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Abstract: Proton exchange membrane fuel cells (PEMFCs) are an alternative power source for
automobiles that are capable of being cleaner and emission-free. As of yet, long-term durability is a
core issue to be resolved for the mass production of hydrogen fuel cell vehicles that requires varied
research in the range from sustainable materials to the optimal operating strategy. The capacity to
accurately estimate performance degradation is critical for developing reliable and durable PEMFCs.
This review investigates various PEMFC performance degradation modeling techniques, such as
model-based, data-driven, and hybrid models. The pros and cons of each approach are explored, as
well as the challenges in adequately predicting performance degradation. Physics-based models are
capable of simulating the physical and electrochemical processes which occur in fuel cell components.
However, these models tend to be computationally demanding and can vary in terms of parameters
between different studies. On the other hand, data-driven models provide rapid and accurate
predictions based on historical data, but they may struggle to generalize effectively to new operating
conditions or scenarios. Hybrid prediction approaches combine the strengths of both types of
models, offering improved accuracy but also introducing increased computational complexity to the
calculations. The review closes with recommendations for future research in this area, highlighting
the need for more extensive and accurate prediction models to increase the reliability and durability
of PEMFCs for fuel cell electric vehicles.

Keywords: PEMFC; performance degradation; lifetime prediction; hydrogen fuel cell vehicle

1. Introduction
1.1. Generality

The rising demand for worldwide energy and the negative impact of using fossil fuels
on the environment has prompted the development of renewable and environmentally
friendly energy solutions. One potential solution is the hydrogen economy, which gen-
erates, stores, and converts hydrogen from renewable sources into electricity [1]. Fuel
cell vehicles (FCVs) are crucial for achieving low-carbon transportation in the hydrogen
economy, and utilizing renewable sources to produce hydrogen is expected to significantly
reduce greenhouse gas emissions [2]. Proton exchange membrane fuel cells (PEMFCs),
with their low emissions, high efficiency, and low operating temperature, have recently
gained popularity as a potential power source for the automotive sector. Although FCVs
have been running the road recently, the durability issue associated with performance
degrading, which refers to a permanent drop in voltage or power during the long-term
operation of PEMFCs, is still the main challenge. It must be solved to achieve worldwide
commercialization [3].
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PEMFCs integrated into vehicles, in contrast to stationary power plant sources, must
meet more strict durability limitations, as fuel cells’ durability may worsen under extreme
operating conditions such as sub-zero temperatures, dynamic load variations, and vibra-
tions and shocks. Even though fuel cell deterioration is inevitable over prolonged use,
the degradation gradient must be enhanced to make hydrogen fuel cell cars economically
feasible [4].

As a system analysis tool, the performance degradation model is essential for health
assessment and prognostics. Several tools have been introduced which may be grouped
into three main groups: physics-based models, data-driven models, and hybrid models.
Physics-based models primarily incorporate fundamental physical laws to explain the
degradation process and gain insights into the main causes of failure. On the other hand,
data-driven models employ historically collected data to create a model that can describe
or predict the degradation process of the system under consideration. The hybrid model
integrates both the physical-based and data-driven approaches, leveraging the strengths of
both methodologies.

Until now, there have been numerous reviews conducted on the advancements of
modeling PEMFC performance [5], degradation indexes [6], physics-based and data-driven
models for real-time control [7], data-driven models for fault diagnosis [8], and degradation
modeling and lifetime prediction [9,10]. Additionally, some reviews have explored the
degradation of specific components such as gas diffusion layers [11], proton exchange
membranes [12,13], catalyst layers [14], and membrane electrode assembly [15]. However,
there have been relatively few reviews that have specifically addressed degradation model-
ing in automotive applications. Therefore, this paper provides a comprehensive review of
the current status and future development, as well as the challenges and perspectives, of
performance degradation modeling of automotive PEMFC systems.

1.2. PEMFC System in Hydrogen Fuel Cell Vehicle

A hydrogen fuel cell vehicle is an electric vehicle that usually produces electricity from
PEMFCs. In a pure fuel cell powertrain, the fuel cell is directly connected to an electric
motor, which drives the vehicle’s wheels. The fuel cell system is paired with a battery or
supercapacitor in a hybrid fuel cell powertrain. At high demand, such as acceleration or
hill climbing, the energy storage system supplies extra power to the electric motor. While
not in use, such as when cruising or braking, the fuel cell system recharges the energy
storage system. Both pure and hybrid fuel cell powertrains offer benefits and drawbacks.
Pure fuel cell powertrains are efficient and emit no pollutants, but they are costly and have
a limited operating range. Hybrid fuel cell powertrains deliver greater power and range
but are more complicated and may need more maintenance.

The PEMFC system, the heart of FCV, comprises a fuel cell stack and auxiliary systems,
including fuel supply, air supply, and thermal management systems. The fuel supply
system feeds the hydrogen to the anode. The air supply system provides compressed
air to the cathode. A cooling system removes the produced heat and releases it into the
environment to maintain the desired temperature.

As shown in Figure 1, a fuel cell stack consists of many individual fuel cells connected
in series. The heart of each fuel cell is membrane electrode assembly (MEA). In the MEA, a
polymer electrolyte membrane (PEM) separates the anode and cathode sides of the fuel
cell. A catalyst and gas diffusion layers are attached on each membrane side. The catalyst
layer comprises platinum nanoparticles, which aid the electrochemical processes which
take place in the fuel cell. The GDL aids in uniform fuel and air distribution throughout
the catalyst layer. Gaskets are utilized to establish a seal around the MEA and prevent gas
leakage when assembling individual fuel cells into a fuel cell stack. Bipolar plates are also
used to sandwich the individual fuel cells, enabling gaseous fuel and air to pass through
the stack and transfer electrons between adjacent cells.
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Figure 1. Schematic of a PEM fuel cell used in hydrogen fuel cell vehicles [16] (reproduced with
permission from reference [16], Elsevier Ltd., 2021).

1.3. Performance Degradation of the PEMFC System

As mentioned earlier, fuel cell degradation during long-term operation is unavoidable.
Researchers have identified several factors which contribute to fuel cell degradation, in-
cluding platinum-particle dissolution and sintering, carbon-support corrosion, membrane
thinning, and bipolar plate corrosion [17]. Understanding the causes of PEMFC system
failures allows end users to evaluate the system performance and extend its useful life. The
degradation phenomenon may be divided into three categories: mechanical degradation,
thermal degradation, and chemical/electrochemical degradation.

• Mechanical degradation: Fuel cells often fail, and this is attributable to material
defects and poor structural design and manufacture. Material flaws may generate
non-uniform mechanical stresses, fractures, and premature failure. Material flaws,
improper structural design, and manufacturing errors produce non-uniform mechan-
ical stresses and fractures. Operating conditions may affect fuel cell components’
physical qualities. Membranes, catalyst layers, etc., shrink or swell depending on the
temperature. The non-uniform pressure distribution on components resulting from the
cathode-anode pressure difference causes mechanical damage. High and non-uniform
mechanical stresses may perforate or shred interfaces between components during
cell or stack assembly [9,17].

• Thermal degradation: The fuel cell operating outside the temperature range induces
structural changes [18]. PEMFCs work well at 60–80 ◦C. The glass transition of
PFSA polymers causes the severe destruction of conventional Nafion-type membranes
around 80–120 ◦C [19]. One requirement for PEMFCs in automotive applications is
the capacity to start at subfreezing temperatures. Notably, in automotive applications,
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the Department of Energy requires PEMFC stacks and systems to start up and operate
at −20 ◦C to 50% rated power in 30 s using less than 5 MJ of energy [20]. However, the
formation and melting of ice during long-term operation at subfreezing temperatures
could delaminate the MEA and gas diffusion layers [17].

• Chemical/electrochemical degradation: This is mainly caused by the material’s natural
aging, including Pt dissolution and carbon support corrosion/oxidation in the catalyst
layers (CLs) and gas diffusion layers (GDL), radial attack in the membrane, and bipolar
plate (BBP) corrosion [9]. In addition, contaminants in the fuel and oxidation sources,
such as CO, H2S, NH3, etc., may induce catalyst toxicity and affect the catalytic activity,
diffusion, and hydrophobic properties [17].

