Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = fuel cell automobile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3374 KB  
Review
Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks
by Xingxing Wang, Jiaying Ji, Junyi Li, Zhou Zhao, Hongjun Ni and Yu Zhu
Sustainability 2025, 17(13), 6170; https://doi.org/10.3390/su17136170 - 4 Jul 2025
Cited by 2 | Viewed by 2978
Abstract
The power system, which is also one of the most crucial parts of fuel cell cars, marks the biggest distinction between them and conventional automobiles. Fuel cell hybrid power systems are reviewed in this paper along with their current state of research. Three [...] Read more.
The power system, which is also one of the most crucial parts of fuel cell cars, marks the biggest distinction between them and conventional automobiles. Fuel cell hybrid power systems are reviewed in this paper along with their current state of research. Three different kinds of fuel cell hybrid power systems—fuel cell–battery, fuel cell–supercapacitor, and fuel cell–battery–supercapacitor—are thoroughly compared and analyzed, and they are systematically explained in the three areas of passenger cars, buses, and heavy duty trucks. Existing fuel cell hybrid systems and energy strategies are systematically reviewed and summarized, including predictive control strategies based on game theory, power allocation strategies, fuzzy control strategies, and adaptive super twisted sliding mode control (ASTSMC) energy management techniques. This study offers recommendations and direction for the future direction of fuel cell hybrid power system research and development. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

18 pages, 5771 KB  
Article
Optimizing Fuel Economy in Hybrid Electric Vehicles Using the Equivalent Consumption Minimization Strategy Based on the Arithmetic Optimization Algorithm
by Houssam Eddine Ghadbane and Ahmed F. Mohamed
Mathematics 2025, 13(9), 1504; https://doi.org/10.3390/math13091504 - 2 May 2025
Cited by 4 | Viewed by 1311
Abstract
Due to their improved performance and advantages for the environment, fuel cell hybrid electric cars, or FCEVs, have garnered a lot of attention. Establishing an energy management strategy (EMS) for fuel cell electric vehicles (FCEVs) is essential for optimizing power distribution among various [...] Read more.
Due to their improved performance and advantages for the environment, fuel cell hybrid electric cars, or FCEVs, have garnered a lot of attention. Establishing an energy management strategy (EMS) for fuel cell electric vehicles (FCEVs) is essential for optimizing power distribution among various energy sources. This method addresses concerns regarding hydrogen utilization and efficiency. The Arithmetic Optimization Algorithm is employed in the proposed energy management system to enhance the strategy of maximizing external energy, leading to decreased hydrogen consumption and increased system efficiency. The performance of the proposed EMS is evaluated using the Federal Test Procedure (FTP-75) to replicate city driving situations and is compared with existing algorithms through a comparison co-simulation. The co-simulation findings indicate that the suggested EMS surpasses current approaches in reducing fuel consumption, potentially decreasing it by 59.28%. The proposed energy management strategy demonstrates an 8.43% improvement in system efficiency. This enhancement may reduce dependence on fossil fuels and mitigate the adverse environmental effects associated with automobile emissions. To assess the feasibility and effectiveness of the proposed EMS, the system is tested within a Processor-in-the-Loop (PIL) co-simulation environment using the C2000 launchxl-f28379d Digital Signal Processing (DSP) board. Full article
(This article belongs to the Special Issue Intelligence Optimization Algorithms and Applications)
Show Figures

