Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (794)

Search Parameters:
Keywords = fruit flavor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1189 KiB  
Article
Mixture Design and Kano Model for a Functional Chickpea and Hibiscus Beverage
by Fernando López-Cardoso, Nayely Leyva-López, Erick Paul Gutiérrez-Grijalva, Rosabel Vélez de la Rocha, Luis Angel Cabanillas-Bojórquez, Josué Camberos-Barraza, Feliznando Isidro Cárdenas-Torres and José Basilio Heredia
Beverages 2025, 11(4), 112; https://doi.org/10.3390/beverages11040112 - 4 Aug 2025
Viewed by 97
Abstract
The demand for functional beverages is increasing as consumers seek options that offer health benefits, and plant-based beverages are gaining popularity for their associated advantages. The objective of this study was to optimize the formulation of a chickpea and hibiscus beverage to maximize [...] Read more.
The demand for functional beverages is increasing as consumers seek options that offer health benefits, and plant-based beverages are gaining popularity for their associated advantages. The objective of this study was to optimize the formulation of a chickpea and hibiscus beverage to maximize flavor sensory acceptance, antioxidant capacity, and anthocyanin content using a mixture design and characterize the optimal formulation. An extreme vertices mixture design was employed, with fixed proportions of chickpea beverage (66.5%) and inulin (2%), while varying the proportions of hibiscus decoction, monk fruit, and cinnamon powder. Additionally, the Kano model was used to classify the beverage’s attributes. The optimized formulation consisted of 31.41% hibiscus decoction, 0.48% monk fruit, and 0.61% cinnamon powder, achieving 329.2 µmol TE/100 mL (antioxidant capacity), 3.567 mg C3GE/100 mL (anthocyanin content), and a flavor rating of 6.2. The Kano model classified good taste, functional properties, monk fruit sweetening, and chickpeas as attractive attributes, with functional properties obtaining the highest satisfaction index (0.88). These results demonstrate that employing a mixture design is an effective tool to enhance health-related aspects and consumer acceptance. Additionally, the incorporation of the Kano model provides a broader perspective on the development of functional beverages by identifying key attributes that influence product acceptance and market success. Full article
Show Figures

Figure 1

20 pages, 1743 KiB  
Article
Encapsulation of Lactobacillus reuteri in Chia–Alginate Hydrogels for Whey-Based Functional Powders
by Alma Yadira Cid-Córdoba, Georgina Calderón-Domínguez, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Fátima Sarahi Serrano-Villa, Rigoberto Barrios-Francisco, Marcela González-Vázquez and Rentería-Ortega Minerva
Gels 2025, 11(8), 613; https://doi.org/10.3390/gels11080613 - 4 Aug 2025
Viewed by 226
Abstract
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. [...] Read more.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.0 ± 0.01%, and bacterial viability remained above 9.9 log10 CFU/mL after lyophilization, demonstrating the excellent protective capacity of the hydrogel matrix. Microstructural analysis using confocal laser scanning microscopy (CLSM) revealed well-retained cell morphology and homogeneous distribution within the hydrogel matrix while, in contrast, scanning electron microscopy (SEM) showed spherical, porous microcapsules with distinct surface characteristics influenced by the encapsulation method. Encapsulates were incorporated into beverages flavored with red fruits and pear and subsequently freeze-dried. The resulting powders were analyzed for moisture, protein, lipids, carbohydrates, fiber, and color determinations. The results were statistically analyzed using ANOVA and response surface methodology, highlighting the impact of ingredient ratios on nutritional composition. Raman spectroscopy identified molecular features associated with casein, lactose, pectins, anthocyanins, and other functional compounds, confirming the contribution of both matrix and encapsulants maintaining the structural characteristics of the product. The presence of antioxidant bands supported the functional potential of the powder formulations. Chia–alginate hydrogels effectively encapsulated L. reuteri, maintaining cell viability and enabling their incorporation into freeze-dried beverage powders. This approach offers a promising strategy for the development of next-generation functional food gels with enhanced probiotic stability, nutritional properties, and potential application in health-promoting dairy systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

