Postharvest Quality of Parthenocarpic and Pollinated Cactus Pear [Opuntia ficus-indica L. (Mill)] Fruits
Abstract
1. Introduction
2. Materials and Methods
2.1. Management and Description of Plant Material
2.2. Variables Evaluated
2.2.1. Shelf Life
2.2.2. Fruit Weight, Pulp/Seed/Pericarpel Ratio, Weight Loss, and Fruit Size and Pericarp Thickness
2.2.3. Stomatal Frequency
2.2.4. Pericarpel Anatomy
2.2.5. Color
2.2.6. Titratable Acidity and Total Soluble Solids
2.2.7. Soluble Sugars
2.2.8. Ascorbic Acid
2.2.9. Total Phenols
2.2.10. Total Flavonoids
2.2.11. Antioxidant Capacity
2.2.12. Chlorophyll and Carotenoids
2.2.13. Betalains (Betacyanins and Betaxanthins)
2.2.14. Firmness
2.2.15. Pectinmethyl Esterase (PME)
2.2.16. Polygalacturonase (PG)
2.2.17. Catalase (CAT)
2.2.18. Ascorbate Peroxidase(APX)
2.2.19. Determination of Endogenous Plant Hormones
2.3. Statistical Analysis
3. Results
3.1. Shelf Life
3.2. Fruit Weight, Size, and Pulp/Seed/Pericarpel Ratio
3.3. Stomatal Frequency
3.4. Pericarpel Anatomy
3.5. Weight Loss
3.6. Color of Pulp and Pericarpel
3.7. Total Soluble Solids(TSS), Acidity(A), TSS/TA Ratio and Soluble Sugars
3.8. Ascorbic Acid
3.9. Total Phenols and Antioxidant Activity
3.10. Total Flavonoid
3.11. Pigments (Chlorophyll, Carotenoids, and Betalains)
3.12. Firmness
3.13. Pectinmethyl Esterase (PME)
3.14. Polygalacturonase (PG)
3.15. Catalase (CAT) y Ascorbate Peroxidase (APX)
3.16. Plant Hormone Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Servicio de Información Agroalimentaria y Pesquera SIAP. Avance de Siembras y Cosecha. 2022. Available online: https://nube.agricultura.gob.mx/avance_agricola/ (accessed on 30 May 2025).
- Hahn, T.F. Cauterizer technology increases cactus pear shelf life. In Postharvest Handling; InTech: Vienna, Austria, 2017; Volume 8, pp. 141–163. [Google Scholar] [CrossRef]
- Felker, P.; Stintzing, F.C.; Müssig, E.; Leitenberger, M.; Carle, R.; Vogt, T.; Bunch, R. Colour inheritance in cactus pear (Opuntia ficus-indica) fruits. Ann. Appl. Biol. 2008, 152, 307–318. [Google Scholar] [CrossRef]
- Mejía, A.; Cantwell, M. Prickly pear fruit development and quality in relation to gibberellic acid applications to intact and emasculated flower buds. J. Prof. Assoc. Cactus Dev. 2003, 5, 72–85. [Google Scholar]
- Campos-Guillén, J.; Cruz-Medina, J.A.; Pastrana-Martínez, X.; Guevara-González, R.G.; Torres-Pacheco, I.; Mondragón-Jacobo, C.; Cruz-Hernández, A. Molecular analysis in prickly pear ripening: An overview. Isr. J. Plant Sci. 2012, 60, 349–357. [Google Scholar] [CrossRef]
- El-Mostafa, K.; El-Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; El-Kebbaj, M.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef] [PubMed]
- García, F.H.; Coll, L.A.; Cano-Lamadrid, M.; Lluch, D.L.; Barrachina, Á.A.C.; Murcia, P.L. Valorization of prickly pear [O. ficus-indica (L.) Mill]: Nutritional composition, functional properties and economic aspects. In Invasive Species—Introduction Pathways, Economic Impact, and Possible Management Options; IntechOpen: Rijeka, Croatia, 2020; Volume 8, pp. 137–144. [Google Scholar] [CrossRef]
- González, K. Tuna el Fruto Obtenido del Nopal Mexicano. 2020. Available online: https://Saluddiez.com (accessed on 30 June 2025).