Figure 1

17 pages, 2330 KB  
Review
Design and Fabrication of Micro-Electromechanical System (MEMS)-Based μ-DMFC (Direct Methanol Fuel Cells) for Portable Applications: An Outlook
by Divya Catherin Sesu, Ganesan Narendran, Saraswathi Ramakrishnan, Kumaran Vediappan, Sankaran Esakki Muthu, Sengottaiyan Shanmugan and Karthik Kannan
Electrochem 2025, 6(2), 11; https://doi.org/10.3390/electrochem6020011 - 30 Mar 2025
Cited by 4 | Viewed by 2803
Abstract
This review reveals the parameters of next-generation fuel cells for portable applications such as cellular phones, laptops, automobiles, etc. Disputes over issues such as design, fluid dynamics, channel dimensions, thermal management, and water management must be overcome for practical applications. We examine techniques [...] Read more.
This review reveals the parameters of next-generation fuel cells for portable applications such as cellular phones, laptops, automobiles, etc. Disputes over issues such as design, fluid dynamics, channel dimensions, thermal management, and water management must be overcome for practical applications. We examine techniques such as microfabrication, material selection for membranes and electrodes, and integration challenges in small-scale devices, in addition to issues like methanol crossover, low efficiency at high methanol concentrations, thermal management, and the cost of materials. The advancements in micro-DMFC stacks and prototype developments are presented, and the challenges relating to micro-DMFCs are also identified and reviewed in detail. The challenges in the development of micro-DMFC applications are also presented, including the need for a better understanding of the anode and cathode catalyst structure and for high catalyst loadings in oxidation-and-reduction reactions. Also, a comprehensive and highly valuable database for advancing innovations and enhancing the understanding of micro-DMFCs for potential applications is provided. Full article
Show Figures

Figure 1

19 pages, 3993 KB  
Article
Improvement Efficiency and Emission Reduction in Used Cars for Developing Regions Using Gasoline–Bioethanol Blends
by Alejandro Zacarías, Mario R. Grijalva, José de Jesús Rubio, Guerlin Romage, Violeta Y. Mena, Raúl Hernández, Ignacio Carvajal, Alicia Flores, Orlando Guarneros and Brayan A. Rodríguez
Energies 2025, 18(3), 638; https://doi.org/10.3390/en18030638 - 30 Jan 2025
Cited by 2 | Viewed by 1330
Abstract
Energy demand is continuously increasing owing to rapid technological developments and population growth. Additionally, it has been shown that the consumption of fossil fuels contributes to the emission of gases that increase the greenhouse effect. An alternative for addressing the problems of greenhouse [...] Read more.
Energy demand is continuously increasing owing to rapid technological developments and population growth. Additionally, it has been shown that the consumption of fossil fuels contributes to the emission of gases that increase the greenhouse effect. An alternative for addressing the problems of greenhouse gas emissions and dependence on oil is to replace fossil fuels with biofuels. This article presents the combustion gas emissions and performance assessment of a used car using gasoline–bioethanol blends at concentrations free of mechanical risk to contribute information for energy transition. The tests were carried out using the mixtures E0, E5, and E10 at speeds of 1500, 2500, and 4500 rpm for the evaluation of emissions. Meanwhile, for the performance assessment, the speed was varied from 2500 rpm to 8000 rpm. The vehicle was analyzed under functional operating conditions, and no mechanical modifications were made to the alcohol mixtures. Testing was performed using a gas analyzer with non-dispersive infrared (NDIR) electroluminescence and electrochemical cells to measure the emissions, and a computerized chassis dynamometer was used to measure the torque and speed. From the results shown here, it can be concluded that the use of bioethanol at low concentrations in the range without mechanical risk, such as E0, E5, and E10, can be utilized in used cars and in functional operating conditions, improving the thermal efficiency of the engine by 2% and 1.2% with the E5 and E10 mixtures. The specific consumption increased up to 3% with the E10 mixture owing to the lower energy capacity of the mixture. Meanwhile, HC polluting emissions decreased by up to 8.44%, 20%, and 100 at speeds of 1500 rpm, 2500 rpm, and 4500 rpm, respectively. The nitrogen oxide emissions decreased by up to 5% for mixtures E5 and E10. The results presented in this article may be useful for decision making in the use of biofuels in automobiles used in the energy transition. In addition, our study can be taken as a reference for studies on cars that are more than 20 years old. Full article
(This article belongs to the Special Issue Advances in Fuel Energy)
Show Figures