16 pages, 3158 KiB  
Article
Comparative Metabolomics Analysis of Four Pineapple (Ananas comosus L. Merr) Varieties with Different Fruit Quality
by Ping Zheng, Jiahao Wu, Denglin Li, Shiyu Xie, Xinkai Cai, Qiang Xiao, Jing Wang, Qinglong Yao, Shengzhen Chen, Ruoyu Liu, Yuqin Liang, Yangmei Zhang, Biao Deng, Yuan Qin and Xiaomei Wang
Plants 2025, 14(15), 2400; https://doi.org/10.3390/plants14152400 - 3 Aug 2025
Viewed by 189
Abstract
Understanding the metabolic characteristics of pineapple varieties is crucial for market expansion and diversity. This study performed comparative metabolomic analysis on the “Comte de Paris” (BL) and three Taiwan-introduced varieties: “Tainong No. 11” (XS), “Tainong No. 23” (MG), and “Tainong No. 13” (DM). [...] Read more.
Understanding the metabolic characteristics of pineapple varieties is crucial for market expansion and diversity. This study performed comparative metabolomic analysis on the “Comte de Paris” (BL) and three Taiwan-introduced varieties: “Tainong No. 11” (XS), “Tainong No. 23” (MG), and “Tainong No. 13” (DM). A total of 551 metabolites were identified across the four varieties, with 231 metabolites exhibiting no significant differences between all varieties. This included major sugars such as sucrose, glucose, and fructose, as well as key acids like citric, malic, and quinic acids, indicating that the in-season maturing fruits of different pineapple varieties can all achieve good sugar–acid accumulation under suitable conditions. The differentially accumulated metabolites (DAMs) that were identified among the four varieties all primarily belonged to several major subclasses, including phenolic acids, flavonoids, amino acids and derivatives, and alkaloids, but the preferentially accumulated metabolites in each variety varied greatly. Specifically, branched-chain amino acids (L-leucine, L-isoleucine, and L-valine) and many DAMs in the flavonoid, phenolic acid, lignan, and coumarin categories were most abundant in MG, which might contribute to its distinct and enriched flavor and nutritional value. XS, meanwhile, exhibited a notable accumulation of aromatic amino acids (L-phenylalanine, L-tryptophan), various phenolic acids, and many lignans and coumarins, which may be related to its unique flavor profile. In DM, the dominant accumulation of jasmonic acid might contribute to its greater adaptability to low temperatures during autumn and winter, allowing off-season fruits to maintain good quality. The main cultivar BL exhibited the highest accumulation of L-ascorbic acid and many relatively abundant flavonoids, making it a good choice for antioxidant benefits. These findings offer valuable insights for promoting different varieties and advancing metabolome-based pineapple improvement programs. Full article
Show Figures

Figure 1

26 pages, 1613 KiB  
Article
Olive Oil-Based Lipid Coating as a Precursor Organogel for Postharvest Preservation of Lychee: Efficacy Combined with Polyamide/Polyethylene Packaging Under Passive Atmosphere
by Alessandra Culmone, Roberta Passafiume, Pasquale Roppolo, Ilenia Tinebra, Vincenzo Naselli, Alfonso Collura, Antonino Pirrone, Luigi Botta, Alessandra Carrubba, Nicola Francesca, Raimondo Gaglio and Vittorio Farina
Gels 2025, 11(8), 608; https://doi.org/10.3390/gels11080608 - 2 Aug 2025
Viewed by 353
Abstract
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil [...] Read more.
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil coating (OC), a natural lipidic system with the potential to act as a precursor for organogel development, combined with polyamide/polyethylene (PA/PE) packaging under passive modified atmosphere. Fruits were harvested at commercial maturity and divided into two groups: OC-treated and untreated control (CTR). Both groups were stored at 5 ± 1 °C and 90 ± 5% relative humidity and analyzed on days 0, 3, 6, and 9. The OC-treated fruits showed significantly better retention of physical, chemical, microbiological, and sensory qualities. The coating reduced oxidative stress and enzymatic browning, preserving color and firmness. The PA/PE packaging regulated gas exchange, lowering oxygen levels and delaying respiration and ripening. As a result, OC fruits had lower weight loss, a slower increase in browning index and maturity index, and better visual and sensory scores than the CTR group. This dual strategy proved effective in extending shelf life while maintaining the fruit’s appearance, flavor, and nutritional value. It represents a sustainable and natural approach to enhancing the postharvest stability of lychee. Full article
(This article belongs to the Special Issue Edible Coatings and Film: Gel-Based Innovations)
Show Figures