- Inglese, P.; Mondragon, C.; Nefzaoui, A.; Saenz, C. Crop Ecology, Cultivation and Uses of Cactus Pear; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i7628e.pdf (accessed on 30 June 2025).
- Gil, G.F.; Morales, M.; Momberg, A. Cuajado y desarrollo del fruto de tuna (Opuntia ficus-indica, Mill.) y su relación con polinización y con los ácidos giberélicos y cloroetilfosfónico. Cienc. Inv. Agrar. 1977, 4, 163–169. [Google Scholar] [CrossRef]
- Díaz, Z.F.; Gil, G.S. Efectividad de diversas dosis y métodos de aplicación del ácido giberélico en la inducción de partenocarpía y en el crecimiento del fruto de tuna (Opuntia ficus-indica, Mill.). Cienc. Inv. Agrar. 1978, 5, 109–117. [Google Scholar] [CrossRef]
- Gil, S.G.; Espinoza, R. Desarrollo de frutos de tuna (Opuntia ficus-indica, Mill.) con aplicación prefloral de giberelina y auxina. Cienc. Inv. Agrar. 1979, 7, 141–147. [Google Scholar] [CrossRef]
- Varela-Delgadillo, Ó.E.; Livera-Muñoz, M.; Muratalla-Lúa, A.; Carrillo-Salazar, J.A. Inducción de partenocarpia en Opuntia spp. Rev. Fitotec. Mex. 2018, 41, 3–11. [Google Scholar] [CrossRef]
- Marini, L.; Grassi, C.; Fino, P.; Calamai, A.; Masoni, A.; Brilli, L.; Palchetti, E. The effects of gibberellic acid and emasculation treatments on seed and fruit production in the prickly pear (Opuntia ficus-indica (L.) Mill.) cv. “Gialla”. Horticulturae 2020, 6, 46. [Google Scholar] [CrossRef]
- Guan, H.; Yang, X.; Lin, Y.; Xie, B.; Zhang, X.; Ma, C.; Hao, Y. The hormone regulatory mechanism underlying parthenocarpic fruit formation in tomato. Front. Plant Sci. 2024, 15, 1404980. [Google Scholar] [CrossRef]
- Livera-Muñoz, M.; Muratalla-Lúa, A.; Flores-Almaraz, R.; Ortiz-Hernández, Y.D.; González-Hernández, V.A.; Castillo-González, F.; Ramírez-Ramírez, I. Parthenocarpic cactus pears (Opuntia spp.) with edible sweet peel and long shelf life. Horticulturae 2023, 10, 39. [Google Scholar] [CrossRef]
- Arévalo-Galarza, M.L.; Caballero-Pérez, J.F.; Valdovinos-Ponce, G.; Cadena-Iñiguez, J.; Avendaño-Arrazate, C.H. Growth and histological development of the fruit pericarp in rambutan (Nephelium lappaceum Linn.). Acta Hortic. 2018, 1194, 165–172. [Google Scholar] [CrossRef]
- Salisbury, E.J. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos. Trans. R. Soc. B. 1928, 216, 1–65. [Google Scholar] [CrossRef]
- López, C.M.L.; Márquez, J.; Murguía, G. Técnicas para el Estudio del Desarrollo en Angiospermas; Editorial Las Prensas de Ciencias, Facultad de Ciencias UNAM: Mexico, Mexico, 2005; p. 178. [Google Scholar]
- AOAC. Official Methods of Analysis, Voloume 1; Association of Official Analytical Chemists: Washington, DC, USA, 1990; p. 947.05. Available online: https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf (accessed on 30 May 2025).
- AOAC. Official Methods of Analysis, 22nd ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2023; p. 932.14. Available online: https://www.aoac.org/official-methods-of-analysis/ (accessed on 30 May 2025).