Figure 1

38 pages, 11152 KB  
Review
Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation
by Beata Kurc, Xymena Gross, Natalia Szymlet, Łukasz Rymaniak, Krystian Woźniak and Marita Pigłowska
Energies 2024, 17(19), 4768; https://doi.org/10.3390/en17194768 - 24 Sep 2024
Cited by 7 | Viewed by 8087
Abstract
The global shift towards sustainable energy solutions has prompted a reevaluation of traditional transportation methods. In this context, the replacement of electric cars with hydrogen-powered vehicles is emerging as a promising and transformative alternative. This publication explores the essence of this transition, highlighting [...] Read more.
The global shift towards sustainable energy solutions has prompted a reevaluation of traditional transportation methods. In this context, the replacement of electric cars with hydrogen-powered vehicles is emerging as a promising and transformative alternative. This publication explores the essence of this transition, highlighting the potential benefits and challenges associated with embracing hydrogen as a fuel source for automobiles. The purpose of this work is to provide a comprehensive comparison of electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs), analyzing their respective advantages and disadvantages. Additionally, this work will outline the significant changes occurring within the automotive industry as it transitions towards sustainable mobility solutions. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

15 pages, 7535 KB  
Article
Analysis of Failure Mechanism and Reliability Enhancement of Silicon Strain Gauge-Based Pressure Sensor for Automotive Applications
by Hyunchul Sagong, Seongcheol Jeong and Hojoon Lee
Sensors 2024, 24(3), 975; https://doi.org/10.3390/s24030975 - 2 Feb 2024
Cited by 4 | Viewed by 2461
Abstract
Hydrogen fuel cell vehicles have gained more attention as future automobiles due to their environmental benefits and extended driving ranges. Concurrently, the global hydrogen sensor market is also experiencing substantial growth. These sensors are integrated into vehicles to detect hydrogen leakage and concentration, [...] Read more.
Hydrogen fuel cell vehicles have gained more attention as future automobiles due to their environmental benefits and extended driving ranges. Concurrently, the global hydrogen sensor market is also experiencing substantial growth. These sensors are integrated into vehicles to detect hydrogen leakage and concentration, thereby ensuring the safety of hydrogen fuel cell vehicles. In particular, hydrogen pressure sensors, commonly installed on the manifold and regulator of vehicles, can measure hydrogen pressure and diagnose safety concerns caused by hydrogen leakage in advance. In this paper, we identify the vulnerable points of hydrogen pressure sensors when exposed to vehicle driving environments, investigate failure mechanisms, and provide process optimization techniques. Specifically, our reliability modeling verifies that the components of a printed circuit board (PCB) exposed to humid environments undergo corrosion due to ion migration, leading to the generation of extrinsic series or parallel resistances, which in turn cause fluctuations of output voltage. Through structural and elemental analysis, we pinpoint process-related factors that make components vulnerable to humidity, thereby suggesting recommendations for enhancing the manufacturing process. Based on this analysis in the development stage, we can proactively address and improve reliability and further safety-related issues for future automobiles, thus preventing real field issues. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