Figure 1

15 pages, 3222 KiB  
Article
Process Optimization of Thawed Cloudy Huyou Juice Clarification Using a Composite of Carboxymethyl Chitosan and Sodium Alginate
by Peichao Zhang, Liang Zhang, Xiayu Liu, Yuxi Wang, Jiatong Xu, Pengfei Liu and Boyuan Guan
Foods 2025, 14(15), 2658; https://doi.org/10.3390/foods14152658 - 29 Jul 2025
Viewed by 180
Abstract
Cloudy huyou juice is increasingly popular for its unique flavor, but flocculent precipitation after cold storage and thawing affects its sensory quality and increases production costs. This study optimized the clarification of thawed cloudy huyou juice using a composite of carboxymethyl chitosan (CC) [...] Read more.
Cloudy huyou juice is increasingly popular for its unique flavor, but flocculent precipitation after cold storage and thawing affects its sensory quality and increases production costs. This study optimized the clarification of thawed cloudy huyou juice using a composite of carboxymethyl chitosan (CC) and sodium alginate (SA), prepared via ionic and covalent crosslinking. The composite was characterized by SEM, FTIR, and thermal analysis. Transmittance was used to evaluate clarification performance. The effects of dosage, adsorption time, and temperature were first assessed through single-factor experiments, followed by optimization using a Box–Behnken response surface methodology. The composite significantly improved clarity (p < 0.05), reaching 85.38% transmittance under optimal conditions: 22 mg dosage, 80 min time, and 38 °C. The composite dosage and temperature were the most influential factors. Reusability tests showed declining performance, with the transmittance dropping to 57.13% after five cycles, likely due to incomplete desorption of adsorbed compounds. These results suggest that the CC-SA composite is an effective and reusable clarifying agent with potential for industrial applications in turbid fruit juice processing. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

26 pages, 4036 KiB  
Article
Melatonin-Induced Modulation of Polyphenols and Glycolytic Pathways in Relation to Postharvest Quality of Blue Honeysuckle Fruits
by Jinli Qiao, Liangchuan Guo, Zhen Xiao, Junwei Huo, Xiaonan Sui, Fang Gao and Yan Zhang
Foods 2025, 14(15), 2646; https://doi.org/10.3390/foods14152646 - 28 Jul 2025
Viewed by 382
Abstract
The impact of exogenous melatonin treatment on the postharvest quality and storability of blue honeysuckle fruit was investigated. Fruits were immersed in melatonin solutions at concentrations of 0 (control), 0.01, 0.05, and 0.25 mM for 5 min and subsequently stored at –1 °C [...] Read more.
The impact of exogenous melatonin treatment on the postharvest quality and storability of blue honeysuckle fruit was investigated. Fruits were immersed in melatonin solutions at concentrations of 0 (control), 0.01, 0.05, and 0.25 mM for 5 min and subsequently stored at –1 °C for 63 d. Among all treatments, the combination of two-week storage without fruit puncturing and 0.05 mM melatonin application significantly delayed fruit softening and decay even at the initial stage of storage, while also increasing the concentration of phenolic compounds and enhancing antioxidant activity. During the later storage period (28–63 d), melatonin-treated fruits maintained higher levels of maltose, fructose, and sucrose, contributing to improved flavor retention. In contrast, both lower (0.01 mM) and higher (0.25 mM) concentrations were less effective or even detrimental to fruit quality. HPLC-ESI-QTOF-MS2 analysis revealed that 0.05 mM melatonin effectively preserved several functional phenolics, including p-coumaroylquinic acid, caffeoyl glucose, 5-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, luteolin-7-O-glucoside, and hydroxytyrosol. Thus, 0.05 mM melatonin is effective in delaying senescence and maintaining the postharvest quality of blue honeysuckle fruit. Full article
Show Figures