- Macherey-Nagel. Solid Phase Extraction—Application Guide; Macherey-Nagel: Düren, Germany, 2019; p. 245. Available online: https://www.hplc.sk/pdf/Macherey_Nagel/Cat/Sampleprep.pdf (accessed on 30 May 2025).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Sari, K.R.P.; Ikawati, Z.; Danarti, R.; Hertiani, T. Micro-titer plate assay for measurement of total phenolic and total flavonoid contents in medicinal plant extracts. Arab. J. Chem. 2023, 16, 105003. [Google Scholar] [CrossRef]
- Kim, D.O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolics phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Academic Press: San Diego, CA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar] [CrossRef]
- García-Cruz, L.; Salinas-Moreno, Y.; Valle-Guadarrama, S. Betalaínas, compuestos fenólicos y actividad antioxidante en pitahaya de mayo (Stenocereus griseus H.). Rev. Fitotec. Mex. 2012, 35, 1–5. [Google Scholar]
- Ranganna, S. Manual of Analysis of Fruit and Vegetable Products; Tata McGraw-Hill: New Delhi, India, 1979; pp. 63–65. [Google Scholar]
- Dal Magro, L.; Kornecki, J.F.; Klein, M.P.; Rodrigues, R.C.; Fernandez-Lafuente, R. Optimized immobilization of polygalacturonase from Aspergillus niger following different protocols: Improved stability and activity under drastic conditions. Int. J. Biol. Macromol. 2019, 138, 234–243. [Google Scholar] [CrossRef]
- Martínez-Damián, M.T.; Cruz-Álvarez, O.; Colinas-León, B.; Rodríguez-Pérez, J.E.; Ramírez-Ramírez, S.P. Actividad enzimática y capacidad antioxidante en menta (Mentha piperita L.) almacenada bajo refrigeración. Agron. Mesoam. 2013, 24, 57–69. [Google Scholar] [CrossRef]
- Zhang, Z.; Huber, D.J.; Rao, J. Antioxidant systems of ripening avocado (Persea americana Mill.) fruit following treatment at the preclimacteric stage with aqueous 1-methylcyclopropene. Postharvest Biol. Technol. 2013, 76, 58–64. [Google Scholar] [CrossRef]
- Pan, X.; Welti, R.; Wang, X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nat. Protoc. 2010, 5, 986–992. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. SAS® OnDemand for Academics 9.4; SAS Institute Inc.: Cary, NC, USA, 2023; Available online: https://odamid-usw2-2.oda.sas.com/SASStudio/main?locale=es_419&zone=GMT-06%253A00&ticket=ST-132166-ia9sNtf0k6yUIrKfI0Qr-cas (accessed on 30 May 2025).
- Vardi, A.; Levin, I.; Carmi, N. Induction of seedlessness in citrus: From classical techniques to emerging biotechnological approaches. J. Am. Soc. Hortic. Sci. 2008, 133, 117–126. [Google Scholar] [CrossRef]
- Sáenz, C. Processing and utilization of fruit cladodes and seeds. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; Available online: https://repositorio.uchile.cl/handle/2250/186714 (accessed on 30 June 2025).
- Corrales, G.J.; Hernandez, S.J. Postharvest quality changes of seedless and seeded cactus pear varieties. Rev. Fitotec. Mex. 2005, 28, 9–16. [Google Scholar]
- Martí, C.; Orzáez, D.; Ellul, P.; Moreno, V.; Carbonell, J.; Granell, A. Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J. 2007, 52, 865–876. [Google Scholar] [CrossRef]
- Molesini, B.; Dusi, V.; Pennisi, F.; Pandolfini, T. How hormones and MADS-box transcription factors are involved in controlling fruit set and parthenocarpy in tomato. Genes 2020, 11, 1441. [Google Scholar] [CrossRef]