1.4. End-of-Life Definition/Criterion

The end-of-life (EoL) criteria for fuel cells are not consistently used in the literature.
There are no EoL criteria that are widely followed, particularly for automobile applications.
The most used definition for EoL was created by the US Department of Energy (DOE),
which targets 10% voltage degradation [9,21]. This criterion works well for static conditions
of current but not load changes [21]. Fuel cells in automobiles provide drive cycle power.
In such cases, using the power to define the EoL appears to be better. EoL occurs when
the fuel cell cannot provide the power that is required [22]. An EoL threshold could be
set. However, it would rely strongly on the system designer [21]. The Fuel Cell Testing
and Standards Network established another EoL criterion (FCTESTNEST), a pre-defined
minimum value of the fuel cell voltage. If the voltage drops below the threshold value of
0.3 V, the durability test stops [17].

1.5. Classification of Degradation Modeling Methods

A performance degradation model forecasts the PEMFC performance deterioration
during operation. Modeling the performance degradation of PEMFCs is necessary to predict
their state of health (SOH) and remaining useful life (RUL). Degradation modeling methods
can be classified into two main approaches: model-based and data-driven methods, as seen
in Figure 2. In addition, the hybrid approach combines the model-based and data-driven
methods based on their advanced features.
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• The model-based method predicts the aging process using mathematical equations.
This method does not need a large amount of data. However, it may be computation-
ally expensive, and model construction may be tricky.

• The data-driven method uses collected data to understand the system’s behavior. It
detects non-linearities without a degradation model. However, it demands a large
amount of data to perform prognostics.

• The hybrid method enhances model learning and improves model uncertainties.
However, it may be challenging to design and computationally costly.

This paper contributes to a detailed and critical assessment of the performance degra-
dation modeling methodologies of PEMFC systems, focusing on automotive applications.
The project will first focus on PEMFC degradation modeling approaches. Then, the chal-
lenges and prospects will be discussed. This review paper aims to be a helpful resource for
researchers and engineers with regards to fuel cell technology for automotive applications.

2. Performance Degradation Modeling of PEMFC
2.1. Model-Based Approach

As noted earlier, the model-based approach does not need much data. However, it
is necessary to have an in-depth knowledge of the processes associated with the aging
of PEMFCs. This might be a substantial drawback, as PEMFC aging mechanisms are not
yet completely understood [10]. Model-based approaches typically rely on the system’s
physical equations, which can take several forms, including mechanistic degradation,
empirical, and semi-empirical models. The mechanistic degradation model describes the
degradation mechanisms using physical fuel cell equations. The empirical models use
just experimental data and statistical analysis. Semi-empirical models combine physical
understanding with empirical data.

2.1.1. Mechanistic Degradation Model

a. Membrane Degradation Mechanism Model

Membrane failure may lead to hydrogen leakage and the ultimate breakdown of
the whole cell. Chemical and mechanical processes are the two primary mechanisms of
membrane degradation. Futter et al. [23] created a model based on physics that describes
the membrane’s chemical degradation. This model incorporates the generation of and
reduction in hydrogen peroxide, the redox cycle of iron impurities in the ionomer phase,
radical formation resulting from Fenton’s chemistry, and radical attack on the polymer
structure. Ferreira et al. [24] developed a submodel for membrane chemical degradation
that concentrates on the attack mechanisms of •OH and •OOH. This submodel was then
added to a computational fluid dynamics (CFD) code to estimate the overall membrane
degradation and uneven distribution of degradation over the MEA surface. Singh et al. [25]
developed a transient chemical degradation model to investigate the effect of membrane
degradation on PEMFC performance. In this study, the model explains membrane degra-
dation in two stages. The first stage includes the indirect formation of hydroxyl radicals. In
contrast, the second stage involves a four-step attack of the hydroxyl radical at the terminal
ether bond on the side chain, the ether bond close to the main chain, chain scission at
the side chain, and chain unzipping. Hasan et al. [26] proposed a numerical technique
for predicting the lifespan and degradation of reinforced membranes in PEMFCs, concen-
trating on mechanical fatigue failure as a typical degradation process that might lead to
PEM failure. Hydration-induced mechanical forces, which occur cyclically, initiate and
intensify membrane cracking. Zhou et al. [27] recently developed a computational model
to simulate gas penetration across blistered PFSA membranes, taking into account the
material characteristics and the solution-diffusion process. The Gurson damage model
is also included in the model to account for the increase in gas permeability caused by
mechanical deterioration. The model was evaluated using blister and gas permeation
testing data and increases in gas permeability were predicted with high accuracy. The re-
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searchers also investigated the effect of non-uniform deformation and mechanical damage
on gas permeability.

b. Catalyst layer degradation mechanism model

The loss of electrochemical active surface area (ECSA) due to catalyst degradation
is a significant factor which contributes to the performance degradation of PEMFCs.
Zhang and Pisu [28] created a catalyst degradation model based on Darling and Mey-
ers’ platinum dissolution kinetic models [29] to assess fuel cell damage. The effects of
the operating conditions on the electrochemical surface area (ECSA) loss rate were also
investigated. The model evolved from investigating the underlying principle of catalyst
degradation and assessing the interaction behavior of multi-group catalyst particles and
particle size distribution. The model was then applied using an unscented Kalman filter
(UKF) technique to evaluate the ECSA loss during the fuel cell operation. Li et al. [30]
suggested a Pt degradation model in the cathode catalyst layer (CCL) based on Holby
and Morgan’s thermo-kinetic model of Pt degradation [31]. The model includes two Pt
degradation mechanisms: Ostwald ripening on carbon support and Pt dissolution-re-
precipitation through the ionomer phase. With the capacity to forecast the impacts of
temperature and humidity on ECSA loss, the proposed model is suitable for integration
into a comprehensive fuel cell model that includes electrochemistry, water and heat man-
agement, and durability. Polverino and Pianese [32] developed a model that describes the
degradation of the electrochemical active surface area (ECSA) due to catalyst dissolution
and Ostwald ripening mechanisms in the CCLs of PEMFCs. This proposed model was
then employed to estimate the voltage degradation rate of PEMFCs. Koltsiva et al. [33]
presented a mathematical model that considers various mechanisms that are responsible for
the degradation of the electrochemical active surface area (ECSA) in the catalyst layers of
PEMFCs. These mechanisms include platinum nanoparticles’ electrochemical dissolution,
particle growth due to Ostwald ripening, the migration of nanoparticles along the carbon
support, the coalescence of fine particles, and the diffusion of platinum ions in the ionomer.
It is the first time that various degradation processes have been integrated into a single
mathematical degradation model. Jahnke et al. [34] created a 2D Pt degradation model
to evaluate the aging of the cathode catalyst layer. The aging phenomena of Pt particles,
such as oxidation, dissolution, Ostwald ripening, and band formation near the membrane,
were included in this model. The effects of the steady-state and load-cycling conditions on
the degradation were investigated. The results showed that degradation was more severe
under load cycling conditions. Jahromi et al. [35] suggested a novel method for studying
the deterioration of the catalyst layer in a PEM fuel cell under cyclic load using Ansys
Fluent software. The model calculates the degradation of the ECSA, the development of Pt
particles, the creation of agglomerates by Ostwald ripening, and the loss of Pt mass loading.
Pt degradation in a PEMFC, including Pt mass loss and Ostwald ripening mechanisms, was
also modeled by Zheng et al. [36]. Currently, the theorical models which assess the local
transport resistance associated with the permeation and diffusion of oxygen molecules
in the ionomer film covering the Pt surface, which is considered as a crucial issue in the
current-generation efficiency of Pt in ultralow-Pt CL, were provided by Tang et al. [37]. The
oxygen local transport resistance decreases when lowering Pt loading, owing to that the
thinned CCL amplifies the electrochemical contribution of the PEM|CCL interface, which
results in an increased active area and consequent higher mass activity of Pt [38]. Although
the above models could predict ECSA degradation and the voltage degradation of PEMFCs
accurately, it is essential to note that ECSA loss is not the only factor that contributes to fuel
cell degradation. Other aging parameters should also be considered to fully capture the
degradation phenomena in a fuel cell stack.

