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Abstract: The use of hydrogen fuel produced from renewable energy sources is an effective way
to reduce well-to-wheel CO2 emissions from automobiles. In this study, the performance of a
hydrogen-powered series hybrid vehicle was compared with that of other powertrains, such as
gasoline-powered hybrid, fuel cell, and electric vehicles, in a simulation that could estimate CO2

emissions under real-world driving conditions. The average fuel consumption of the hydrogen-
powered series hybrid vehicle exceeded that of the gasoline-powered series hybrid vehicle under
all conditions and was better than that of the fuel cell vehicle under urban and winding conditions
with frequent acceleration and deceleration. The driving range was longer than that of the battery-
powered vehicle but approximately 60% of that of the gasoline-powered series hybrid. Regarding
the life-cycle assessment of CO2 emissions, fuel cell and electric vehicles emitted more CO2 during
the manufacturing process. Regarding fuel production, CO2 emissions from hydrogen and electric
vehicles depend on the energy source. However, in the future, this problem can be solved by using
carbon-free energy sources for fuel production. Therefore, hydrogen-powered series hybrid vehicles
show a high potential to be environmentally friendly alternative fuel vehicles.

Keywords: hydrogen engine; series hybrid; fuel cell vehicle; electric vehicle; life-cycle assessments of
CO2 emissions; driving range

1. Introduction

Fossil fuels, which are mainly used in vehicle engines, may be depleted in the future.
Further, carbon dioxide (CO2) emissions due to combustion are an environmental problem.
The use of hydrogen fuel is a measure that is used to solve these problems. Hydrogen
fuels do not contain carbon in their molecules; therefore, they do not emit CO2. Moreover,
their high ignition properties enable a leaner combustion than that of fossil fuels; hence,
nitrogen oxide (NOx) emissions can be maintained at a low level [1]. Various carbon-free
manufacturing and transportation methods have been established for automotive applica-
tions [2], and significant reductions in CO2 emissions are expected compared to emissions
from current internal combustion engine vehicles (ICVs). Vehicles that use hydrogen fuels
include fuel cell vehicles (FCVs) and hydrogen engine vehicles. However, FCVs require
large amounts of rare metals for their fuel cells [3]. Therefore, they are more expensive than
vehicles that use other power sources, even with future technological developments [4].
Furthermore, ice formation occurs during a cold start in a low-temperature environment [5],
which is a practical issue.

In contrast, hydrogen-engine vehicles can be developed and manufactured based on
existing ICVs, which lowers their costs. Furthermore, current technologies for improving
thermal efficiency can be applied to convert vehicles into hydrogen-powered hybrid vehi-
cles (hydrogen HVs) that combine hydrogen engines and motors, and these are expected to
have a high environmental performance and a widespread market [6]. However, hydrogen
HVs have not yet been produced, and their performance characteristics during actual

Energies 2023, 16, 7193. https://doi.org/10.3390/en16207193 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16207193
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0009-0005-9363-3767
https://orcid.org/0000-0002-1019-0587
https://doi.org/10.3390/en16207193
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16207193?type=check_update&version=1


Energies 2023, 16, 7193 2 of 11

driving are not fully understood. Battery electric vehicles (BEVs) are becoming popular
powertrains that do not require any liquid or gaseous fuel supply and are expected to
significantly reduce CO2 emissions owing to their high energy efficiency [7]. However, CO2
emissions due to BEV charging using commercial electricity depend on the electricity mix
in each country or region and are also strongly affected by renewable energy deployment
scenarios [8]. The effective utilization of surplus electricity through the decentralized
control of charging times has been proposed [9]. Moreover, the driving range of BEVs is
strongly dependent on battery capacity, and the larger their capacity, the higher the CO2
emissions during manufacturing. In addition, the establishment of an effective recycling
process is being promoted because of the significant environmental footprint of batteries
when disposed of or reused [10].