- Rosas-Cárdenas, F.D.F.; Caballero-Pérez, J.; Gutiérrez-Ramos, X.; Marsch-Martínez, N.; Cruz-Hernández, A.; de Folter, S. miRNA expression during prickly pear cactus fruit development. Planta 2015, 241, 435–448. [Google Scholar] [CrossRef]
- Dominic, S.; Hussain, A.I.; Shahid Chatha, S.A.; Ali, Q.; Aslam, N.; Sarker, S.D.; Alyemeni, M.N. Phenolic profile, nutritional composition, functional properties, and antioxidant activity of newly grown parthenocarpic and normal seeded tomato. J. Chem. 2021, 1, 11. [Google Scholar] [CrossRef]
- Picarella, M.E.; Mazzucato, A. The occurrence of seedlessness in higher plants; insights on roles and mechanisms of parthenocarpy. Front. Plant Sci. 2019, 9, 1997. [Google Scholar] [CrossRef]
- Kumar, R.; Khurana, A.; Sharma, A.K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 2013, 65, 4561–4575. [Google Scholar] [CrossRef]
- Li, H.; Wu, H.; Qi, Q.; Li, H.; Li, Z.; Chen, S. Gibberellins play a role in regulating tomato fruit ripening. Plant Cell Physiol. 2019, 60, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, Y.; Liu, H.; Hu, P.; Jia, Y.; Zhang, C.; Wang, C. Exogenous GA3 application enhances xylem development and induces the expression of secondary wall biosynthesis related genes in Betula platyphylla. Int. J. Mol. Sci. 2015, 16, 22960–22975. [Google Scholar] [CrossRef] [PubMed]
- Ozga, J.A.; Reinecke, D.M.; Ayele, B.T.; Ngo, P.; Nadeau, C.; Wickramarathna, A.D. Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol. 2009, 150, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Lamúa, M. Aplicación de frío en los alimentos; Ediciones Mundiprensa: Madrid, Spain, 2000; Volume 2, pp. 3–7. ISBN 9788489922259. [Google Scholar]
- Khalil, H.A. Improved yield, fruit quality, and shelf life in ‘Flame Seedless’ grapevine with pre-harvest foliar applications of forchlorfenuron, gibberellic acid, and abscisic acid. J. Hortic. Res. 2020, 28, 77–86. [Google Scholar] [CrossRef]
- Hieke, S.; Menzel, C.M.; Lüdders, P. Effects of leaf, shoot and fruit development on photosynthesis of lychee trees (Litchi chinensis). Tree Physiol. 2002, 22, 955–961. [Google Scholar] [CrossRef]
- Ripoll, J.J.; Zhu, M.; Brocke, S.; Hon, C.T.; Yanofsky, M.F.; Boudaoud, A.; Roeder, A.H.K. Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. Proc. Natl. Acad. Sci. USA 2019, 116, 25333–25342. [Google Scholar] [CrossRef]
- Ariizumi, T.; Shinozaki, Y.; Ezura, H. Genes that influence yield in tomato. Breed. Sci. 2013, 63, 3–13. [Google Scholar] [CrossRef]
- Andreu-Coll, L.; García-Pastor, L.; Valero, D.; Amorós, A.; Almansa, M.; Legua, P.; Hernández, F. Influence of storage on physiological properties, chemical composition, and bioactive compounds on cactus pear fruit (O. ficus-indica L. (Mill)). Agriculture 2021, 11, 62. [Google Scholar] [CrossRef]
- Chen, Y.H.; Hung, Y.C.; Chen, M.Y.; Lin, H.T. Effects of acidic electrolyzed oxidizing water on retarding cell wall degradation and delaying softening of blueberries during postharvest storage. Food Sci. Technol. 2017, 84, 650–657. [Google Scholar] [CrossRef]