c. GDL degradation mechanism model

As an essential part of PEMFCs, the gas diffusion layer (GDL) supports the cell me-
chanically and affects the mass, heat, and electron transfer. The primary cause of GDL
degradation is the loss of hydrophobicity, which is attributable to polytetrafluoroethylene



Energies 2023, 16, 4772 7 of 32

(PTFE) degradation, a common material utilized in the fabrication of GDLs that helps to
give hydrophobicity to the GDL surface [39]. In addition, the content of PTFE affects the
gas permeability of the GDL [40]. Seidenberger et al. [41] used a three-dimensional Monte
Carlo model to investigate the influence of polytetrafluoroethylene (PTFE) degradation
on the behavior of water accumulation within the gas diffusion layer (GDL) of a fuel cell.
The results revealed that, when the PTFE covering was decreased, the water content inside
the GDL increased, producing larger water clusters. This is because a reduction in PTFE
coverage leads to decreased hydrophobicity on the GDL surface, allowing more water to
accumulate in the GDL. Furthermore, when the PTFE coverage was lowered to a value of
55 percent, substantial water clusters developed, covering the whole surface of the GDL.
This can significantly accelerate the aging of the GDL, which can negatively impact the
performance and lifespan of the fuel cell. Pauchet et al. [42] provided a computational tech-
nique to examine the impacts of hydrophobicity loss on the GDL gas diffusion coefficient.
This approach involves combining pore network modeling and performance modeling.
The pore network model was used to determine the gas diffusion coefficient. The results
obtained by the computational model showed good agreement with the experiment.

d. Summary of mechanistic degradation models

Various studies have reported the development of mechanistic degradation models.
The benefits of employing mechanistic degradation models include the requirement of
less training data and their ability to generalize well. As the aging time changes, users
can observe the changes in both the internal state and crucial parameters of PEMFCs,
simultaneously. However, the major drawback is the complexity involved in constructing
an accurate mechanistic degradation model, as it requires a profound understanding of
PEMFC degradation mechanisms. Certain degradation mechanisms in PEMFCs remain
ambiguous, and certain model parameters must be determined solely through experimental
data or expert knowledge. All of these factors contribute to the challenge of establishing a
mechanistic degradation model for PEMFCs.

2.1.2. Empirical Model

a. Model development

The empirical degradation model for PEMFCs is a model-based method that uses
linear or exponential equations to describe the degradation of PEMFCs based on historical
data. Pei et al. [43] presented an empirical equation for fuel cell lifetime relating to load-
changing cycles, start–stop cycles, idling time, high power load conditions, and the air
pollution factor. The model equation is as follows:

Tf =
∆P

kp
(

P′1n1 + P′2n2 + P′3t1 + P′4t2
) (1)

where ∆P stands for the limited decreased value of the fuel cell performance from beginning
to the lifetime end according to its definition; kp is the accelerating coefficient; P′1, P′2, P′3,
and P′4 are performance deterioration rates resulting from large-range load change cycling,
start–stop cycling, and idle condition and high power load condition separately, measured
in laboratory; n1, n2, t1, and t2 are load changing cycle times, start–stop cycle times, idle
time and high power load time per hour, gained from the vehicular driving cycle.

The proposed empirical model was utilized to investigate the impact of various
loading modes on the RUL of a fuel cell bus system. The results showed that dynamic
load and startup/shutdown modes significantly contributed to PEMFC degradation and
performance loss, accounting for 56.5% and 33%, respectively. In contrast, high power and
idling load modes had smaller contributions of 5.8% and 4.7%, respectively. This suggests
that dynamic load and startup/shutdown modes are crucial to performance losses. Chen
et al. [44] employed the empirical model proposed by Pei et al. [43] for rapidly assessing
the lifespan of PEMFCs in vehicles. The researchers expanded upon this method to create a
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residual life prediction technique that improves the accuracy of fuel cell lifespan estimation
and estimates the remaining lifespan.

Jouin et al. [45] developed a particle filter (PF)-based prognostics approach for PEM-
FCs. Three empirical aging models were proposed: linear, exponential, and logarithmic.
These models, using PEMFC experimental data, are subjected to static and dynamic loads.
According to the authors, the logarithmic model (represented by Equation (2)) provided
the most accurate predictions. Despite promising results, the models were too simplistic
to account for disturbances encountered during aging. In [46], Jouin et al. further im-
proved their previous works, published in [45], by introducing a model for coefficient a,
which evolves with time. The models for a, b, and voltage recovery models are shown in
Equations (3)–(5). They used these models in a joint particle filter framework, leading to
better estimations of power behavior during stack aging. Compared to the prior model, the
improved model reflected the power’s behavior more accurately during stack aging.

P(t) = −a·ln(t)− b·t + c (2)

where P (t) is stack power evolution through time; a and c are model coefficients; b is a
coefficient driving the speed of degradation.

a(t) = a1 exp(a2·t) + a3 exp(a4·t) (3)

b(t) = b1 exp(b2·t) + b3 (4)

Rec(t) = r1 exp(r2·t) + r3 exp(r4·t) (5)

Chen et al. [47] also proposed three empirical voltage degradation models, including
line, exponential, and logarithmic models, combined with the unscented Kalman filter
(UKF) to accurately estimate the degradation of PEMFCs. The authors validated and
compared the accuracy of three models with the data of postal fuel cell electric vehicles
under actual road conditions. According to the results, the logarithmic model, represented
by Equation (6), provides more accurate deterioration estimations than the linear and
exponential models.

xk = xk−1 − α− βln
(

k
k− 1

)
+ Qk−1 (6)

where xk represents the PEMFC voltage at the sampling step k, the empirical coefficient
α is related to the voltage degradation rate of PEMFC under constant load and operating
conditions, and the empirical coefficient β is related to the voltage degradation rate of the
PEMFC under variable load and special operating conditions.

Wang et al. [48] analyzed five-cell stack degradation as a stochastic process using state
space equations (Equations (7) and (8)). Stochastic fusion filtering from various sensors can
estimate the degradation status. An inverse Gaussian function was used to calculate the
RUL distribution. The estimated results suggest that stochastic fusion filtering improves
prognostics accuracy in comparison to single-sensor filtering.

Xk+1 = Xk + ηT + σBk (7)

Yk = HXk + vk (8)

where Xk is a five-cell degradation dataset at time tk, Yk is the sensor’s value at time tk.
T = tk − tk−1, {Xk} =

{
x1

k ; x2
k ; x3

k ; x4
k ; x5

k
}

, x1
k is the actual degradation state of the first

cell at time tk. {Yk} =
{

y1
k ; y2

k ; y3
k ; y4

k ; y5
k
}

, yi
k (i = 1–5) is the monitoring data about the cell

i at time tk, η = {η1, η2, η3, η4, η5} is a drift coefficient vector-, σ = {σ1, σ2, σ3, σ4, σ5}
is the diffusion coefficient to restrict Bk, Bk =

{
B1

k , B2
k , B3

k , B4
k , B5

k
}

represents the ran-
dom part driven by Brownain motion, vk =

{
v1

k , v2
k , v3

k , v4
k , v5

k
}

, and H is a matrix of five
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rows and six columns. The superscript Arabic numerals represent the parameter of the
nth component.

b. Summary of empirical degradation models

Various studies have documented the development of the degradation models for
PEMFCs that are listed in this review. The majority of the empirical models aim to create a
straightforward mathematical representation of the degradation rate of voltage or power as
a function of time. These models rely on curve fitting techniques to determine the empirical
coefficients using experimental data. Empirical degradation models offer benefits such as
simplicity, low computational requirements, and ease of implementation. However, when
compared to mechanistic degradation models, they suffer from lower precision and limited
applicability. Furthermore, empirical degradation models necessitate a larger amount of
experimental data to identify the model parameters.