Figure 1

26 pages, 7094 KiB  
Article
Preliminary Study on the Geochemical Characterization of Viticis Fructus Cuticular Waxes: From Latitudinal Variation to Origin Authentication
by Yiqing Luo, Min Guo, Lei Hu, Jiaxin Yang, Junyu Xu, Muhammad Rafiq, Ying Wang, Chunsong Cheng and Shaohua Zeng
Int. J. Mol. Sci. 2025, 26(15), 7293; https://doi.org/10.3390/ijms26157293 - 28 Jul 2025
Viewed by 201
Abstract
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical [...] Read more.
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical limitations. This investigation systematically characterized the cuticular wax composition of VF sample from a diverse variety of production areas. Quantitative analyses were conducted to evaluate the spatial distribution patterns of the wax constituents. Significant regional variations were observed: Anhui sample exhibited the highest total wax content (21.39 μg/cm2), with n-alkanes dominating at 76.67%. High-latitude regions showed elevated triterpenoid acid levels, with maslinic acid (0.53 μg/cm2) and ursolic acid (0.34 μg/cm2) concentrations exceeding those of their low-latitude counterparts by four- and three-fold, respectively. Altitudinal influence manifested in long-chain alcohol accumulation, as triacontanol reached 0.87 μg/cm2 in high-altitude sample. Five key biomarkers demonstrated direct quality correlations: eicosanoic acid, n-triacontane, dotriacontanol, β-amyrin, and α-amyrin. This study established three novel origin identification protocols: single-component quantification, multi-component wax profiling, and wax ratio analysis. This work not only reveals the latitudinal dependence of VF wax composition, but also provides a scientific framework for geographical authentication. Our findings advance wax-based quality evaluation methodologies for fruit products, offering practical solutions for production area verification challenges in food raw materials. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 5405 KiB  
Article
Effects of Foliar and Root Application of Different Amino Acids on Mini-Watermelon
by Huiyu Wang, Hongxu Wang, Jing Zong, Jinghong Hao, Jin Xu, Mingshan Qu, Ting Li and Yingyan Han
Horticulturae 2025, 11(8), 877; https://doi.org/10.3390/horticulturae11080877 - 28 Jul 2025
Viewed by 371
Abstract
Biostimulants, particularly single amino acids, can increase plant growth and crop quality, gaining significant attention. This study investigates the effects of 10 amino acids via root/foliar application on the growth, quality, taste, and volatile flavor of mini-watermelons and compares the differences between the [...] Read more.
Biostimulants, particularly single amino acids, can increase plant growth and crop quality, gaining significant attention. This study investigates the effects of 10 amino acids via root/foliar application on the growth, quality, taste, and volatile flavor of mini-watermelons and compares the differences between the application methods. Here, we employed electronic noses, electronic tongues, and gas chromatography–ion mobility spectrometry to investigate these effects. Root application excels in fruit growth and pectin accumulation, while foliar application boosts soluble protein and specific nutrients. Specifically, root application (except for Val) significantly increases fruit weight, with Gly being most effective for longitudinal diameter, while most amino acids (except Val/Lys) promote transverse diameter. Pectin content shows bidirectional regulation: root application of Glu/Gly/Lys/Pro/Trp/Val enhances pectin, whereas foliar application inhibits it. For taste indices, most treatments improve soluble solids (except Glu root/Arg-Leu foliar), and Ala/Asp/Glu/Gly reduce titratable acids, optimizing the sugar–acid ratio. Foliar application is more efficient for soluble protein accumulation (Ala/Glu/Gly/Pro/Leu). For nutritional quality, except for Lys, all treatments increase vitamin C and widely promote total phenolics and lycopene, with only minor exceptions, and only Arg foliar application enhances ORAC. Additionally, the results revealed that root-applied lysine and valine greatly raised the levels of hexanal and 2-nonenal, whereas foliar-applied valine significantly increased n-nonanal and (Z)-6-nonenal. Overall, we found that amino acids can considerably improve mini-watermelon production, quality, taste, and antioxidant capacity, providing theoretical and practical references for their widespread use in agriculture. Full article
(This article belongs to the Special Issue Effects of Biostimulants on Horticultural Crop Production)
Show Figures