As each powertrain has its advantages and disadvantages, it is important to use a
suitable powertrain combination for the correct application to achieve a medium- to long-
term reduction in the environmental footprint. Previous studies have reported the use of
various powertrains as substitutes for conventional ICVs, contributing to the reduction of
CO2 emissions [7,10–12] in addition to reducing atmospheric pollutants, such as particulate
matter (PM) [13,14]. For their utilization, the practical performance, such as the driving
range and acceleration performance under real-world driving conditions, is important,
along with an accurate estimation of their energy efficiency. Aidin et al. [15] investigated
the emissions from conventional gasoline, compressed natural gas (CNG), electric, and
fuel cell vehicles under actual urban driving conditions and found that FCVs were the best
in terms of reduction of CO2 emissions. However, few previous studies have included
hydrogen HVs in such evaluations.

In this study, driving simulations were conducted for various real driving patterns
of several powertrains, including hydrogen HVs, to predict their fuel consumption. Life-
cycle assessments (LCAs) of CO2 emissions were conducted, and comparisons were made
between FCVs and other powertrain vehicles that use hydrogen fuel.

2. Materials and Methods

The method of verifying the LCA of CO2 emissions by real-world driving simulation
using commercial software is described in detail as follows.

2.1. Analysis Method

Vehicle assessments were conducted for fuel consumption, driving range, and life-
cycle CO2 emissions. In these assessments, vehicle specifications, such as vehicle weight,
motor power, and thermal efficiency, were reflected in real-world driving simulations using
CarMaker 8.1.2 (IPG Auto-motive GmbH, Karlsruhe, Germany).

An overview of the real-world driving simulation by CarMaker is shown in Figure 1.
The vehicle model, equipped with different powertrains, was simulated under diverse
road conditions and traffic scenarios replicating real-world environments. This simulation
enables the evaluation of vehicle performance, considering both the driver and vehicle
models, in a manner similar to actual driving experiences. Given the significance of driver
intervention in real-world driving, this approach provides a comprehensive understanding.
In this study, a preset standard model, as a typical driver avoiding aggressive and overly
gentle driving, was employed as the driver model while following the speed profile as
closely as possible and avoiding acceleration above 0.3 G and deceleration below −0.4 G.
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and control optimized, but the coverage of the entire operating range with lean combus-
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Table 1 lists the vehicle specifications used for input simulation parameters. The ve-

hicle specifications were set based on the specifications of production or research vehicles 
[1,17–22]. 

  

Figure 1. Real-world driving simulation by CarMaker (IPG Automotive GmbH).

2.2. Analysis of Vehicle Models

Vehicles with next-generation powertrains as well as hydrogen HVs were simulated,
and the simulation was verified.

2.2.1. Powertrains

A series hybrid vehicle with a hydrogen engine (hydrogen S-HV), which drives the
motor with the power generated by the internal combustion engine, was selected as the
powertrain equipped with a hydrogen engine. In this system, the operating range of the
hydrogen engine is limited to power generation; therefore, not only are the engine design
and control optimized, but the coverage of the entire operating range with lean combustion
also improves the fuel consumption and reduces NOx emissions [16].

The suitability of (a) a series hybrid vehicle with a gasoline engine (gasoline S-HV) and
a hydrogen S-HV, (b) an FCV, and (c) an electric vehicle (EV) was examined, as shown in
Figure 2, and these vehicles were compared to determine their viability as future vehicles.
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Figure 2. Powertrains to be evaluated: (a) gasoline/hydrogen S-HV, (b) FCV, (c) EV.

2.2.2. Comparison of Vehicle Specifications

Table 1 lists the vehicle specifications used for input simulation parameters. The
vehicle specifications were set based on the specifications of production or research vehi-
cles [1,17–22].



Energies 2023, 16, 7193 4 of 11

Table 1. Vehicle specifications.

Vehicle Type Gasoline
S-HV [17–19]

Hydrogen
S-HV [1,19] FCV [19–21] EV [19,22]

Unloaded Weight 1170 kg 1170 kg 1850 kg 1460 kg

Energy Storage Fuel
Type Gasoline Hydrogen Hydrogen -

Capacity 35 L 4.6 kg 4.6 kg -
Battery Capacity 1.47 kWh 1.47 kWh 1.35 kWh 30.1 kWh

Engine

Displacement 1198 cm3 1198 cm3 - -
Cylinders 3 3 - -

Supercharging N/A Turbocharger - -
Max. Power 58 kW 58 kW - -
Max. Torque 104 Nm 104 Nm - -