2.1.3. Semi-Empirical Model

a. Model development

A semi-empirical PEMFC performance degradation model using a combination of a
physics-based performance model and degradation formulas derived from experimental
data using curve-fitting techniques is described below. The most-used modeling framework
for prediction is electrochemical empirical models, which are computationally inexpensive,
as shown in Equation (9) [11]. The potential calculated in Equation (9) must be multiplied
by the number of cells to extend the model to the stack level.

V = Erev − ηact − ηohm − ηcon (9)

where Erev is the Nernst potential; ηact, ηohm, and ηcon, respectively, represent the activation
overvoltage, ohmic overvoltage, and concentration overvoltage.

Jouin et al. [49] developed an aging model incorporated with the PF framework to
assess PEMFC health. Based on the fuel cell voltage equation in [50], the aging factors were
chosen and substituted with time-dependent expressions. The global expression of the
stack power degradation is shown in Equation (10). The initial parameters were determined
by fitting a model to experimental polarization curve data at t = 0 using the least squares
approach. Power degradation data determined the aging parameters. In this model, most
time-dependent aging parameters were linear, while others were logarithmic.

P(I, t) = nI(t)[Erev − RT
2αa F ln

 iloss,0eblosst+
I(t)

A0ebA1t+A1ebA2t

i0,a

−
RT

4αa F ln

 iloss,0eblosst+
I(t)

A0ebA1t+A1ebA2t

i0,c

− I(t)
A0ebA1t+A1ebA2t

(
Rion,0·ebiont + R0 + bRt

)
− (bc,j+

bBt)ln

1−
I(t)

A0ebA1t+A1ebA2t

4F
RT

(
DO2,j+bDt

LGDL

)
PO2

]− p

(10)

where:

Erev is reversible cell voltage.
R is gas constant equal to 8:3145 J·mol−1·K−1.
n is cell number.
T is stack temperature.
αa and αc are the charge transfer coefficients at the anode and at the cathode.
iloss,o represents the initial internal currents within the stack.
bloss is the aging rate parameter of iloss,o.
i0a and i0c are the exchange current densities at each electrode.
Rion,o is the initial ionic resistances.
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bion is the aging rate parameter of Rion,o.
Ro represents for both electronic and contact resistances.
bR is aging rate parameter of Ro.
Bc is an empirical parameter allowing taking into account the effect of water and gas
accumulations leading to non-uniform current densities on the electrode.
DO2 is the diffusivity of oxygen.
bD is aging rate parameter of DO2.
I(t) is the time-dependent current.
A(t) is the active area of the electrode that decreases with the aging given by an expo-
nential form.

A(t) = Ao exp(bA1t) + A1 exp(bA2t)

Zhou et al. [51] proposed a similar degradation model based on a multi-physics
aging model using the prognostic framework (PF) and an extrapolation approach. The
multi-physics aging model includes activation, ohmic, and concentration losses. The aging
dataset is split into learning and prediction phases. During learning, the PF framework
studies the degradation and updates the aging parameters. In the prediction phase, curve-
fitting functions that match the deterioration patterns of the learned aging parameters are
utilized to estimate future values. This approach yields good results, although operational
conditions affect its accuracy. A prediction method based on fitting curves requires changes
in the proper functions when the operational conditions change.

Bressel et al. [52] proposed a simpler aging model than the model proposed by Jouin
et al. [49]. The model uses a similar general polarization curve equation, but only two pa-
rameters (ohmic resistance and limiting current) are considered to change over time. The
change in the resistance and the current limit are linked with the single parameter α, as
expressed in Equation (11).

E = Erev − Ro(1 + α(t))i− ATln
(

i
io

)
− BTln

(
1− i

iL,o(1− α(t))

)
(11)

where α(t) = βt and β is a constant.

Erev is reversible cell voltage.
i is operating current density.
T is fuel cell temperature.
Ro is initial total resistances of fuel cell.
A is the Tafel constant.
B is a concentration constant.
iL,o is initial limiting current density.
io is exchange current density.

Similarly, Yue at al. [53] established a unique time-varying variable α(t) to reflect the
state of health of the fuel cell in dynamic operation. In this model, α(t) was chosen to
describe the deviation in the equivalent resistance (Req) and exchange current (io), as shown
in Equation (12).

E = Erev − Req,o(1 + α(t))i− ATln
(

i
io,o(1− α(t))

)
− BTln

(
1− i

iL,o

)
(12)

where Req,o and io,o are initial equivalent resistance and exchange current density.
Wang et al. [54] proposed the state space model to describe the degradation process

of PEMFCs as expressed in Equation (13). In this model, a polarization resistance, which
represents the sum of all of the polarization losses in fuel cells, was introduced.

V = Erev − R∗o (1 + α(t))i− ATln
(

i
io

)
− BTln

(
1− i

iL,o

)
+ εt (13)
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where α(t) = αt−1 + ωt−1 is the degradation degree of the polarization resistance, R*. The
ω and ε are the process and observation noises.

Erev is reversible cell voltage.
i is operating current density.
T is fuel cell temperature.
R*o is initial a polarization resistance.
A is the Tafel constant.
B is a concentration constant
iL,o is initial limiting current density.
io is exchange current density.

Bressel et al. [55] progressed the previous work [52] by including an uncertainty
quantification in the model for PEFC RUL prediction under a variable load. The presented
model can perform prognostics for PEFCs running a micro-CHP load profile without
degradation speed information. For automotive applications, the load profile is far more
dynamic and requires a faster convergence time, for which the model is not well adapted.
Zhang et al. [56] presented a quasi-static model based on the PF method to predict the
degradation of PEMFCs. The degradation of the open circuit voltage E and the internal
resistance R were coupled by one variable γ(t), as shown in Equation (14). The proposed
method shows promising results, but it should be noted that the model only considers one
degradation coefficient, which may not fully capture all performance losses.

V = Erev,o(1− γ(t))− Ro(1− γ(t))− A·ln
(

i
io

)
−m1 exp(m2i) (14)

where:

Erev is reversible cell voltage.
R is internal resistance.
A is Tafel constant.
i is operating current density.
io is exchange current density.
m1 and m2 are the mass-transfer constants.

L. Mao et al. [57] proposed a PF-based degradation model to estimate PEMFC internal
behavior evolution and forecast fuel cell performance using polarization curves at different
times. In this model, the anode activation voltage loss was ignored as it is negligible
compared to cathode overvoltage. The parameters in Equation (15) were derived by
matching the polarization curves at different times. The results from this study suggest that
fuel cell performance can be reliably predicted in both steady-state and dynamic conditions.

V(i, t) = Erev −
RT
2αF

ln
(

i
a1 − a2t

)
− RT

2αF
ln
(

b1 + b2t
a1 − a2t

)
− i(c1 + c2t)− d1ed2t exp

(
i·e1ee2t) (15)

where:

Erev is reversible cell voltage.
T is fuel cell temperature.
α is the charge transfer coefficient.
R is gas constant equal to 8:3145 J·mol−1·K−1.
i is operating current density.

a1, b1, and c1 are the initial values for ioc (exchange current density at cathode), in
the internal current density and Rmem (membrane resistance), respectively; a2, b2, and c2
represent the PEM fuel cell degradation rate due to the activation loss, fuel crossover loss,
and Ohmic loss; d1 and e1 control the amplitude of the mass transport loss, while d2 and e2
express the PEM fuel cell degradation rate due to mass transport loss during the operation.

Recently, Wang et al. [58] developed a semi-empirical degradation model which
incorporates degradation factors fitted with experimental data into the fuel cell performance
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formula presented in Equation (16). The model has been validated by showing that the
predicted results were in good agreement with experimental data. However, the model
does not consider the internal water transport process and internal resistance changes
during dynamic load changes, which may affect its accuracy. Nonetheless, despite these
limitations, the model’s ability to match experimental data implies that it may still have
utility in specific applications. Further studies might be necessary to improve the model’s
accuracy by incorporating these factors.