Figure 1

17 pages, 7928 KiB  
Article
Light–Nutrient Optimization Enhances Cherry Tomato Yield and Quality in Greenhouses
by Jianglong Li, Zhenbin Xie, Tiejun Zhao, Hongjun Li, Riyuan Chen, Shiwei Song and Yiting Zhang
Horticulturae 2025, 11(8), 874; https://doi.org/10.3390/horticulturae11080874 - 25 Jul 2025
Viewed by 387
Abstract
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: [...] Read more.
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: nitrogen 10.7 me/L, phosphorus 2.7 me/L, potassium 5.3 me/L) during flowering stage, and 2.4 dS/m (N1: nitrogen 16 me/L, phosphorus 4 me/L, potassium 8 me/L; N2: nitrogen 10.7 me/L, phosphorus 5.4 me/L, potassium 10.8 me/L) from fruit setting to harvest. N1 used standard adjustments, while N2 was optimized by adding solely with KCl and KH2PO4. Lighting treatments included L1 (natural light) and L2 (supplemental red/blue light). The application of N2 effectively decreased nitrate levels while it significantly enhanced the content of soluble sugars, flavor, and overall palatability, especially fruit coloring in cherry tomatoes, irrespective of supplementary lighting conditions. However, such optimization also increased sourness or altered the sugar–acid ratio. Supplementary lighting generally promoted the accumulation of soluble sugars, sweetness, and tomato flavor, although its effects varied markedly among different fruit clusters. The combination of optimized nutrient solutions and supplementary lighting exhibited synergistic effects, improving the content of soluble sugars, vitamin C, proteins, and flavor. N1 combined with L2 achieved the highest plant yield. Among the cultivars, ‘Linglong’ showed the greatest overall quality improvement, followed by ‘Baiyu’, ‘Miying’, and ‘Moka’. In conclusion, supplementary lighting can enhance the effect of nitrogen on yield and amplify the influence of phosphorus and potassium on fruit quality improvement in cherry tomatoes. The findings of this study may serve as a theoretical basis for the development of year-round production techniques for high-quality cherry tomatoes. Full article
Show Figures

Figure 1

23 pages, 3376 KiB  
Article
Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions
by Joanna Kolniak-Ostek, Agnieszka Kita, Davide Giacalone, Laura Vázquez-Araújo, Luis Noguera-Artiaga, Jessica Brzezowska and Anna Michalska-Ciechanowska
Foods 2025, 14(15), 2593; https://doi.org/10.3390/foods14152593 - 24 Jul 2025
Viewed by 348
Abstract
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders [...] Read more.
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders from both widely available fruits, such as apple and pear, chosen for their accessibility and economic relevance, and less commonly consumed fruits, such as Japanese quince, rosehip, and rhubarb, which are often discarded due to sour or astringent flavors. Processing these into powders helped mask undesirable sensory traits and enabled incorporation into beverage matrices. Physicochemical analyses confirmed their technological suitability, while high polyphenol content indicated potential health benefits. Importantly, no process contaminants (furfural, 5-hydroxymethyl-L-furfural, and acrylamide) were detected, supporting the powders’ safety for food use. The integrated application of an electronic tongue and nose enabled objective profiling of taste and aroma. The electronic tongue distinguished taste profiles across formulations, revealing matrix-dependent effects and interactions, particularly with trehalose, that influenced sweetness and bitterness. The electronic nose provided consistent aroma differentiation. Overall, the results highlight the potential of these underutilized plant powders as multifunctional ingredients in plant-based beverage development. They support product innovation aligned with consumer expectations for natural, health-promoting foods. Future work will include sensory validation with consumer panels. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

22 pages, 2408 KiB  
Article
Postharvest Quality of Parthenocarpic and Pollinated Cactus Pear [Opuntia ficus-indica L. (Mill)] Fruits
by Berenice Karina Flores-Hernández, Ma. de Lourdes Arévalo-Galarza, Manuel Livera-Muñoz, Cecilia Peña-Valdivia, Aída Martínez-Hernández, Guillermo Calderón-Zavala and Guadalupe Valdovinos-Ponce
Foods 2025, 14(14), 2546; https://doi.org/10.3390/foods14142546 - 21 Jul 2025
Viewed by 330
Abstract
Opuntia ficus-indica L. (Mill) belongs to the Cactaceae family. The plant produces edible and juicy fruits called cactus pear, recognized for their pleasant flavor and functional properties. However, the fruits have a short shelf life, hard seeds, and the presence of glochidia in [...] Read more.
Opuntia ficus-indica L. (Mill) belongs to the Cactaceae family. The plant produces edible and juicy fruits called cactus pear, recognized for their pleasant flavor and functional properties. However, the fruits have a short shelf life, hard seeds, and the presence of glochidia in the pericarpel. Recently, by inducing parthenocarpy, seedless fruits of cactus pear have been obtained. They have attractive colors, soft and small seminal residues, with a similar flavor to their original seeded counterparts. Nevertheless, their postharvest physiological behavior has not yet been documented. The aim of this study was to compare the biochemical, anatomical, and physiological characteristics of pollinated fruits, CP30 red and CP40 yellow varieties, with their parthenocarpic counterparts (CP30-P and CP40-P), obtained by the application of growth regulators in preanthesis. Fruits of each type were harvested at horticultural maturity, and analyses were carried out on both pulp and pericarpel (peel), using a completely randomized design. Results showed that red fruits CP30 and CP30-P showed higher concentrations of betacyanins in pulp (13.4 and 18.4 mg 100 g−1 FW) and in pericarpel (25.9 and 24.1 mg 100 g−1 FW), respectively; flavonoid content was significantly higher in partenocarpic fruits compared with the pollinated ones. Parthenocarpy mainly affected the shelf life, in pollinated fruits, CP30 was 14 days but 32 days in CP30-P; for CP40, it was 16 days, and 30 days in CP40-P. Also, the partenocarpic fruits were smaller but with a thicker pericarpel, and lower stomatal frequency. Overall, parthenocarpic fruits represent a viable alternative for commercial production due to their extended shelf life, lower weight loss, and soft but edible pericarpel. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