- dos Santos, R.C.; Nietsche, S.; Pereira, M.C.T. Atemoya fruit development and cytological aspects of GA3-induced growth and parthenocarpy. Protoplasma 2019, 256, 1345–1360. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Xu, H.; Zhao, X.; Tan, Y.; Li, P.; Liu, D. Fruit softening correlates with enzymatic activities and compositional changes in fruit cell wall during growing in Lycium barbarum L. Int. J. Food Sci. Technol. 2021, 56, 3044–3054. [Google Scholar] [CrossRef]
- Hernández-Pérez, T.; Carrillo-López, A.; Guevara-Lara, F.; Cruz-Hernández, A.; Paredes-López, O. Biochemical and nutritional characterization of three prickly pear species with different ripening behavior. Plant Foods Hum. Nutr. 2005, 60, 195–200. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, M.; Yang, W.; Liu, Y.; Wang, Y.; Chen, G. The role of cell wall polysaccharides disassembly and enzyme activity changes in the softening process of hami melon (Cucumis melo L.). Foods 2022, 11, 841. [Google Scholar] [CrossRef]
- Hong, P.; Zang, Z.; Zhou, Y.; Lu, X.; Sadeghnezhad, E.; Pang, Q.; Jia, H. Polygalacturonase inhibiting protein enhances cell wall strength of strawberry fruit for resistance to Botrytis cinerea infection. Sci. Hortic. 2024, 327, 112850. [Google Scholar] [CrossRef]
- Luo, T.; Long, L.; Lai, T.; Lin, X.; Ning, C.; Lai, Z.; Du, X.; Shuai, L.; Han, D.; Wu, Z. Preharvest GA3 treatment at optimized time points enhanced the storability of ‘Shixia’ longan fruit. Postharvest Biol. Technol. 2024, 214, 113005. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; García-Carmona, F. Biosynthesis of betalains: Yellow and violet plant pigments. Trends Plant Sci. 2013, 18, 334–343. [Google Scholar] [CrossRef] [PubMed]
- González, F.P.; Saucedo, V.C.; Guerra, R.D.; Suarez, E.J.; Soto, H.R.; Lopez, J.A.; Hernández, R.G. Post-harvest quality and quantification of betalains, phenolic compounds and antioxidant activity in fruits of three cultivars of prickly pear (Opuntia ficus-indica L. Mill). J. Hortic. Sci. 2021, 16, 91–102. [Google Scholar] [CrossRef]
- Sanadi, R.M.; Deshmukh, R.S. The effect of Vitamin C on melanin pigmentation—A systematic review. J. Oral Maxillofac. Pathol. 2020, 24, 374. [Google Scholar] [CrossRef]
- De Wit, M.; Du Toit, A.; Osthoff, G.; Hugo, A. Cactus pear antioxidants: A comparison between fruit pulp, fruit peel, fruit seeds and cladodes of eight different cactus pear cultivars (O. ficus-indica L. (Mill) and Opuntia robusta). J. Food Meas. Charact. 2019, 13, 2347–2356. [Google Scholar] [CrossRef]
- Hernández-Ramos, L.; García-Mateos, M.R.; Castillo-González, A.M.; Ybarra-Moncada, C.; Nieto-Angel, R. Fruits of the pitahaya Hylocereus undatus and H. ocamponis: Nutritional components and antioxidant. J. Appl. Bot. Food Qual. 2020, 93, 197–203. [Google Scholar] [CrossRef]
- Yeddes, N.; Chérif, J.K.; Guyot, S.; Sotin, H.; Ayadi, M.T. Comparative study of antioxidant power, polyphenols, flavonoids and betacyanins of the peel and pulp of three Tunisian Opuntia forms. Antioxidants 2013, 2, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Butera, D.; Tesoriere, L.; Di Gaudio, F.; Bongiorno, A.; Allegra, M.; Pintaudi, A.M.; Livrea, M.A. Antioxidant activities of Sicilian prickly pear (Opuntia ficus-indica) fruit extracts and reducing properties of its betalains: Betanin and indicaxanthin. J. Agric. Food Chem. 2002, 50, 6895–6901. [Google Scholar] [CrossRef] [PubMed]