V(i, t) = Erev − RT
2αa F ln

 i+0.5ileak,0 exp(bleakt)

aECSA,0mPt,aia,re f θT,a

(
cH2

cH2,re f

)0.5

−
RT

4αc F ln

 i+ileak,0 exp(bleakt)

aECSA,0 exp(bECSAt)mPt,cic,re f θT,a

(
cO2

cO2,re f

)
− iRion,0.ebiont − Kc

RT
4αc F ln

1− i
4F
RT

(
DO2,0+bDt

LGDL

)
PO2

 (16)

where:

Erev is reversible cell voltage.
R is gas constant equal to 8:3145 J·mol−1·K−1.
n is cell number.
T is stack temperature.
αa and αc are the charge transfer coefficients at the anode and at the cathode.
i is operating current density.
ileak,o is initial leaking current density.
bleak is aging rate parameter of ileak,o.
ia,ref and ic,ref are referent current density at anode and cathode.
Rion,o is the initial ionic resistance.
bion is the aging rate parameter of Rion,o.
DO2 is the diffusivity of oxygen.
bD is aging rate parameter of DO2.
Kc is the concentration loss coefficient.
aECSA,o is the initial electrochemical active surface area of catalyst layer.
bECSA is aging rate parameter of aECSA,o.
mpt is Pt loading.

b. Summary of semi-empirical degradation models

Various studies have reported the development of semi-empirical degradation
models for PEMFCs. Taking into account the strengths and weaknesses of mechanism
degradation models and empirical degradation models, the semi-empirical models offer
the advantage of easy implementation and online performance, making them suitable
for on-line applications. They not only ensure the accuracy of the degradation model
but also have a low computational burden. Additionally, these models can be utilized to
investigate the physical phenomena occurring within a fuel cell. However, it is important
to note that the presented models are limited to a quasi-static behavior, which may not
be sufficient to fully replicate the dynamic behavior of a fuel cell that is integrated into
transportation applications.

The semi-empirical degradation models were formulated based on experimental data,
with certain model parameters being determined according to the degradation mechanism
of PEMFCs. Parameter determination is an optimization problem that involves finding the
best combination of parameters so that the model can accurately describe the collected data.
To solve this problem, heuristic search methods such as genetic algorithms (GA), differential
evolution (DE), and particle swarm optimization (PSO) have been applied. These methods
have different variants and have been used for parameter estimation. For more information
about these parameter estimation problems, you can refer to the comprehensive review
conducted by M. Ohenoja et al. [59].
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2.1.4. Summary

The model-based method uses mathematical equations to understand and make
predictions about the PEMFC aging process. This approach has several advantages and
disadvantages, which will be outlined below:

Advantages of the model-based approach:

• Models can easily be implemented and make predictions about the future behavior of
PEMFC systems. Simulating the model can be used to explore various scenarios and
make informed decisions.

• Models can provide valuable insights into the relationship and interactions between
different components of the PEMFC system.

• Models can be used to optimize the PEMFC system by identifying the optimal operat-
ing conditions.

• Models do not require a large amount of data. Thus, they can be used to explore
different scenarios and hypotheses in online environments before implementing them
in real world situations.

• Disadvantages of the model-based approach:
• Models require a good understanding of the behavior and degradation mechanisms

of fuel cell systems and their components.
• Creating an accurate and reliable model can be challenging and time-consuming.
• Models need to be validated and verified against experiment data to ensure their

accuracy and reliability.
• Models may be limited to the specific conditions under which they were developed.

Extrapolating model predictions to different conditions may lead to inaccurate results.

2.2. Data-Driven Approach

Instead of depending on physical equations and fuel cell aging mechanisms, the
data-driven approach analyzes aging data sets to model and forecast future outcomes.
This approach can be useful when the physics-based models are poorly established or too
complex to implement. In this method, a black-box model of aging behavior is usually
built using algorithms trained on extensive experimental data [60]. Generally, artificial
intelligence (AI), statistical, and signal-processing models are the three main types of
data-driven models. This section focuses mainly on AI models since statistical and signal-
processing models have limited usage in addressing PEMFC degradation. The applications
of statistical and signal-processing methods for PEMFC fault diagnosis are comprehensively
reviewed by Zheng et al. in [8]. AI models can be divided into four groups: artificial
neural network (ANN), fuzzy logic (PL), support vector machine (SVM), and Gaussian
process (GP).

2.2.1. Artificial Neural Network (ANN) Model

A neural network model learns from given inputs to produce the desired outcome.
After learning from historical data, the network model can be used to predict system
statuses [61]. The performance of a neural network model depends on several factors,
including the topology of the network and the selected input parameters [7]. There are
two types of neural network topologies: feedforward (Figure 3a) and recurrent (Figure 3b).
The feedforward neural network (FNN) is one of the most basic artificial neural networks.
As shown in Figure 3a, all signals only go forward and do not have feedback connections.
The functions of the output layers establish the output of the entire network. A recurrent
neural network (RNN) refers to a network of neurons with feedback connections, as
illustrated in Figure 3b. It stores a layer’s result and feeds it to the input to predict its
outcome. Once the first layer output is calculated, the RNN starts. After this layer, each unit
will remember information from the previous step to compute as a memory cell. Several
types of neural network structures have been presented, including backpropagation neural
networks, long-short-term memory (LSTM) neural networks, echo state networks (ESNs),
and convolutional neural networks (CNNs).
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Figure 3. ANN topology [7] (reproduced with permission from reference [7], Elsevier Ltd., 2021).

a. Back propagation neural network

The back propagation (BP) neural network is an error backpropagation-trained, multi-
layer feedforward neural network. It learns through both forward propagations, where
input data go through the hidden layer and output layer, and backward propagation, where
the output error is passed back through the hidden layer, as depicted in Figure 4. Neuron
weights and thresholds are then adjusted based on the error signal to approximate the
predicted output to the desired output.
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Chen et al. [63] employed a BP neural network to predict the aging behavior of
PEMFCs. The parameters of the BP neural network model were optimized using an
evolutionary algorithm that includes a mind evolutionary algorithm (MEA), particle swarm
optimization (PSO), and genetic algorithm (GA). Three aging data sets were employed
to verify the model. According to the results, the suggested model can reliably predict
PEMFC degradation in various applications. Chen et al. [64] used wavelet analysis and a
BP neural network (WNN) to predict the degradation of PEMFCs. Wavelet analysis can
examine PEMFC degradation features at different frequencies by changing the wavelet basis
function. It can also extract local features of signals by analyzing them at multiple scales.
However, the authors pointed out some limitations. The number of hidden layer neurons
significantly affects PEMFC degradation prediction, but finding the optimal number is
hard. The authors used a cuckoo search algorithm (CSA) to solve these problems. The CSA
optimizes weights, wavelet basis function parameters, and hidden layer neuron numbers.
Then, CSA-WNN predicts the PEMFC RUL. Figure 5 shows PEMFC degradation prediction



Energies 2023, 16, 4772 15 of 32

based on CSA-WNN. According to research, CSA-WNN outperforms other algorithms in
prediction accuracy, including BP, extreme learning machines, RVM, and SVM.
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b. Long-short-term memory neural network

Long-short-term memory (LSTM) neural networks are specialized RNNs. In RNNs,
backpropagation may cause vanishing or exploding gradient problems, making network
weights too small or too large in applications that need the network to learn long-term
relationships [65]. To address these problems, LSTM networks use additional gates to
control the data flow into and out of the system’s memory, allowing the network to better
learn the long-term relationships in the data [66]. As shown in Figure 6b, an LSTM cell
generally consists of a memory cell, an input gate, an output gate, and a forget gate, in
addition to the hidden state seen in conventional RNNs (Figure 6a). The architecture of the
LSTM memory cell is shown in Figure 7. The data are trained and updated at every time
step in a long-term period through the cell state.
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R. Ma et al. [65] suggested a new deep-learning model for fuel cell degradation
based on RNN with grid-long short-term memory (G-LSTM) based on paralleling and
combining individual LSTM cells. Each layer in the G-LSTM cell design has its own
hidden state and memory cell, which it utilizes to exchange information with the other
layers. This method was tested on different data sets and it was shown that it could
predict fuel cell degradation precisely.