Fuel Cell Max. Power - - 114 kW -

Motor
Max. Power 80 kW 80 kW 113 kW 80 kW
Max. Torque 254 Nm 254 Nm 335 Nm 254 Nm

As a simulation model of the hydrogen S-HV, the fuel tank and auxiliary equipment
were changed to hydrogen specifications based on the production of gasoline S-HVs.
Figure 3 shows the thermal efficiency maps of the hydrogen and gasoline S-HVs. The
thermal efficiency map of the gasoline S-HV is estimated based on that of a production
vehicle [18], and the thermal efficiency map of the hydrogen S-HV was set based on the work
of Sebastian et al. [1]. In their study, a turbocharger was added to an engine with the same
displacement to obtain a power performance equivalent to that of the gasoline S-HV. The
nominal fuel consumption of the gasoline S-HV in the JC08 mode [23] is 2.94 L/100 km [17].
During this verification, the fuel consumption of this vehicle model in the JC08 mode was
found to be 3.42 L/100 km, which is considered an adequate reproduction.
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Figure 3. Thermal efficiency maps of (a) hydrogen and (b) gasoline engines.

The FCV simulation model was set with a hydrogen tank capacity of 5 kg and maxi-
mum FC stack efficiency of 58%, based on a study conducted by Kurtz et al. [24], which
covered up to 100 kW, as shown in Figure 4. For the vehicles in this study, the efficiencies
were extrapolated from the data provided by Kurtz et al. [24] up to a maximum power
output of 114 kW.
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Figure 4. Fuel cell stack efficiency (up to 100 kW by Kurtz et al. [24] and extrapolated above 100 kW).

In the JC08 mode, FCVs could cover approximately 650 km with a 4.6 kg hydrogen
charge, achieving a fuel consumption rate of 2.60 L/100 km, equivalent to gasoline con-
sumption [20]. During this validation process, the FCV model exhibited a fuel consumption
of 2.72 L/100 km in JC08 mode, aligning with that of the target production vehicle.

The EV simulation model used a motor and battery similar to those of the gaso-
line/hydrogen S-HV vehicle, with a nominal fuel consumption of 1.28 L/100 km in the
JC08 mode [22]. In this verification, a fuel consumption of 1.12 L/100 km was recorded in
the JC08 mode, which is equivalent to that of the target production vehicle.

For every vehicle, the overall efficiencies of the drive motor and inverter were assumed
to be identical [19], and the aerodynamic drag and running resistance were calculated based
on the vehicle specifications provided by CarMaker.

2.3. Driving Route

To simulate various types of actual road driving, driving analysis was conducted on
the following six patterns, each with different characteristics: Highways 1 and 2, Suburban
roads 1 and 2, Urban roads, and Winding roads. Figure 5 shows each course map; Figure 6
depicts each speed profile and course undulations; and Table 2 lists the course length,
maximum speed, average speed, maximum gradient, and number of stops.

Table 2. Route details.

Driving
Route

Distance
Average
Speed

Max
Speed

Max Slope Number
of StopsUphill Downhill

[km] [km/h] [km/h] [◦] [◦] [-]

Highway 1 10.0 95.0 109 3.20 −1.22 0
Highway 2 20.0 107.0 113 5.86 −5.80 0
Suburban 1 13.6 51.1 75.9 4.45 −8.81 2
Suburban 2 8.79 37.1 78.2 5.23 −7.03 6

Urban 6.54 17.9 53.3 3.81 –5.02 10
Winding 6.58 35.2 43.5 10.2 –9.15 2

The difference between Highways 1 and 2 is that Highway 1 is relatively flat with a
speed limit of 100 km/h, whereas Highway 2 is a section with a speed limit of 110 km/h
and fast-driving speed and has more road undulations than Highway 1. The difference
between Suburban roads 1 and 2 is that although the driving routes are almost identical,
Suburban road 2 has more stops and a lower average vehicle speed. The Winding road has
a maximum slope of 10.2◦, and a route with approximately the same uphill and downhill
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distances was selected. The Urban roads use a speed profile that includes driving during
traffic jams.
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2.4. CO2 Emissions

In the LCA assessment of CO2 emissions, the total CO2 emissions were evaluated by
considering the sum of Well-to-Wheel (WtW), which comprises Well-to-Tank (WtT) and
Tank-to-Wheel (TtW) emissions, along with the CO2 emissions incurred during the pro-
duction phase. This assessment encompassed emissions generated during fuel production
and transportation, extending up to the vehicle fuel tank. Additionally, the TtW emissions
represented the CO2 emissions resulting from driving the vehicle using the fuel stored in
the fuel tank.