- El-Shehawi, A.M.; Nagaty, M.A.; Fahmi, A.I. Gene expression profiling and fruit quality during ripening stages of Prickly pear (O. ficus-indica L. (Mill)) in Taif. Life Sci. 2013, 10, 1267–1278. [Google Scholar]
- Du, M.; Spalding, E.P.; Gray, W.M. Rapid auxin-mediated cell expansion. Annu. Rev. Plant Biol. 2020, 71, 379–402. [Google Scholar] [CrossRef]
- Forlani, S.; Simona, M.; Chiara, M. Fruit ripening: The role of hormones, cell wall modifications, and their relationship with pathogens. J. Exp. Bot. 2019, 70, 2993–3006. [Google Scholar] [CrossRef]
- Seo, J.; Lee, J.G.; Kang, B.C.; Lim, S.; Lee, E.J. Indole-3-acetic acid, a hormone potentially involved in chilling-induced seed browning of pepper (Capsicum annuum L.) fruit during cold storage. Postharvest Biol. Technol. 2023, 199, 112299. [Google Scholar] [CrossRef]
- Aguilar-Ayala, I.; Herrera-Rojas, D. Application of phytohormones, growth regulators, and calcium to preserve fruit quality in pre- and post-harvest. In New Advances in Postharvest Technology; InTech Open: Rijeka, Croatia, 2023; Volume 372. [Google Scholar] [CrossRef]
- Sharif, R.; Zhu, Y.; Huang, Y.; Sohail, H.; Li, S.; Chen, X.; Qi, X. microRNA regulates cytokinin induced parthenocarpy in cucumber (Cucumis sativus L.). Plant Physiol. Biochem. 2024, 212, 108681. [Google Scholar] [CrossRef]
- Maurya, V.K.; Ranjan, V.; Gothandam, K.M.; Pareek, S. Exogenous gibberellic acid treatment extends green chili shelf life and maintain quality under modified atmosphere packaging. Sci. Hortic. 2020, 269, 108934. [Google Scholar] [CrossRef]
- Alferez, F.; de Carvalho, D.U.; Boakye, D. Interplay between abscisic acid and gibberellins, as related to ethylene and sugars, in regulating maturation of non-climacteric fruit. Int. J. Mol. Sci. 2021, 22, 669. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Guo, H.; Lv, B.; Feng, J.; Wang, H.; Chai, S. Gibberellin biosynthesis is required for CPPU-induced parthenocarpy in melon. Hortic. Res. 2023, 10, uhad084. [Google Scholar] [CrossRef]
- Gupta, K.; Wani, S.H.; Razzaq, A.; Skalicky, M.; Samantara, K.; Gupta, S.; Brestic, M. Abscisic acid: Role in fruit development and ripening. Front. Plant Sci. 2022, 13, 817500. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, F.; Ji, S.; Dai, H.; Zhou, X.; Wei, B.; Wang, A. Abscisic acid accelerates postharvest blueberry fruit softening by promoting cell wall metabolism. Sci. Hortic. 2021, 288, 110325. [Google Scholar] [CrossRef]
Storage (Days) | Varieties/Weight Loss (%) | |||
---|---|---|---|---|
CP30 | CP30-P | CP40 | CP40-P | |
14 | 9.7 ± 1.1 | 9.3 ± 2.3 | 6.2 ± 2.2 | 5.8 ± 0.9 |
16 | -- | 9.4 ± 2.6 | 7.6 ± 3.0 | 6.2 ± 0.9 |
30 | -- | 12.4 ± 2.8 | -- | 9.7 ± 1.6 |
32 | -- | 12.5 ± 1.9 | -- | -- |
Varieties | Total Phenols (mg GA 100 g−1 FW) | Antioxidant Activity (% RSC) | ||||
---|---|---|---|---|---|---|
0 | 10 | |||||
Per | Pul | Per | Pul | Per | Pul | |
CP30 | 97.3 ± 4.4 a * | 96.2 ± 15.2 | 20.9 ±2.9 b | 14.9 ± 0.5 | 69.3 ± 8.2 | 75.3 ± 12.5 |
CP30-P | 81.2 ±12.9 b | 78.2 ± 13.5 | 52.0 ± 10.4 a | 14.4 ± 1.5 | 58.2 ± 9.4 | 67.4 ± 12.1 |