J. Liu et al. [67] established another PEMFC useful life prediction model based on
LSTM RNN, as shown in Figure 8. The model was validated by experimental aging
data of PEMFCs over 1154 h at static conditions. The data were smoothed using a
combination of locally weighted regression discrete smoothing and uniformly spaced
sampling. The authors claimed that this method was 28.46% more accurate than a BP
neural network. However, the method was only verified for PEMFC lifetime prediction
in constant operating conditions.
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K. He et al. [68] suggested an auto-encoder (AE)-LSTM network model to forecast
PEMFC degradation under vehicle running conditions, as shown in Figure 9. This ap-
proach uses a health indicator (HI) to characterize PEMFC degradation conditions before
performing LSTM. Each dynamic load cycle extracts one HI value from the PEMFC output
voltage using AE. Thus, HI may reflect the voltage change in the cycle level. The method
proved effective for making performance predictions, with a maximum RMSE of 0.003513.
This method can also analyze the degradation mechanism of PEMFCs. Therefore, this
method can reliably predict PEMFC degradation progress and mechanisms, and help to
undertake appropriate strategies to ensure PEMFC durability.
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Figure 9. Proposed AE-LSTM prognostic approach [68] (reproduced with permission from refer-
ence [68], Elsevier Ltd., 2022).

B. Zuo et al. [69] suggested a long-short-term memory neural network-based degrada-
tion prediction model for PEMFCs. The data were smoothed out by the Savitzky–Golay
filter. Based on 25% data, the model can forecast fuel cell degradation with an R2 of 0.9065
for the test set. Yezerska et al. [70] employed an LSTM model, trained on experimental
electrochemical data from a long-term H2 starvation/regeneration routine, to predict the
effect of H2 starvation on PEMFC degradation. This study showed that a LSTM model is a
reliable tool for predicting the stress behaviour of PEMFCs. Wang et al. [71] introduced
a new prognostic model called navigation sequence-driven LSTM (NSD-LSTM) for the
long-term prognosis of proton exchange membrane fuel cells (PEMFC). The approach
involves generating a navigation sequence using an autoregressive integrated moving
average model with exogenous variables. This sequence is then iteratively inputted into
an LSTM during the implementation phase to achieve long-term predictions. Both the
simulation and experimental results demonstrate that the proposed prognostic strategy
exhibits better consistency in predicting the long-term degradation trend compared to other
artificial neural network (ANN) models such as nonlinear autoregressive exogenous and
echo state network models.

c. Convolutional neural network

Convolutional neural networks (CNNs) feature weighted connections such as feed-
forward neural networks. CNNs contain one or more convolutional layers that convolu-
tionally process the input and send the output to the next layer. W. Huo et al. [72] employed
deep learning methods to create a performance prediction model based on the random
forest algorithm and convolutional neural networks, as shown in Figure 10. In the proposed
method, the random forest technique was used to identify the essential input characteristics
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to enhance the quality of the training dataset. These characteristics were then utilized
for training a convolutional neural network to predict the I–V polarization curve. The
usefulness of the proposed model was assessed using actual I–V polarization curve data,
and the findings revealed that the predicted curves had an excellent agreement with the
actual curves. As a result, the suggested model may be a more cost-effective alternative to
established approaches for estimating PEMFC performance.
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Figure 10. The framework for establishing a degradation prediction model [72] (reproduced with
permission from reference [72], Elsevier Ltd., 2021).

Benaggoune et al. [73] proposed a multi-step-ahead prediction methodology for
PEMFC degradation using dilated CNN architecture, as illustrated in Figure 11. An
attention mechanism is also incorporated into the model to selectively focus on the most
relevant features. The proposed method was compared with other ANN models, includ-
ing the multilayer perceptron (MLP), LSTM, and bi-directional LSTM (Bi-LSTM) models.
Comparisons with previous recurrent neural network approaches for forecasting PEMFC
deterioration indicated that the suggested method performed better.

Wilberforce et al. [74] combined a bi-recurrent neural network (BiRNN) and a convo-
lutional neural network (CNN) to predict the RUL of PEMFCs. The hybrid BiRNN-CNN
model is shown in Figure 12. The BiRNN was used to capture the long-term dependen-
cies in the data, while the CNN was used to extract features from the input data. The
results showed that the BiRNN-CNN hybrid model outperformed other methods regarding
prediction accuracy.
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Figure 12. Combined convolutional neural network (CNN) and bi-recurrent neural network (BiRNN)
model [74] (reproduced with permission from reference [74], Elsevier Ltd., 2022).

Recently, Sun et al. [75] presented a hybrid method combining the spatial feature
extraction ability of a convolutional neural network (CNN) and the prediction ability
of a long-short-term memory (LSTM) network to predict the degradation of a 110-kW
commercial vehicle fuel cell system, as shown in Figure 13. The combination of CNN
and LSTM can leverage the strengths of both methods in feature extraction and temporal
modeling, respectively. The complete ensemble empirical mode decomposition (CEEMD)
decomposes the raw stack voltage data to obtain modality sequences. Using CEEMD to
decompose the raw stack voltage series could also help to extract more meaningful features
for the model to learn. The hybrid CNN-LSTM model showed a significant increase in
prediction accuracy compared to either LSTM or CNN alone.
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d. Echo state network

Echo state network (ESN) is a new approach for RNN that Jaeger introduced in 2001.
This architecture proposes a better human brain paradigm than traditional ANN [76]. An
ESN comprises an input layer, a dynamic reservoir with random connections, and an
output layer, as shown in Figure 14. The randomly connected reservoir is also considered to
be a key feature of ESN, as it can produce highly complex and nonlinear dynamics that are
difficult to achieve with traditional RNNs. Compared to other ANN models, ESN training
is faster and more accurate [77].
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Morando et al. [78] utilized the ESN architecture to perform a long-term prognostics
analysis and estimate the voltage drop during the PEMFC degradation process. The study
demonstrated that the ESN-based approach achieved an accurate prediction with an error
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of less than 5%, indicating its potential for PEMFC prognostics. The authors also noted
that the ESN architecture has low computational requirements, making it a promising
tool for practical applications. Zhang et al. [79] proposed a new ESN architecture for
predicting PEMFC degradation called a multi-reservoir echo state network with a mini
reservoir (MRM). In the MRM architecture, the mini reservoirs organize the state of the
main reservoirs. The particle swarm optimization (PSO) algorithm was used to identify the
best structure of the main reservoirs and neurons. The Savitzky–Golay filter was utilized
to remove noise from the raw data. The prediction accuracy was inversely related to the
training set length under static conditions, and the predictability was at its highest under
dynamic conditions at 550 h. Yue et al. [53] used a multi-step echo state network to predict
the system failure and improve the durability of PEMFCs operating under dynamic load.
Recently, Hua et al. [80] proposed a novel approach called MIMO-ESN, which stands
for echo state network with multiple inputs and multiple outputs, to predict the RUF of
PEMFCs. The MIMO-ESN incorporates operating parameters such as the stack current,
stack temperature, and reactant pressures as inputs to the model, as shown in Figure 15.
These parameters significantly impact the stack voltage, making them valuable inputs for
the model. The authors demonstrated that MIMO-ESN outperformed the single-input
ESN model in terms of prediction accuracy. Moreover, MIMO-ESN performed better
than SISO-ESN.
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e. Summary of ANN models

ANN models offer several advantages, such as fast computation speed and high
prediction accuracy, without the need for extensive physical knowledge. They excel at
establishing input–output relationships based on large datasets, enabling real-time per-
formance prediction for PEM fuel cells. Although training an ANN model may require
a comparable amount of time to setting up a physical model, the computational speed
of an ANN model is significantly faster once trained. Additionally, models capable of
predicting multiple output variables, including voltage, temperature, and outlet conditions,
are beneficial for fuel cell stack and system control. However, developing data-driven
models necessitates a substantial amount of experimental data, and the impact of the data
quality on the performance of data-driven models is an area of significant research interest.

2.2.2. Support Vector Machine Model

Similar to ANNs, the support vector machine (SVM) model is adopted as a modeling
method for the nonlinear empirical models. SVMs provide good generalization perfor-
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mance because they are more tolerable to noisy and erroneous data [81]. When SVMs are
used for solving regression problems, it is referred to as support vector regression (SVR).