7 pages, 238 KB  
Opinion
Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions
by Cherng-Yuan Lin, Pei-Chi Wu and Hsuan Yang
Gases 2023, 3(4), 158-164; https://doi.org/10.3390/gases3040011 - 17 Nov 2023
Cited by 3 | Viewed by 3806
Abstract
The maritime industry is recognized as a major pollution source to the environment. The use of low- or zero-carbon marine alternative fuel is a promising measure to reduce emissions of greenhouse gases and toxic pollutants, leading to net-zero carbon emissions by 2050. Hydrogen [...] Read more.
The maritime industry is recognized as a major pollution source to the environment. The use of low- or zero-carbon marine alternative fuel is a promising measure to reduce emissions of greenhouse gases and toxic pollutants, leading to net-zero carbon emissions by 2050. Hydrogen (H2), fuel cells particularly proton exchange membrane fuel cell (PEMFC), and ammonia (NH3) are screened out to be the feasible marine gaseous alternative fuels. Green hydrogen can reduce the highest carbon emission, which might amount to 100% among those 5 types of hydrogen. The main hurdles to the development of H2 as a marine alternative fuel include its robust and energy-consuming cryogenic storage system, highly explosive characteristics, economic transportation issues, etc. It is anticipated that fossil fuel used for 35% of vehicles such as marine vessels, automobiles, or airplanes will be replaced with hydrogen fuel in Europe by 2040. Combustible NH3 can be either burned directly or blended with H2 or CH4 to form fuel mixtures. In addition, ammonia is an excellent H2 carrier to facilitate its production, storage, transportation, and usage. The replacement of promising alternative fuels can move the marine industry toward decarbonization emissions by 2050. Full article
11 pages, 5468 KB  
Article
Examining Real-Road Fuel Consumption Performance of Hydrogen-Fueled Series Hybrid Vehicles
by Kaname Naganuma and Yuhei Sakane
Energies 2023, 16(20), 7193; https://doi.org/10.3390/en16207193 - 22 Oct 2023
Cited by 3 | Viewed by 2699
Abstract
The use of hydrogen fuel produced from renewable energy sources is an effective way to reduce well-to-wheel CO2 emissions from automobiles. In this study, the performance of a hydrogen-powered series hybrid vehicle was compared with that of other powertrains, such as gasoline-powered [...] Read more.
The use of hydrogen fuel produced from renewable energy sources is an effective way to reduce well-to-wheel CO2 emissions from automobiles. In this study, the performance of a hydrogen-powered series hybrid vehicle was compared with that of other powertrains, such as gasoline-powered hybrid, fuel cell, and electric vehicles, in a simulation that could estimate CO2 emissions under real-world driving conditions. The average fuel consumption of the hydrogen-powered series hybrid vehicle exceeded that of the gasoline-powered series hybrid vehicle under all conditions and was better than that of the fuel cell vehicle under urban and winding conditions with frequent acceleration and deceleration. The driving range was longer than that of the battery-powered vehicle but approximately 60% of that of the gasoline-powered series hybrid. Regarding the life-cycle assessment of CO2 emissions, fuel cell and electric vehicles emitted more CO2 during the manufacturing process. Regarding fuel production, CO2 emissions from hydrogen and electric vehicles depend on the energy source. However, in the future, this problem can be solved by using carbon-free energy sources for fuel production. Therefore, hydrogen-powered series hybrid vehicles show a high potential to be environmentally friendly alternative fuel vehicles. Full article
(This article belongs to the Special Issue Electric, Hybrid and Fuel Cell Vehicles for Sustainable Mobility)
Show Figures

Figure 1

32 pages, 8059 KB  
Review
A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell
by Huu-Linh Nguyen, Sang-Min Lee and Sangseok Yu
Energies 2023, 16(12), 4772; https://doi.org/10.3390/en16124772 - 16 Jun 2023
Cited by 28 | Viewed by 8169
Abstract
Proton exchange membrane fuel cells (PEMFCs) are an alternative power source for automobiles that are capable of being cleaner and emission-free. As of yet, long-term durability is a core issue to be resolved for the mass production of hydrogen fuel cell vehicles that [...] Read more.
Proton exchange membrane fuel cells (PEMFCs) are an alternative power source for automobiles that are capable of being cleaner and emission-free. As of yet, long-term durability is a core issue to be resolved for the mass production of hydrogen fuel cell vehicles that requires varied research in the range from sustainable materials to the optimal operating strategy. The capacity to accurately estimate performance degradation is critical for developing reliable and durable PEMFCs. This review investigates various PEMFC performance degradation modeling techniques, such as model-based, data-driven, and hybrid models. The pros and cons of each approach are explored, as well as the challenges in adequately predicting performance degradation. Physics-based models are capable of simulating the physical and electrochemical processes which occur in fuel cell components. However, these models tend to be computationally demanding and can vary in terms of parameters between different studies. On the other hand, data-driven models provide rapid and accurate predictions based on historical data, but they may struggle to generalize effectively to new operating conditions or scenarios. Hybrid prediction approaches combine the strengths of both types of models, offering improved accuracy but also introducing increased computational complexity to the calculations. The review closes with recommendations for future research in this area, highlighting the need for more extensive and accurate prediction models to increase the reliability and durability of PEMFCs for fuel cell electric vehicles. Full article
(This article belongs to the Special Issue Research in Proton Exchange Membrane Fuel Cell)
Show Figures

