Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions
Abstract
:1. Introduction
2. Application of Hydrogen in Marine Vessels
3. Opportunities of Using Ammonia as Alternative Vessel Fuel
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zahraee, S.M.; Golroudbary, S.R.; Shiwakoti, N.; Stasinopoulos, P.; Kraslawski, A. Economic and environmental assessment of biomass supply chain for design of transportation modes: strategic and tactical decisions point of view. Procedia CIRP 2021, 100, 780–785. [Google Scholar] [CrossRef]
- Kass, M.D.; Abdullah, Z.; Biddy, M.J.; Drennan, C.; Haq, Z.; Hawkins, T.; Jones, S.; Holliday, J.; Longman, D.E.; Menter, S. Understanding the Opportunities of Biofuels for Marine Shipping; Oak Ridge National Lab (ORNL): Oak Ridge, TN, USA, 2018; Volume 3, pp. 154–196. [Google Scholar]
- Muhammad, S.; Long, X. China’s seaborne oil import and shipping emissions: The prospect of belt and road initiative. Mar. Pollut. Bull. 2020, 158, 111422. [Google Scholar] [CrossRef] [PubMed]
- Bosneagu, R.; Coca, C.E.; Sargu, L.; Scurtu, I.; Corduneanu, D.; Daneci-Patrau, D.; Lupu, S. Realities and Perspectives of European Maritime Trade. Acta Univ. Danub. Œcon. 2022, 18, 117–125. [Google Scholar]
- Faber, J.; Hanayama, S.; Zhang, S.; Pereda, P.; Comer, B.; Hauerhof, E.; Kosaka, H. Reduction of GHG Emissions from Ships—Fourth IMO GHG Study 2020—Final Report; IMO: London, UK, 2020. [Google Scholar]
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; Atilhan, M.; Moore, M.; Nielsen, R.B. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- Serra, P.; Fancello, G. Towards the IMO’s GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping. Sustainability 2020, 12, 3220. [Google Scholar] [CrossRef]
- Joung, T.H.; Kang, S.G.; Lee, J.K.; Ahn, J. The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Lesmana, H.; Zhang, Z.; Li, X.; Zhu, M.; Xu, W.; Zhang, D. NH3 as a transport fuel in internal combustion engines: A technical review. J. Energy Resour. Technol. 2019, 141, 070703. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Costa, M.; Sun, Z.; He, Y.; Cen, K. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combust. Flame 2019, 206, 214–226. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Alternative fuel options for low carbon maritime transportation: Pathways to 2050. J. Clean. Prod. 2021, 297, 126651. [Google Scholar] [CrossRef]
- Gusev, A.L.; Jabbarov, T.G.; Mamedov, S.G.; Malikov, R.; Hajibalaev, N.M.; Abdullaeva, S.D.; Abbasov, N.M. Production of hydrogen and carbon in the petrochemical industry by cracking of hydrocarbons in the process of heat utilization in steel production. Int. J. Hydrogen Energy 2023, 48, 14954–14963. [Google Scholar] [CrossRef]
- Shahhosseini, H.R.; Saeidi, S.; Najari, S.; Gallucci, F. Comparison of conventional and spherical reactor for the industrial auto-thermal reforming of methane to maximize synthesis gas and minimize CO2. Int. J. Hydrogen Energy 2017, 42, 19798–19809. [Google Scholar] [CrossRef]
- Van Renssen, S. The hydrogen solution? Nat. Clim. Change 2020, 10, 799–801. [Google Scholar] [CrossRef]
- Newborough, M.; Cooley, G. Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bull. 2020, 11, 16–22. [Google Scholar] [CrossRef]
- Kim, K.; Roh, G.; Kim, W.; Chun, K. A preliminary study on an alternative ship propulsion system fueled by ammonia: Environmental and economic assessments. J. Mar. Sci. Eng. 2020, 8, 183. [Google Scholar] [CrossRef]
- Morales-Ospino, R.; Celzard, A.; Fierro, V. Strategies to recover and minimize boil-off losses during liquid hydrogen storage. Renew. Sustain. Energy Rev. 2023, 182, 113360. [Google Scholar] [CrossRef]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Conv. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Goldmann, A.; Sauter, W.; Oettinger, M.; Kluge, T.; Schröder, U.; Seume, J.R.; Friedrichs, J.; Dinkelacker, F. A study on electrofuels in aviation. Energies 2018, 11, 392. [Google Scholar] [CrossRef]
- Tarhan, C.; Çil, M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Sazali, N.; Wan Salleh, W.N.; Jamaludin, A.S.; Mhd Razali, M.N. New perspectives on fuel cell technology: A brief review. Membranes 2020, 10, 99. [Google Scholar] [CrossRef]
- Ashrafi, M.; Lister, J.; Gillen, D. Toward a harmonization of sustainability criteria for alternative marine fuels. Marit. Transp. Res. 2022, 3, 100052. [Google Scholar] [CrossRef]
- Yang, H.; Lin, C.-Y. Promising strategies for the reduction of pollutant emissions from working vessels in offshore wind farms: the example of Taiwan. J. Mar. Sci. Eng. 2022, 10, 621. [Google Scholar] [CrossRef]
- Lee, H.; Ryu, B.; Anh, D.P.; Roh, G.; Lee, S.; Kang, H. Thermodynamic analysis and assessment of novel ORC-DEC integrated PEMFC system for liquid hydrogen fueled ship application. Int. J. Hydrogen Energy 2023, 48, 3135–3153. [Google Scholar] [CrossRef]