24 pages, 3617 KiB  
Article
Comparative Transcriptome Analysis in Tomato Fruit Reveals Genes, Pathways, and Processes Affected by the LEC1-LIKE4 Transcription Factor
by Venetia Koidou, Dimitrios Valasiadis, Nestor Petrou, Christina Emmanouilidou and Zoe Hilioti
Int. J. Mol. Sci. 2025, 26(14), 6728; https://doi.org/10.3390/ijms26146728 - 14 Jul 2025
Viewed by 353
Abstract
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) [...] Read more.
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) transcription factor, in tomato fruit development using RNA-sequencing data from zinc-finger nuclease (ZFN)-targeted disruption lines. Differential gene expression (DEG) analyses of two independent l1l4 mutant lines compared to the wild-type line revealed significant alterations in key metabolic pathways and regulatory networks that are implicated in fruit ripening. Specifically, L1L4 disruption impacted the genes and pathways related to the fruit’s color development (carotenoid and flavonoids), texture (cell wall modification), flavor (sugar and volatile organic compound metabolism), and ripening-related hormone signaling. The analyses also revealed multiple differentially expressed histones, histone modifiers, and transcription factors (ERFs, MYBs, bHLHs, WRKYs, C2H2s, NACs, GRAS, MADs, and bZIPs), indicating that L1L4 participates in a complex regulatory network. These findings provide valuable insights into the role of L1L4 in orchestrating tomato fruit development and highlight it as a potential target for genetically improving the fruit quality. Full article
(This article belongs to the Special Issue Genomics, Genetics, and the Future of Fruit Improvement)
Show Figures

Figure 1

20 pages, 1340 KiB  
Article
Assessment of Soil and Plant Nutrient Status, Spectral Reflectance, and Growth Performance of Various Dragon Fruit (Pitaya) Species Cultivated Under High Tunnel Systems
by Priyanka Belbase, Krishnaswamy Jayachandran and Maruthi Sridhar Balaji Bhaskar
Soil Syst. 2025, 9(3), 75; https://doi.org/10.3390/soilsystems9030075 - 14 Jul 2025
Viewed by 326
Abstract
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized [...] Read more.
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized crops, little is known about how pitaya growth, physiology and nutrient uptake change throughout the production period. This study aims to evaluate the impact of high tunnels and varying rates of vermicompost on three varieties of pitaya, White Pitaya (WP), Yellow Pitaya (YP), and Red Pitaya (RP), to assess the soil and plant nutrient dynamics, spectral reflectance changes and plant growth. Plants were assessed at 120 and 365 DAP (Days After Plantation). YP thrived in a high tunnel compared to an open environment in terms of survival before 120 DAP, with no diseased incidence and higher nutrient retention. The nutrient accumulation in the RP, WP, and YP shoot samples 120 DAP were ranked in the following order, K > N > Ca > Mg > P > Fe > Zn > B > Mn, while 365 DAP, they were ranked as K > Ca > N > Mg > P > S > Fe > Zn > B > Mn. The nutrient accumulation in the RP, WP, and YP, soil samples 120 and 365 DAP were ranked in the following order: N > Ca > Mg > P > K > Na > Zn. Soil nutrients showed a higher concentration of Na and K grown inside the high tunnels in all three pitaya species due to the increased concentration of soluble salts. Spectral reflectance analysis showed that RP and WP had higher reflectance in the visible and NIR region compared to YP due to their higher plant biomass and canopy cover. This study emphasizes the importance of environmental conditions, nutrition strategies, and plant physiology in the different pitaya plant species. The results suggest that high tunnels with appropriate vermicompost can enhance pitaya growth and development. Full article
Show Figures