Figure 1

21 pages, 12043 KB  
Article
Use of IDeS Method to Design an Innovative HYICE Sportscar
by Giulio Galiè, Michele Cappelli, Pietro Maffei, Matteo Robusti, Igor Vasileski and Leonardo Frizziero
Inventions 2023, 8(3), 75; https://doi.org/10.3390/inventions8030075 - 26 May 2023
Viewed by 1856
Abstract
In the contemporary automobile scene, environmental effect abatement is being increasingly sought; this demands a full rethinking of the entire system and entails more than just the reduction in exhaust pollutant emissions. Currently, the most popular approach is the electrification of automobiles, which [...] Read more.
In the contemporary automobile scene, environmental effect abatement is being increasingly sought; this demands a full rethinking of the entire system and entails more than just the reduction in exhaust pollutant emissions. Currently, the most popular approach is the electrification of automobiles, which significantly reduces pollution in major urban areas while simultaneously posing a new set of problems. The two types of zero-emission vehicles that are now being developed the most are hydrogen fuel cells and battery electric cars, but another option is the Hydrogen Internal Combustion Engine (HYICE) engine, which is highly advantageous in terms of pollutants, aside from Nitrogen Oxides (NOx), which can be considerably decreased. The purpose of this study is to develop a novel vehicle design that transports this type of technology into a sporting context while striving for considerable environmental benefits and integrating them into a society where the love of automobiles still has a strong following. The cutting-edge Industrial Design Structure (IDeS) methodology is used in this work, and a sample structure was created to demonstrate how the problems and technical limitations represented can be solved. The steps of the methodology are followed to shape the final product, with careful consideration given to the design of the styling component through the use of the Stylistic Design Engineering (SDE) method. With the ultimate goal of achieving sustainable driving pleasure, the study looks into whether recyclable materials can be used for the body and whether extremely light materials can be used for the chassis. Full article
(This article belongs to the Collection Feature Innovation Papers)
Show Figures

Figure 1

24 pages, 5640 KB  
Review
A Review on Mass Transfer in Multiscale Porous Media in Proton Exchange Membrane Fuel Cells: Mechanism, Modeling, and Parameter Identification
by Fan Yang, Xiaoming Xu, Yuehua Li, Dongfang Chen, Song Hu, Ziwen He and Yi Du
Energies 2023, 16(8), 3547; https://doi.org/10.3390/en16083547 - 19 Apr 2023
Cited by 19 | Viewed by 5409
Abstract
Proton exchange membrane fuel cells (PEMFC) are a promising clean power source that can be used in a variety of applications such as automobiles, stationary power plants, and portable power devices. The application problem of PEM fuel cells is a multiscale application process [...] Read more.
Proton exchange membrane fuel cells (PEMFC) are a promising clean power source that can be used in a variety of applications such as automobiles, stationary power plants, and portable power devices. The application problem of PEM fuel cells is a multiscale application process involving porous media, consisting of a series of mass, momentum, and energy transfers through gas channels, current transfers through membrane electrode assemblies, and electrochemical reactions at three-phase boundaries. In this paper, the recent research progress of PEMFC in multiscale porous-media mass transfer processes is reviewed, the research progress of fuel cell parameter identification is reviewed, and the future development direction is summarized and analyzed. The purpose of this paper is to provide a comprehensive overview of proton exchange membrane fuel cell mass transfer and parameter identification to reference researchers and engineers in the field of fuel cell systems. Full article
(This article belongs to the Special Issue Research and Development of Proton Exchange Membrane Fuel Cells)
Show Figures