Legala et al. [82] conducted a comparative study of the performance of ANNs and SVR
for predicting cell voltage, membrane resistance, and membrane water content. According
to the research, The ANN outperformed SVR, particularly on multivariate output regres-
sion. However, SVR proved advantageous in modeling simple regressions, reducing the
computational cost without compromising accuracy. Wu et al. [83] introduced a modified
relevance vector machine (RVM) as a Bayesian alternative to SVM for predicting the aging
of PEMFC stacks. The authors compared the results of the proposed modified RVM method
to those of SVM. They found that the modified RVM performed better, particularly in cases
where there were relatively small training data sets. Wu et al. [84] further demonstrated
an advanced model for predicting PEMFC degradation using a self-adaptive relevance
vector machine (RVM). The results showed that it presents a better predictive performance
than classic SVM, with prediction errors reported to be 30–40% lower. Additionally, the
modified RVM model performed better than the original RVM model. Chen et al. [85]
introduced a new method for predicting PEMFC degradation using multi-kernel relevance
vector regression (MRVR) and the whale optimization algorithm (WOA). The PEMFC
degradation prediction model is built using MRVR, while the WOA improves prediction
accuracy by automatically optimizing the weight and kernel parameters. This approach
creates a solid model that covers various operations by combining laboratory data with
real-world driving situations. The results showed that PEMFC degradation is predicted
more accurately using a multi-kernel function than a single-kernel function under different
operational conditions.

2.2.3. Fuzzy Logic Model

Fuzzy logic (FL) is a classification method that imitates human reasoning and deals
with fuzzy systems. It can function as a pattern recognition or residual generator, similar to
NN [86]. FL is used when processes are nonlinear, subjective, or too complex for precise
mathematical modeling. The FL model clusters data points and assigns them to similar
clusters based on their membership function, which can be trapezoidal, linear, or curved
depending on the fuzzy if-then rules [7,86].

Rubio et al. [86] developed a fuzzy logic model to determine the real-time degree of
flooding or dehydration in a PEMFC. The model uses changes in the voltage slope and
voltage oscillations as characteristics to estimate the water content, which are defined
as fuzzy variables. The fuzzy sets have gradual transitions between them, defined by
trapezoidal functions, with membership functions having the same profile and number
of values but different numerical values for the parameters. The model’s accuracy was
validated using electrochemical impedance spectroscopy, and the results showed that
PEM fuel cell faults at different levels could be accurately diagnosed using this approach.
Mammar et al. [87] illustrated a fuzzy logic model to diagnose the hydration state of
PEMFCs. Fuzzy logic inference and clustering were used to determine the health status of
the membrane. The block diagram of the fuzzy logic clustering and membership function
is shown in Figure 16. The proposed model and fuzzy logic clustering were tested with
a step change of humid airflow and current. The results demonstrated that the fuzzy
logic clustering could diagnose cases of flooding and drying in the membrane through the
impedance behavior in the Nyquist plot.

Combining ANNs with fuzzy logic can create an efficient approach for various model-
ing systems. A neuro-fuzzy system is a fuzzy system that learns its parameters, including
the proper membership functions and fuzzy rules, from artificial neural networks. The adap-
tive neuro-fuzzy inference system (ANFIS) is one of the most popular forms of neuro-fuzzy
systems [88]. It has five layers: input membership function layer, rule layer, normalization
layer, output membership function layer, and output layer. Figure 17 shows the ANFIS
structure with two inputs and one output. The nodes with squares are adaptive nodes that
can change their values, while the nodes with circles are fixed with constant values.
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ANFISs have been used in many studies to predict the performance and degradation of
PEMFCs. S. Rezazadeh et al. [88] utilized ANFISs to simulate the performance of PEMFCs.
According to the research, the ANFIS model was practical and effective for the life predic-
tion of PEMFCs. Wilberforce et al. [89] used ANFIS to evaluate the PEMFC performance
under different ambient conditions. The experimental data obtained in the laboratory were
used to train the model with input and output parameters, which were then evaluated
using an independent variable. The predicted results indicated that ANFIS could accurately
forecast fuel cell performance behavior. Silva et al. [90] suggested a new approach using
ANFIS to predict PEMFC degradation. The proposed method considers the output voltage
as the indicator for PEMFC degradation, as it is a low-cost and non-intrusive measure
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that is easy to implement. The results of the validation experiments demonstrate that
this methodology is effective for predicting PEMFC degradation. Liu et al. [91] compared
the accuracy and computational efficiency of the adaptive neuro-fuzzy inference system
(ANFIS) with various fuzzy inference system creation strategies to other methods. The
ANFIS with fuzzy c-means showed the most accurate performance among these methods.

2.2.4. Gaussian Process

The Gaussian process (GP) uses probability theory and mathematical statistics to depict
the RUL distribution’s unpredictability and uncertainty [48]. Sun et al. [92] modelled the
distribution of the voltages at different current points as a Gaussian process that adaptively
incorporates data that refine the characterization in a flexible manner. Zhu et al. [93]
proposed a Gaussian process state space (GPSS) model that can effectively deal with
model uncertainty and disturbances to predict the degradation tendency and uncertainty
of PEMFCs. The GPSS model estimates the uncertainty distribution, which a confidence
interval of 95% can represent. The accuracy of the predicted results is within ±10% of
the actual RUL. However, using only voltage as a health indicator might not reflect the
complete changes in the PEMFC. To address this issue, Tang et al. [94] used stack voltage
and power to construct a health indicator which was integrated into the adaptive Gaussian
process regression (AGPR) method to describe the PEMFC degradation process. The
AGPR method was compared with the ANN method. The results showed that AGPR
outperformed the ANN method in prediction and probability distribution. Xie et al. [95]
proposed a degradation prediction method for PEMFC RUL using a combination of the deep
Gaussian process (DGP) and singular spectrum analysis (SSA) methods. The degradation
prediction framework based on SSA-DGP is illustrated in Figure 18. The measurement
data are preprocessed using SSA to remove noise and spikes. DGP, a deep structural model
consisting of many Gaussian process latent variable models, represents the nonlinear details
of degradation data. Experimental data of the PEMFCs evaluate the effectiveness of the
proposed method under steady-state conditions.
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Using sparse the pseudo-input Gaussian process (SPGP) and variational auto-encoded
deep Gaussian process (VAE-DGP) methods, Deng et al. [96] introduced two unique
Gaussian process regression modeling frameworks to forecast the aging trend of PEMFCs,
as shown in Figure 19. Static and dynamic aging experiments were conducted over long
durations to validate the prediction performance thoroughly. The SPGP and VAE-DGP
methods build single-input and multi-input structures to evaluate their results versus
current models such as BPNN and LSTM. The results demonstrate the superiority of the
proposed methods over other data-driven approaches. The SPGP is also better-suited for
large data regimes, while the VAE-DGP functions better for small data regimes.
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2.2.5. Summary

The data-driven approach involves using available data to create a model that can
make predictions or decisions without explicitly understanding the underlying system
dynamics. It has some advantages and disadvantages, as follow.

Advantages of the data-driven approach:

• Data-driven models can make accurate predictions or decisions without requiring
a deep understanding of the underlying system. This can be advantageous when
dealing with complex systems or when the system dynamics are not well understood.

• Data-driven models can capture complex relationships and interactions between
variables, even when the underlying mechanisms are not well understood.

• Data-driven models can be more flexible and adaptable to changing conditions or
new data.

• Disadvantages of the data-driven approach:
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• Data-driven models often lack interpretability, meaning it can be challenging to under-
stand and explain the reasons behind their predictions or decisions.

• Data-driven models may struggle with extrapolating beyond the range of the available
data. They might not accurately predict outcomes in scenarios that differ significantly
from the training data.

• The accuracy and reliability of data-driven models heavily depend on the quality,
completeness, and representativeness of the input data.

• Data-driven models require access to sufficient and relevant data, which may not
always be readily available.