Figure 1

12 pages, 451 KiB  
Article
The Effect of Sweetener Type on the Quality of Liqueurs from Vaccinium myrtillus L. and Vaccinium corymbosum L. Fruits
by Agnieszka Ryznar-Luty and Krzysztof Lutosławski
Appl. Sci. 2025, 15(13), 7608; https://doi.org/10.3390/app15137608 - 7 Jul 2025
Viewed by 234
Abstract
This study aimed to investigate the effect of the type of sweetener used (xylitol, stevia, cane sugar) on the quality of liqueurs made from Vaccinium myrtillus L. and Vaccinium corymbosum L. fruits. The quality assessment was performed based on selected organoleptic and physicochemical [...] Read more.
This study aimed to investigate the effect of the type of sweetener used (xylitol, stevia, cane sugar) on the quality of liqueurs made from Vaccinium myrtillus L. and Vaccinium corymbosum L. fruits. The quality assessment was performed based on selected organoleptic and physicochemical features, with particular emphasis on the health-promoting potential of the produced beverages. The liqueurs were assessed in terms of their physicochemical parameters: pH, total acidity, density, total soluble solids, color, ethanol and polyphenol contents, and redox potential. Antioxidant capacities were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assay and ferric reducing antioxidant power (FRAP). The Qualitative Descriptive Analysis method was employed for their sensory assessment. The sensory profiling method was used to determine the intensity of the flavor sensations. The study results showed that the type of sweetener did not affect the antioxidative properties of the liqueur. The ABTS test yielded values from 1081.88 to 1238.13 μmol Tx/100 mL, the DPPH test from 348.8 to 367.88 μmol Tx/100 mL, and the FRAP test from 594.20 to 653.20 μmol FeSO4/100 mL. However, the sweetening substrate affected the content of polyphenolic compounds in the resulting products, but by no more than 15%. The liqueur sweetened with xylitol had a comparable extract content to that sweetened with cane sugar. All three variants of liqueurs were accepted by the evaluation panel, and their overall qualities were comparable in the sensory assessment. It is, therefore, possible to produce a high-quality liqueur with a reduced caloric value, which will potentially increase its attractiveness for consumers. Full article
Show Figures

Figure 1

14 pages, 1255 KiB  
Article
Comparative Evaluation of Appearance and Nutritional Qualities of 57 Tomato (Solanum lycopersicum L.) Accessions
by Yiwen Yang, Jinghong Luo, Yueming Tang, Zhi Li, Liang Yang and Jia Gao
Horticulturae 2025, 11(7), 796; https://doi.org/10.3390/horticulturae11070796 - 4 Jul 2025
Viewed by 207
Abstract
This study aims to comparatively analyze and evaluate the postharvest quality of tomatoes, and to further screen and utilize the excellent tomato germplasm resources. Correlation analysis, principal component analysis (PCA), and cluster analysis were performed on 18 appearance and nutritional quality indicators of [...] Read more.
This study aims to comparatively analyze and evaluate the postharvest quality of tomatoes, and to further screen and utilize the excellent tomato germplasm resources. Correlation analysis, principal component analysis (PCA), and cluster analysis were performed on 18 appearance and nutritional quality indicators of 57 tomato F1 hybrids (labeled accession 1# to 57#). The results show that the variation coefficients of the tested quality indicators among tomato accessions ranged from 3.77% to 42.92%. Among them, 11 indicators had variation coefficients greater than 10%. The soluble protein content had the highest variation coefficient. Six principal components were extracted through PCA, accounting for 78.696% of the variability. The appearance indicators (size, single fruit weight, and a* value) and soluble solid content played key roles in tomato quality evaluation. According to the calculated comprehensive scores, the top 10 accessions with superior overall quality were selected from the tested tomato accessions. Cluster analysis divided the 57 tomato accessions into two major groups and seven subgroups. Notably, accession 6# showed the best flavor and nutritional quality, which could be a focus for future tomato breeding. These results provide a theoretical basis for comprehensive evaluation of tomato and quality improvement in tomato breeding. Full article
Show Figures

Figure 1

Back to TopTop