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 97, 703–710. [Google Scholar] [CrossRef]
- Pfuetzner, S.; Meiss, J.; Petrich, A.; Riede, M.; Leo, K. Improved bulk heterojunction organic solar cells employing C70 fullerenes. Appl. Phys. Lett. 2009, 94, 145. [Google Scholar] [CrossRef]
- Kazaoui, S.; Ross, R.; Minami, N. In situ photoconductivity behavior of C60 thin films: Wavelength, temperature, oxygen effect. Solid State Commun. 1994, 90, 623–628. [Google Scholar] [CrossRef]
- Clark, A.E.; Qin, C.; Li, A.D.Q. Beyond Exciton Theory: A Time-Dependent DFT and Franck−Condon Study of Perylene Diimide and Its Chromophoric Dimer. J. Am. Chem. Soc. 2007, 129, 7586–7595. [Google Scholar] [CrossRef] [PubMed]
- Shaller, A.D.; Wang, W.; Li, A.; Moyna, G.; Han, J.J.; Helms, G.L.; Li, A.D.Q. Sequence-Controlled Oligomers Fold into Nanosolenoids and Impart Unusual Optical Properties. Chem. Eur. J. 2011, 17, 8350–8362. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zhang, X.; Liang, K.; Wang, J.; Lin, Y.; Yang, S.; Zhang, W.-B.; Zhu, M.; Sun, B. How does the interplay between bromine substitution at bay area and bulky substituents at imide position influence the photophysical properties of perylene diimides? RSC Adv. 2017, 7, 16155–16162. [Google Scholar] [CrossRef]
- Szybowicz, M.; Runka, T.; Drozdowski, M.; Bała, W.; Wojdyła, M.; Grodzicki, A.; Piszczek, P.; Bratkowski, P. Temperature study of Raman, FT-IR and photoluminescence spectra of ZnPc thin layers on Si substrate. J. Mol. Struct. 2007, 830, 14–20. [Google Scholar] [CrossRef]
- Elistratova, M.A.; Zakharova, I.B.; Romanov, N.M. Obtaining and investigation of C60 <A2B6> semiconductor compounds with a view to create effective solar cells. J. Phys. Conf. Ser. 2015, 661, 012030. [Google Scholar] [CrossRef]
- Lim, W.F.; Quah, H.J.; Hassan, Z. Effects of annealing temperature on optical, morphological, and electrical characteristics of polyfluorene-derivative thin films on ITO glass substrate. Appl. Opt. 2016, 55, 1198–1205. [Google Scholar] [CrossRef]
- Venkatesh, P.S.; Ramakrishnan, V.; Jeganathan, K. Vertically aligned indium doped zinc oxide nanorods for the application of nanostructured anodes by radio frequency magnetron sputtering. CrystEngComm 2012, 14, 3907–3914. [Google Scholar] [CrossRef]
- Lucenti, E.; Botta, C.; Cariati, E.; Righetto, S.; Scarpellini, M.; Tordin, E.; Ugo, R. New organic–inorganic hybrid materials based on perylene diimide–polyhedral oligomeric silsesquioxane dyes with reduced quenching of the emission in the solid state. Dye. Pigment. 2013, 96, 748–755. [Google Scholar] [CrossRef]
- Singh, R.; Shivanna, R.; Iosifidis, A.; Butt, H.J.; Floudas, G.; Narayan, K.S.; Keivanidis, P.E. Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films. ACS Appl. Mater. Interfaces 2015, 44, 24876–24886. [Google Scholar] [CrossRef]
- Zhang, T.; Moser, M.; Scaccabarozzi, A.D.; Bristow, H.; Jacoutot, P.; Wadsworth, A.; Anthopoulos, T.D.; McCulloch, I.; Gasparini, N. Ternary organic photodetectors based on pseudo-binaries nonfullerene-based acceptors. J. Phys. Mater. 2021, 4, 045001. [Google Scholar] [CrossRef]
- Huang, H.; Yanga, L.; Sharma, B. Recent advances in organic ternary solar cells. J. Mater. Chem. A 2017, 5, 11501–11517. [Google Scholar] [CrossRef]
- Stanculescu, A.; Socol, M.; Rasoga, O.; Breazu, C.; Preda, N.; Stanculescu, F.; Socol, G.; Vacareanu, L.; Girtan, M.; Doroshkevich, A.S. Arylenevinylene Oligomer-Based Heterostructures on Flexible AZO Electrodes. Materials 2021, 14, 7688. [Google Scholar] [CrossRef] [PubMed]
- Lassiter, B.E.; Wei, G.; Wang, S.; Zimmerman, J.D.; Diev, V.V.; Thompson, M.E.; Forrest, S.R. Organic photovoltaics incorporating electron conducting exciton blocking layers. Appl. Phys. Lett. 2011, 98, 243307. [Google Scholar] [CrossRef]
- Boobalan, G.; Imran, K.M.; Manoharan, C.; Nagarajan, S. Fabrication of highly fluorescent perylene bisimide nanofibers through interfacial self-assembly. J. Colloid Interface Sci. 2013, 393, 377–383. [Google Scholar] [CrossRef]