- Tronstad, T.; Åstrand, H.; Haugom, G.; Langfeldt, L. Study on the use of fuel cell in shipping. EMSA European Maritime Safety Agency. DNV GL Noudettu 2017, 26, 2022. [Google Scholar]
- Chehrmonavari, H.; Kakaee, A.; Hosseini, S.E.; Desideri, U.; Tsatsaronis, G.; Floerchinger, G.; Paykani, A. Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review. Renew. Sustain. Energy Rev. 2023, 171, 112982. [Google Scholar] [CrossRef]
- Al-Aboosi, F.Y.; El-Halwagi, M.M.; Moore, M.; Nielsen, R.B. Renewable ammonia as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100670. [Google Scholar] [CrossRef]
- Cheliotis, M.; Boulougouris, E.; Trivyza, N.L.; Theotokatos, G.; Livanos, G.; Mantalos, G.; Stubos, A.; Stamatakis, E.; Venetsanos, A. Review on the safe use of ammonia fuel cells in the maritime industry. Energies 2021, 14, 3023. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, W.; Liu, M.; Wang, D.; Wang, X.; Zheng, L.; Zheng, W. Switching optimally balanced Fe-N interaction enables extremely stable energy storage. Energy Environ. Mater. 2023, 6, e12342. [Google Scholar] [CrossRef]
- Mallouppas, G.; Ioannou, C.; Yfantis, E.A. A Review of the Latest Trends in the Use of Green Ammonia as an Energy Carrier in Maritime Industry. Energies 2022, 15, 1453. [Google Scholar] [CrossRef]
- Nayak-Luke, R.M.; Bañares-Alcántara, R. Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production. Energy Environ. Sci. 2020, 13, 2957–2966. [Google Scholar] [CrossRef]
- Nadimi, E.; Przybyła, G.; Lewandowski, M.T.; Adamczyk, W. Effects of ammonia on combustion, emissions, and performance of the ammonia/diesel dual-fuel compression ignition engine. J. Energy Inst. 2023, 107, 101158. [Google Scholar] [CrossRef]
- Lim, D.K.; Plymill, A.B.; Paik, H.; Qian, X.; Zecevic, S.; Chisholm, C.R.; Haile, S.M. Solid acid electrochemical cell for the production of hydrogen from ammonia. Joule 2020, 4, 2338–2347. [Google Scholar] [CrossRef]
- Ayvalı, T.; Edman Tsang, S.C.; Van Vrijaldenhoven, T. The position of ammonia in decarbonising maritime industry: An overview and perspectives: Part II: Costs, safety and environmental performance and the future prospects for ammonia in shipping. Johns. Matthey Technol. Rev. 2021, 65, 291–300. [Google Scholar] [CrossRef]
- Schönborn, A. Aqueous solution of ammonia as marine fuel. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2021, 235, 142–151. [Google Scholar] [CrossRef]
- Al-Enazi, A.; Okonkwo, E.C.; Bicer, Y.; Al-Ansari, T. A review of cleaner alternative fuels for maritime transportation. Energy Rep. 2021, 7, 1962–1985. [Google Scholar] [CrossRef]
- Horton, G.; Finney, H.; Fischer, S.; Sikora, I.; McQuillen, J.; Ash, N.; Shakeel, H. Technological, Operational and Energy Pathways for Maritime Transport to Reduce Emissions towards 2050; Ricardo Energy & Environment: Didcot, UK, 2022. [Google Scholar]
- Zincir, B. Environmental and economic evaluation of ammonia as a fuel for short-sea shipping: A case study. Int. J. Hydrogen Energy 2022, 47, 18148–18168. [Google Scholar] [CrossRef]
- Solutions, M.E. Engineering the Future Two-Stroke Green-Ammonia Engine; MAN Energy Solutions: Copenhagen, Denmark, 2019. [Google Scholar]
Type | Definition |
---|---|
Green hydrogen | Water molecule dissociation using non-carbon energy |
Grey hydrogen | Steam Methane Reforming (SMR) from hydrocarbon fuel |
Blue hydrogen | CO2 produced from the hydrogen separation process from hydrocarbon fuel and treated with CCUS. |
Turquoise hydrogen | Hydrocarbon pyrolyzed to hydrogen and carbon black. A variant type of blue hydrogen. |
Brown hydrogen | Produced from coal gasification, thermal pyrolysis, or water dissociation. |
Reduction (%) in Greenhouse Gas (GHG) Emission | |
---|---|
Hydrogen | Grey hydrogen: 0%, blue hydrogen: 84%, green hydrogen: 75–100% (if renewable and non-carbon electricity is used for hydrogen dissociation) |
Ammonia | Brown ammonia: 3%, blue ammonia: 42.8%, green ammonia: 79.2–100% (if renewable and non-carbon electricity is used for ammonia production) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Wu, P.-C.; Yang, H. Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions. Gases 2023, 3, 158-164. https://doi.org/10.3390/gases3040011
Lin C-Y, Wu P-C, Yang H. Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions. Gases. 2023; 3(4):158-164. https://doi.org/10.3390/gases3040011
Chicago/Turabian StyleLin, Cherng-Yuan, Pei-Chi Wu, and Hsuan Yang. 2023. "Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions" Gases 3, no. 4: 158-164. https://doi.org/10.3390/gases3040011
APA StyleLin, C. -Y., Wu, P. -C., & Yang, H. (2023). Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions. Gases, 3(4), 158-164. https://doi.org/10.3390/gases3040011