The CO2 emissions in the WtT phase include the combined emissions from fuel pro-
duction and transportation. Hydrogen fuel and electricity differ significantly depending on
how they are produced or generated, as well as the power derived from them. Therefore,
the current mainstream method is indicated as “Current”, and the most effective method
among the currently established methods that use renewable energy to reduce CO2 emis-
sions is indicated as “Ideal” in the results. The CO2 emitted during fuel production was
calculated as follows. For gasoline, the values were based on the emission intensity in
petroleum refining [25]. Regarding hydrogen, the “Current” values represent emissions
from natural gas reforming, while the “Ideal” values account solely for emissions resulting
from renewable energy, including those generated through water electrolysis. In terms
of electric power generation, the “Current” values were determined based on the 2017
power generation emissions in Japan. In contrast, the “Ideal” values were established
solely considering emissions from hydroelectric power generation, which exhibits the
lowest emission intensity among renewable energy sources [26–28]. The CO2 emissions
during transportation were based on the distance between the nearest hydrogen and gas
stations from refineries in Tokyo (37.5 km) and on CO2 emissions per commercial truck
(233 g/(tkm)) [29].

The CO2 emissions in the production phase were estimated from the studies conducted
by Kawamoto et al. [30] and Ishizaki et al. [31], vehicle, 4220 kg/car; engine, 1270 kg/unit;
motor and inverter, 640 kg/unit; battery, 177 kg/kWh; fuel cell, 2400 kg/unit; and hydrogen
tank, 1500 kg/unit.

3. Results and Discussion

For each vehicle assessment item, comparisons were made between hydrogen S-HVs
and other powertrain vehicles, and a comprehensive assessment was conducted.

3.1. Real-Road Fuel Consumption Performance

The all-vehicle models followed the target speed in each route. Figure 7 shows the
fuel consumption prediction results; the obtained values were converted into equivalent
gasoline consumption amounts.

Among the six driving simulation patterns, EVs showed the best average fuel con-
sumption, followed by FCVs, hydrogen S-HVs, and gasoline S-HVs. The average gasoline-
equivalent fuel consumption of the hydrogen S-HVs was 3.74 L/100 km, which was 21.9%
better than that of the gasoline S-HVs for all patterns, with a maximum improvement of
32.7%. In particular, the fuel consumption improvements were remarkable on Highways
and Winding roads, and the hydrogen engine had a better thermal efficiency in the high-
load range than the gasoline engine on which it is based, suggesting that fuel consumption
is improved in the pattern that uses this operating range on a regular basis.

When comparing the hydrogen S-HVs and FCVs, the average fuel consumption for
all patterns was almost the same. However, FCVs demonstrated a distinct advantage on
Highways, where steady-state driving is frequent, owing to their lower required motor
power, directly enhancing their high stack efficiency. Conversely, hydrogen S-HVs exhibited
lower fuel consumption on Urban and Winding roads. Notably, hydrogen S-HVs were
approximately 400 kg lighter than FCVs, as indicated in Table 1. Consequently, the motor
power needed for re-acceleration after stopping and decelerating was reduced, offering
an advantage over the battery consumption of FCVs. A similar trend was observed on
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Winding roads, with hydrogen S-HVs proving superior, particularly when ascending hills,
owing to the influence of the differences in vehicle weight. Additionally, both vehicles
achieved a lower fuel consumption of 3.20 L/100 km or less on Urban roads and Suburban
1 road, where regenerative braking can be actively used. Thus, hydrogen S-HVs and FCVs
are highly suitable for urban and highway driving, respectively.
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Figure 8. Driving range.