2.3. Hybrid Approach

Researchers have developed several hybrid approaches that incorporate model-based
and data-driven methods utilizing different hybrid strategies. Hybrid approaches provide
a greater prognosis accuracy than single methods, but their more complicated structure
increases their computing complexity. They are promising for real-world applications
which require a high prognostic accuracy and the balancing of computing resources and
precision. The hybrid prognostics methods can be classified into three types based on
different hybrid strategies [6]:

(1) The model-based approach extracts degradation indexes, then the data-driven ap-
proach predicts the degradation trend and estimates the RUL.

(2) Data-driven methods fit the degradation model or measurement data to predict the
future degradation trend, then model-based methods estimate the RUL.

(3) Model-based and data-driven methods are applied together. The final degradation
results are obtained by weighing each result.

2.3.1. Hybrid Strategy 1

Zhou et al. [97] proposed a hybrid method to predict PEMFC degradation. The non-
stationary trend in the original data was eliminated using a physical aging model, and
the linear component was filtered using an autoregressive and moving average model.
Time delay neural networks were trained using the remaining nonlinear pattern to make
the final prediction. Yue et al. [53] introduced an online approach for identifying and
predicting the degradation of PEM fuel cells, using an independent-of-operating-conditions
nonlinear regression procedure to derive a degradation indicator. A multi-step window-
sliding echo state network (ESN) model was then used to estimate the future trend of
identified degradation indicators. The results showed that degradation detection could
be done in real time without further measurements. Furthermore, compared to other
prognostic methods, such as stacked LSTM and PF, the proposed prognostic strategy
achieved higher accuracy and required less computation time. Wang et al. [98] presented a
fusion prognostics approach for fuel cells that are operating in dynamic scenarios. Their
strategy involved identifying the system dynamics using an electrochemical mechanism
model and extracting degradation indicators based on the identified model parameters.
They then created a reduced-dimensional symbolic representation using a long-short-term
memory network to forecast the degradation progression. The findings indicate that the
degradation mechanism model can successfully identify degradation indicators even in
dynamic operating conditions. By utilizing the prognostics model, precise remaining useful
life (RUL) predictions can be made based on the extracted degradation indicators.

2.3.2. Hybrid Strategy 2

Cheng et al. [99] proposed a hybrid approach to improve the accuracy of the prog-
nostics results when characterization is uncertain. Using a least square support vector
machine (LSSVM) for preliminary prognostics, followed by a regularized particle filter
(RPF) to obtain the final RUL probability distribution of PEMFC, the method combines
the benefits of both data-driven and model-based approaches. The LSSVM predictions are
used as new observation values in the RPF prognostic framework. The results confirmed
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that PEMFC RUL predictions could be an improvement from the hybrid method. How-
ever, the method has not been tested under variable loading conditions, and the authors
intend to improve the framework to address this limitation. Liu et al. [100] first predicted
the long-term deterioration trend using the evolutionary algorithm and adaptive neuro-
fuzzy inference system. Using degradation data from the first phase, a semi-empirical
degradation model based on the adaptive unscented Kalman filter algorithm estimates the
remaining useful life. Compared to existing models, this hybrid method produced more
accurate prognostic results.

2.3.3. Hybrid Strategy 3

Pan et al. [60] and Zhou et al. [101] proposed hybrid strategies with simultaneous
model-based and data-driven methods. An empirical or semi-empirical aging model cap-
tures the overall degradation trend. Meanwhile, a neural network predicted the observed
measurement data’s local nonlinear degradation characteristic. The results from various
methods are fused using the weighted average methodology to obtain the final prediction
results. Predicting fuel cell degradation using an adaptive Kalman filter and NARX neural
network was suggested by Pan et al. [60]. An empirical voltage degradation mode and NAR
neural network incorporated with the moving window technique was proposed in [101].
The above-proposed hybrid approaches showed a higher accuracy for the degradation and
RUL prediction of PEMFCs than conventional prediction single methods.

2.3.4. Summary

The hybrid approach combines elements of both model-based and data-driven ap-
proaches to leverage their respective strengths. It has some advantages and disadvantages
as follows.

Advantages of hybrid approach:

• By combining the strengths of both model-based and data-driven approaches, hybrid
models can potentially offer higher accuracy and reliability in predictions and decisions.

• Hybrid models can effectively model and capture complex and nonlinear relationships
between variables. The model-based component can provide an overall degradation
trend, while the data-driven component can handle the fine-grained details and
nonlinearity present in the data.

• Hybrid models can adapt to different levels of data availability. In cases where data
are limited, the model-based component can provide useful insights and predictions.
When more data become available, the data-driven component can be integrated to
refine and update the model.

• Hybrid models can better generalize new or unseen data compared to data-driven
models. The model-based component can improve the model’s ability to make accurate
predictions in conditions beyond the training data.

• Disadvantage of hybrid approach:
• Hybrid models can be more complex to develop and implement compared to using a

single modeling approach.
• Hybrid models may require more computational resources, especially if the model-

based component involves complex mathematical equations or simulations.
• Validating and verifying hybrid models can be more demanding than with single

modeling approaches. Ensuring the accuracy and reliability of both components and
their integration requires careful testing and comparison with experimental data.

3. Challenges and Prospects

Degradation models are critical in understanding the performance behavior of fuel
cell systems during long-term operation. Various operational factors, such as tempera-
ture, pressure, relative humidity, flow rate, and cooling conditions, impact the fuel cell’s
performance. It is challenging to accurately predict this system’s states with a high de-
gree of freedom. Physics-based models can simulate the physical and electrochemical
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processes within the fuel cell components, but they are computationally expensive and
contain many parameters that can differ across studies. Data-driven models offer fast and
accurate predictions based on historical data, but they may not generalize well to new
operating conditions or scenarios. Hybrid prediction approaches offer higher accuracy but
increase the complexity of the calculations. Due to the fast changes during operation, the
PEMFCs in electric cars run under complicated problems. Complex dynamic conditions
must be considered to prove the accuracy of the degradation models. Currently, voltage
and power are considered to be the primary aging indicators, but they cannot accurately
forecast the lifespan of PEMFCs in electric vehicles with dynamic operating conditions.
It is essential to discover aging indicators that may be used to reliably forecast PEMFC
life in real-time with little computing overhead under dynamic conditions. Despite these
challenges, the prospect of developing reliable degradation models is promising. It can
help to optimize the design and operation of fuel cell systems and inform maintenance and
replacement strategies. Accurate degradation models can also aid in identifying the root
causes of degradation and facilitate the development of new materials and technologies
that improve system durability and reliability.

4. Conclusions and Perspectives

Evaluating fuel cells and system performance is essential for the development of high-
performance, long-lasting, and cost-effective fuel cells. This paper thoroughly reviewed
the various performance degradation models for PEMFCs. First, the introduction, working
principles, and mechanical, chemical, and thermal degradations of the PEMFC system are
briefly presented. As well, end-of-life criteria are defined. Secondly, PEMFC degradation
modeling approaches are presented, including the model-based, data-driven, and hybrid
approaches. Finally, future research challenges and directions are presented to guide future
life prediction technique research.

Even though durability studies in the literature show significant advances, several
facets of the PEMFC degradation prediction system still need improvement.

1. Current studies show that voltage and power are the most reliable indicators of
PEMFC age; however, these metrics are indistinct when applied to dynamic conditions.
Indeed, the monotonic drop in voltage or power is less visible in dynamic operating
situations due to load current uncertainty. Therefore, extracting aging indicators
that may be used to make reliable online estimates of PEMFC lifetime with little
computational effort is crucial.

2. The prediction of the degradation and lifetime of fuel cells plays a significant role in
the operation and maintenance of fuel cell vehicles. Thus, there is an immediate need
to propose a method for online lifetime prediction under the dynamic responses of
the real-world. The main idea is to build mathematical models or “black box” models
to quickly forecast the intermediate or long period using real-time collected data of
actual running fuel cell vehicles. Despite this progress, online prediction remains a
significant obstacle due to the complicated structure of machine learning algorithms,
which makes online process implementation difficult. In addition, PEMFCs in electric
vehicles operate under complicated conditions due to the rapid changing of electric
vehicle operation. Therefore, adaptive prediction methods are necessary for enhanced
online prediction accuracy.
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