CP40 | 91.2 ± 32.1 | 90.2 ± 21.5 | 16.7 ± 0.5 | 15.9 ± 1.3 a | 82.3 ± 14.1 | 75.5 ± 14.5 |
CP40-P | 82.1 ± 5.0 | 81.2 ± 8.2 | 14.9 ± 2.2 | 13.4 ± 1.2 b | 77.0 ± 9.4 | 74 ± 9.8 |
Varieties | Total Flavonoid (mg QE 100 g−1 DW) | |||
---|---|---|---|---|
0 | 10 | |||
Per | Pul | Per | Pul | |
CP30 | 94.7 ± 12.4 b * | 26.3 ± 2.7 | 116.8 ± 1.7 b | 28.6 ± 3.0 |
CP30-P | 130.6 ± 11.6 a | 22.9 ± 1.6 | 145.2 ± 0.7 a | 32.7 ± 4.5 |
CP40 | 124.0 ± 8.5 b | 43.5 ± 2.9 a | 139.7 ± 4.8 b | 46.6 ± 1.7 b |
CP40-P | 145.6 ± 2.3 a | 32.3 ± 2.9 b | 145.6 ± 3.1 a | 53.3 ± 5.5 a |
Varieties | Chlorophyll (mg 100 g−1 FW) | Carotenoids (mg 100 g−1 FW) | ||
---|---|---|---|---|
Per | Pul | Per | Pul | |
CP30 | 2.0 ± 0.6 * | 0.7 ± 0.1 | 7.0 ± 1.0 | 5.0 ± 0.8 a |
CP30-P | 2.0 ± 0.4 | 0.9 ± 0.2 | 5.0 ± 1.0 | 3.0 ± 0.4 b |
CP40 | 3.0 ± 0.1 | 0.6 ± 0.1 | 14.6 ± 1.0 a | 6.0 ± 0.2 |
CP40-P | 3.0 ± 0.4 | 0.9 ± 0.1 | 9.6 ± 1.0 b | 4.0 ± 0.1 |
Varieties | Betacyanins (mg 100 g−1 FW) | Betaxanthins (mg 100 g−1 FW) | ||
---|---|---|---|---|
Per | Pul | Per | Pul | |
CP30 | 25.9 ± 12.3 * | 13.4 ± 2.0 b | 16.8 ± 1.3 a | 9.6 ± 1.1 b |
CP30-P | 24.1 ± 12.0 | 18.4 ± 2.3 a | 15.0 ± 0.7 b | 14.3 ± 4.4 a |
CP40 | 2.3 ± 0.6 | 1.5 ± 0.3 | 15.2 ± 2.9 | 14.5 ± 1.1 |
CP40-P | 2.3 ± 0.5 | 1.6 ± 0.2 | 17.2 ± 3.9 | 16.0 ± 1.1 |
Assessment Day/Varieties | CAT (U g−1 FW) | APX (U g−1 FW) |
---|---|---|
0 days of storage | ||
CP30 | 21.0 ± 3.2 * | 35.8 ± 2.7 a |
CP30-P | 22.1 ± 2.6 | 31.4 ± 2.2 b |
CP40 | 24.4 ± 4.5 a | 40.7 ± 2.9 |
CP40-P | 19.4 ± 2.5 b | 38.7 ± 5.1 |
15 days of storage | ||
CP30 | 878.1 ± 64.3 b | 235.6 ± 38.5 b |
CP30-P | 1495.0 ± 72.4 a | 300.1 ± 60.1 a |
CP40 | 657.9 ± 29.3 b | 401.4 ± 48.3 b |
CP40-P | 1126.9 ± 36.5 a | 420.4 ± 21.7 a |
30 days of storage | ||
CP30-P | 948.0 ± 55.3 | 243.9 ± 28.5 |
CP40-P | 1029.6 ± 91.7 | 315.6 ± 16.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Hernández, B.K.; Arévalo-Galarza, M.d.L.; Livera-Muñoz, M.; Peña-Valdivia, C.; Martínez-Hernández, A.; Calderón-Zavala, G.; Valdovinos-Ponce, G. Postharvest Quality of Parthenocarpic and Pollinated Cactus Pear [Opuntia ficus-indica L. (Mill)] Fruits. Foods 2025, 14, 2546. https://doi.org/10.3390/foods14142546
Flores-Hernández BK, Arévalo-Galarza MdL, Livera-Muñoz M, Peña-Valdivia C, Martínez-Hernández A, Calderón-Zavala G, Valdovinos-Ponce G. Postharvest Quality of Parthenocarpic and Pollinated Cactus Pear [Opuntia ficus-indica L. (Mill)] Fruits. Foods. 2025; 14(14):2546. https://doi.org/10.3390/foods14142546
Chicago/Turabian StyleFlores-Hernández, Berenice Karina, Ma. de Lourdes Arévalo-Galarza, Manuel Livera-Muñoz, Cecilia Peña-Valdivia, Aída Martínez-Hernández, Guillermo Calderón-Zavala, and Guadalupe Valdovinos-Ponce. 2025. "Postharvest Quality of Parthenocarpic and Pollinated Cactus Pear [Opuntia ficus-indica L. (Mill)] Fruits" Foods 14, no. 14: 2546. https://doi.org/10.3390/foods14142546
APA StyleFlores-Hernández, B. K., Arévalo-Galarza, M. d. L., Livera-Muñoz, M., Peña-Valdivia, C., Martínez-Hernández, A., Calderón-Zavala, G., & Valdovinos-Ponce, G. (2025). Postharvest Quality of Parthenocarpic and Pollinated Cactus Pear [Opuntia ficus-indica L. (Mill)] Fruits. Foods, 14(14), 2546. https://doi.org/10.3390/foods14142546