The average driving range of the six driving simulation patterns was highest for the
gasoline S-HVs, followed by those of the FCVs, hydrogen S-HVs, and EVs. This superiority
of gasoline S-HVs can be attributed to the substantial energy stored in vehicle tanks owing
to the high energy density of liquid fuel, resulting in an extended driving range. The EVs
had a good fuel consumption owing to the high efficiency of their motors; however, their
driving range was the shortest because the battery capacity was a constraint. The average
driving range of the hydrogen S-HVs was 489 km, 63.6% of that of the gasoline S-HVs;
however, this range can be more than twice that of an EV.

3.3. CO2 Emissions

Table 3 lists the life-cycle CO2 emissions from manufacturing to driving. The CO2
emissions in TtW were calculated using the average fuel consumption for the six driving
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simulation patterns. The results showed that during manufacturing, the CO2 emissions
were greater for the FCVs and EVs than for the other vehicles. FCVs are affected by fuel cell
capacity, and EVs are affected by battery capacity. Therefore, the capacity of the installed
battery must be reduced as much as possible. Owing to fuel and electric power generation,
large differences in CO2 emissions exist between hydrogen S-HVs and FCVs on the one
hand, which use hydrogen fuel and thus do not have CO2 emissions in TtW, and gasoline
S-HVs on the other. However, the total CO2 emission in WtW strongly depends on the fuel
production method.

Table 3. Life-cycle CO2 emissions.

Vehicle Scenario
Manufacturing WtT TtW WtW

kg-CO2/unit g-CO2/km g-CO2/km g-CO2/km

Gasoline S-HV - 7461 0.56 69.62 70.18

Hydrogen S-HV Current 7691 108.18 0.00 108.18
Ideal 7691 0.20 0.00 0.20

FCV
Current 10,071 108.70 0.00 108.70

Ideal 10,071 0.21 0.00 0.21

EV
Current 11,241 92.23 0.00 92.23

Ideal 11,241 1.73 0.00 1.73

Figure 9 compares the life-cycle CO2 emissions for each vehicle up to a mileage of
150,000 km.
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Figure 9. Life-cycle CO2 emissions up to 150,000 km.

In the “Current” scenario, the life-cycle CO2 emissions were higher in the gasoline
S-HVs up to approximately 80,000 km, but they were better in the EVs after 100,000 km.
When comparing hydrogen and gasoline S-HVs, the emissions were similar at the time of
manufacturing, but the difference in CO2 emissions owing to fuel increased as the mileage
increased. Meanwhile, in the “Ideal” scenario, the life-cycle CO2 emissions were best in the
hydrogen S-HVs, which emit less CO2 during manufacturing.

In summary, the life-cycle CO2 emissions of vehicles using hydrogen fuel can vary
considerably depending on the hydrogen production method. If derived from renewable
energy, CO2 emissions can be maintained at an extremely low level, and hydrogen S-HVs
are superior to both FCVs and EVs because of their low environmental footprint. Reducing
CO2 emissions over the medium-to-long term requires establishing and actively utilizing
hydrogen generation methods based on renewable energy and using vehicles that employ
hydrogen fuel.
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4. Conclusions

In this study, real-world driving simulations were conducted for six patterns with
different characteristics and for four vehicle types (hydrogen S-HVs, gasoline S-HVs, FCVs,
and EVs). The following findings were obtained:

1. The average gasoline-equivalent fuel consumption performance of the hydrogen
S-HVs and FCVs was approximately 20% better than that of the gasoline S-HVs.

2. The average driving ranges of the hydrogen S-HVs and FCVs were sufficient, approx-
imately 60% of that of the gasoline S-HVs and more than twice that of the EVs.

3. The vehicle weight of hydrogen S-HVs is lighter than that of FCVs; therefore, it can be
concluded that hydrogen S-HVs are more advantageous in terms of fuel consumption
and driving range on urban and winding roads, where motor power is frequently
required for acceleration and deceleration. In contrast, FCVs are suitable on highways
with relatively low accelerations and decelerations, owing to their high stack efficiency.

4. The life-cycle CO2 emissions of hydrogen S-HVs are low during manufacturing;
however, large differences in CO2 emissions exist depending on the hydrogen fuel
production method. In other words, hydrogen S-HVs are superior to FCVs and EVs
because they emit less CO2 during manufacturing.
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visualization, Y.S.; supervision, K.N.; project administration, K.N. All authors have read and agreed
to the published version of the manuscript.
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