Figure 1

18 pages, 9672 KB  
Article
Numerical Investigation on the Liquid Hydrogen Leakage and Protection Strategy
by Yangyiming Rong, Jianbin Peng, Jun Gao, Xiang Zhang, Xinkun Li, Xi Pan, Jianye Chen and Shunyi Chen
Processes 2023, 11(4), 1173; https://doi.org/10.3390/pr11041173 - 11 Apr 2023
Cited by 9 | Viewed by 3548
Abstract
One of China’s ambitious hydrogen strategies over the past few years has been to promote fuel cells. A number of hydrogen refueling stations (HRSs) are currently being built in China to refuel hydrogen-powered automobiles. In this context, it is crucial to assess the [...] Read more.
One of China’s ambitious hydrogen strategies over the past few years has been to promote fuel cells. A number of hydrogen refueling stations (HRSs) are currently being built in China to refuel hydrogen-powered automobiles. In this context, it is crucial to assess the dangers of hydrogen leaking in HRSs. The present work simulated the liquid hydrogen (LH2) leakage with the goal of undertaking an extensive consequence evaluation of the LH2 leakage on an LH2 refueling station (LHRS). Furthermore, the utilization of an air curtain to prevent the diffusion of the LH2 leakage is proposed and the defending effect is studied accordingly. The results reveal that the Richardson number effectively explained the variation of plume morphology. Furthermore, different facilities have great influence on the gas cloud diffusion trajectory with the consideration of different leakage directions. The air curtain shows satisfactory prevention of the diffusion of the hydrogen plume. Studies show that with the increase in air volume (equivalent to wind speed) and the narrowing of the air curtain width (other factors remain unchanged), the maximum flammable distance of hydrogen was shortened. Full article
(This article belongs to the Special Issue Liquid Hydrogen Production and Application)
Show Figures

Figure 1

22 pages, 2266 KB  
Article
Forecast of the Evolution Trend of Total Vehicle Sales and Power Structure of China under Different Scenarios
by Min Zhao, Yu Fang and Debao Dai
Sustainability 2023, 15(5), 3985; https://doi.org/10.3390/su15053985 - 22 Feb 2023
Cited by 12 | Viewed by 5725
Abstract
Accurate forecasting of the power structure and sales volume of the automobile industry is crucial for corporate decision making and national planning. Based on the auto sales data from 2011 to 2022 compiled from the official website of the China Association of Automobile [...] Read more.
Accurate forecasting of the power structure and sales volume of the automobile industry is crucial for corporate decision making and national planning. Based on the auto sales data from 2011 to 2022 compiled from the official website of the China Association of Automobile Manufacturers (CAAM), the total auto sales in China from 2023 to 2030 were firstly predicted using a combined GM (1,1), and quadratic exponential smoothing forecast model optimized by particle swarm algorithm. Subsequently, the vehicles were classified into the following four categories by power: traditional fuel vehicles, pure electric vehicles, plug-in hybrid vehicles, and hydrogen fuel cell vehicles. Then, based on vehicle sales data from 2015 to 2022, The Markovian model and the component data model based on hyperspherical transformation are used to predict the vehicle power structure from 2023 to 2030 under the natural evolution scenario and the consumer purchase intention dominant scenario, respectively. The results show that total vehicle sales in China are expected to reach 32.529 million units by 2030. Under the natural evolution scenario and the consumer purchase intention dominant scenario, China will achieve the planned target of 40% of the new car market in the sales of new energy vehicles in 2028 and 2026, respectively. By 2030, under the natural evolution scenario, the sales volume of traditional fuel vehicles in the new car market will be 54.83%, the proportion of pure electric vehicles will be 35.92%, the proportion of plug-in hybrid vehicles will be 9.23%, and the proportion of hydrogen fuel cell vehicles will be 0.02%. Under the consumer purchase intention dominant scenario, the proportions of the four power types are 36.51%, 48.11%, 15.28%, and 0.10%, respectively. Full article
Show Figures