- Naqvi, S. Facile Synthesis and Evaluation of Electron Transport and Photophysical Properties of Photoluminescent PDI Derivatives. ACS Omega 2019, 22, 19735–19745. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, J.N.; Zhan, C.L. Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors. Sci. China Chem. 2016, 59, 209–217. [Google Scholar] [CrossRef]
- Kotadiya, N.B.; Mondal, A.; Blom, P.W.M.; Andrienko, D.; Wetzelaer, G.A.H. A window to trap-free charge transport in organic semiconducting thin films. Nat. Mater. 2019, 18, 1182–1186. [Google Scholar] [CrossRef]
- Ding, Z.; Long, X.; Meng, B.; Bai, K.; Dou, C.; Liu, J.; Wang, L. Polymer solar cells with open-circuit voltage of 1.3 V using polymer electron acceptor with high LUMO level. Nano Energy 2017, 32, 216–224. [Google Scholar] [CrossRef]
- Elumalai, N.K.; Uddin, A. Open circuit voltage of organic solar cells: An in-depth review. Energy Environ. Sci. 2016, 9, 391–410. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, K.; Chen, D.; Zhang, Y.; Zhang, J. Versatile nonplanar perylene diimide-based acceptor for inverted organic solar cells and photodetectors with modified ZnO buffer layers. Synth. Met. 2023, 293, 117245. [Google Scholar] [CrossRef]
- Murugan, P.; Ravindran, E.; Sangeetha, V.; Liu, S.-Y.; Jung, J.W. Perylene-diimide for organic solar cells: Current scenario and prospects in molecular geometric, functionalization, and optoelectronic properties. J. Mater. Chem. A 2023, 11, 26393–26425. [Google Scholar] [CrossRef]
- Tong, J.; Fang, J.; An, L.; Huo, Y.; Di, F.; Guo, P.; Yang, C.; Liang, Z.; Jianfeng Li, J.; Xia, Y. Boosting solar cell performance during highly thermo- and photo-stable asymmetric perylene diimide dimeric acceptors by selenium-annulation at the outside bay position. J. Mater. Chem. C 2024, 12, 13353–13364. [Google Scholar] [CrossRef]
- Cheng, P.; Zhao, X.; Zhan, X. Perylene Diimide-Based Oligomers and Polymers for Organic Optoelectronics. Acc. Mater. Res. 2022, 3, 309–318. [Google Scholar] [CrossRef]
Sample | Component Ratio | Label | Thickness (nm) | RMS (nm) | Ra (nm) |
---|---|---|---|---|---|
ZnPc | - | ZnPc | 295 | 13.7 | 10.7 |
C60 | - | C60 | 210 | 15.4 | 8.6 |
AMC14 | - | AMC14 | 405 | 6.7 | 4.3 |
ZnPc:C60 | 1:1 | P0 | 105 | 11.0 | 7.9 |
ZnPc:C60:AMC14 | 2:1:1 | P1 | 170 | 20.3 | 12.8 |
ZnPc:C60:AMC14 | 1:1:1 | P2 | 150 | 15.0 | 10.7 |
ZnPc:C60:AMC14 | 1:1:2 | P3 | 130 | 7.6 | 4.4 |
ZnPc:AMC14 | 1:1 | P4 | 145 | 14.0 | 9 |
Compound | HOMO | LUMO | Bandgap | Absorption Peaks |
---|---|---|---|---|
ZnPc | 5.17 [74] | 3.78 eV [74] | ~1.4 | 340, 630, 690 [55] |
C60 | 6.2 [75] | 3.7 eV [75] | ~2.5 | 340, 440 [62] |
AMC14 | 5.16 [76] | 3.44 eV [76] | ~1.7 | 490, 530 [56,57] |
Sample | VOC (V) | JSC (A/cm2) | Pmax (W/cm2) | FF | PCE (%) |
---|---|---|---|---|---|
P0 | 0.24 | 7.5 × 10−8 | 0.3 × 10−8 | 0.19 | 0.34 × 10−5 |
P1 | 0.12 | 6.7 × 10−5 | 0.2 × 10−5 | 0.28 | 0.22 × 10−2 |
P4 | 0.46 | 4.3 × 10−4 | 0.7 × 10−4 | 0.35 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breazu, C.; Girtan, M.; Stanculescu, A.; Preda, N.; Rasoga, O.; Costas, A.; Catargiu, A.M.; Socol, G.; Stochioiu, A.; Popescu-Pelin, G.; et al. MAPLE-Deposited Perylene Diimide Derivative Based Layers for Optoelectronic Applications. Nanomaterials 2024, 14, 1733. https://doi.org/10.3390/nano14211733
Breazu C, Girtan M, Stanculescu A, Preda N, Rasoga O, Costas A, Catargiu AM, Socol G, Stochioiu A, Popescu-Pelin G, et al. MAPLE-Deposited Perylene Diimide Derivative Based Layers for Optoelectronic Applications. Nanomaterials. 2024; 14(21):1733. https://doi.org/10.3390/nano14211733
Chicago/Turabian StyleBreazu, Carmen, Mihaela Girtan, Anca Stanculescu, Nicoleta Preda, Oana Rasoga, Andreea Costas, Ana Maria Catargiu, Gabriel Socol, Andrei Stochioiu, Gianina Popescu-Pelin, and et al. 2024. "MAPLE-Deposited Perylene Diimide Derivative Based Layers for Optoelectronic Applications" Nanomaterials 14, no. 21: 1733. https://doi.org/10.3390/nano14211733
APA StyleBreazu, C., Girtan, M., Stanculescu, A., Preda, N., Rasoga, O., Costas, A., Catargiu, A. M., Socol, G., Stochioiu, A., Popescu-Pelin, G., Iftimie, S., Petre, G., & Socol, M. (2024). MAPLE-Deposited Perylene Diimide Derivative Based Layers for Optoelectronic Applications. Nanomaterials, 14(21), 1733. https://doi.org/10.3390/nano14211733