Figure 1

23 pages, 6064 KB  
Article
Thermal Performance Optimization of Multiple Circuits Cooling System for Fuel Cell Vehicle
by Hao Huang, Hua Ding, Donghai Hu, Zhaoxu Cheng, Chengyun Qiu, Yuran Shen and Xiangwen Su
Sustainability 2023, 15(4), 3132; https://doi.org/10.3390/su15043132 - 8 Feb 2023
Cited by 4 | Viewed by 3503
Abstract
Due to its advantages of high efficiency, high power density at low temperature, fast start-up and zero emission, fuel cells are of great significance in automobile drive application. A car powered by electricity generated by an on-board fuel cell device is called a [...] Read more.
Due to its advantages of high efficiency, high power density at low temperature, fast start-up and zero emission, fuel cells are of great significance in automobile drive application. A car powered by electricity generated by an on-board fuel cell device is called a fuel cell vehicle (FCV). Fuel cells have a large demand for heat dissipation, and the layout space of automotive cooling modules is limited. Based on this situation, a parallel arrangement of multiple radiators is proposed. Using numerical simulation means to verify and optimize the designed multiple circuits cooling system (MCCS), from the original layout scheme based on the Taguchi method to establish the objective function of the reliability design of the MCCS, select A2/B1/C1/D2/E1/F1. In the scheme, the outlet temperature of the fuel cell is finally reduced to 75.8 °C. The cooling performance is improved, and the spatial layout of the individual cooling components can also be optimized. The whole vehicle experiment was carried out under four working conditions of full power idling charging, half power idling charging, constant speed of 40 km/h and constant speed of 80 km/h, to verify the cooling performance of the MCCS and to prove the effectiveness of the MCCS designed in this paper. Full article
Show Figures

Figure 1

29 pages, 1064 KB  
Review
Process Evaluation of Scandium Production and Its Environmental Impact
by Aratrika Ghosh, Soniya Dhiman, Anirudh Gupta and Rohan Jain
Environments 2023, 10(1), 8; https://doi.org/10.3390/environments10010008 - 28 Dec 2022
Cited by 21 | Viewed by 11729
Abstract
With the advancement of technology and a global shift towards clean energy, the need for rare earth metals is increasing. Scandium, a rare earth metal, has been extensively used over the decades in solid oxide fuel cells and aluminum–scandium alloys that have a [...] Read more.
With the advancement of technology and a global shift towards clean energy, the need for rare earth metals is increasing. Scandium, a rare earth metal, has been extensively used over the decades in solid oxide fuel cells and aluminum–scandium alloys that have a vast, evolving market in aerospace, automobiles and 3D printing. However, the market struggles to maintain the supply chain due to expensive production processes and the absence of uniform global distribution of primary sources. Therefore, identification of alternative sources and technological advancements for scandium recovery are needed. To this end, an effort has been made to provide a review of the advances in different technologies applied in scandium recovery from diverse sources. Emphasis has been given to the improvements and upgrades to technologies in terms of environmental impact and recovery efficacy. An attempt has been made to discuss and deliver a clear representation of the challenges associated with every source for scandium recovery and the major developments in solving them. The environmental impact of scandium recovery and recycling has also been discussed. Full article
(This article belongs to the Topic Sustainable Environmental Technologies)
Show Figures

Figure 1

Back to TopTop