Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = fresh mortar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10739 KiB  
Article
Effects of Natural Seashell Presence on the Engineering Performance of Sea Sand Concrete
by Anuradha Koswaththa, Pasindu Abeyaratne, Samith Buddika, Hiran Yapa and Satheeskumar Navaratnam
Buildings 2025, 15(15), 2751; https://doi.org/10.3390/buildings15152751 - 4 Aug 2025
Viewed by 203
Abstract
Processed sea sand has emerged as a viable alternative to traditional fine aggregates in the Sri Lankan construction industry. Despite its economic and environmental advantages, concerns over residual seashell content have limited its widespread adoption by local contractors. Residual seashell content, typically ranging [...] Read more.
Processed sea sand has emerged as a viable alternative to traditional fine aggregates in the Sri Lankan construction industry. Despite its economic and environmental advantages, concerns over residual seashell content have limited its widespread adoption by local contractors. Residual seashell content, typically ranging from 1% to 3% after processing, has raised concerns about its impact on the performance of concrete. This study systematically investigates the influence of seashell fragments, with a content of up to 5%, on the fresh, mechanical, and durability properties of sea sand concrete and mortar. Experimental results indicate that workability remains stable, with minor variations across the tested range of shell content. Compressive strength remains relatively consistent from 0% to 5% seashells, indicating that seashell content does not significantly impact the strength within this range. Durability tests reveal minimal effects of shell content on concrete performance within the tested shell range, as indicated by results for water absorption, rapid chloride penetration, and acid exposure testing. Accelerated corrosion indicates that the typical shell content does not increase corrosion risk; however, high shell content (>3%) can compromise corrosion durability. Overall, these findings demonstrate that the mechanical and durability performance of sea sand concrete remains uncompromised at typical seashell content levels (1–3%), supporting the use of processed sea sand as a sustainable and viable alternative to traditional fine aggregates in Sri Lankan construction. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Graphical abstract

21 pages, 4014 KiB  
Article
Optimized Mortar Formulations for 3D Printing: A Rheological Study of Cementitious Pastes Incorporating Potassium-Rich Biomass Fly Ash Wastes
by Raúl Vico Lujano, Luis Pérez Villarejo, Rui Miguel Novais, Pilar Hidalgo Torrano, João Batista Rodrigues Neto and João A. Labrincha
Materials 2025, 18(15), 3564; https://doi.org/10.3390/ma18153564 - 30 Jul 2025
Viewed by 314
Abstract
The use of 3D printing holds significant promise to transform the construction industry by enabling automation and customization, although key challenges remain—particularly the control of fresh-state rheology. This study presents a novel formulation that combines potassium-rich biomass fly ash (BFAK) with an air-entraining [...] Read more.
The use of 3D printing holds significant promise to transform the construction industry by enabling automation and customization, although key challenges remain—particularly the control of fresh-state rheology. This study presents a novel formulation that combines potassium-rich biomass fly ash (BFAK) with an air-entraining plasticizer (APA) to optimize the rheological behavior, hydration kinetics, and structural performance of mortars tailored for extrusion-based 3D printing. The results demonstrate that BFAK enhances the yield stress and thixotropy increases, contributing to improved structural stability after extrusion. In parallel, the APA adjusts the viscosity and facilitates material flow through the nozzle. Isothermal calorimetry reveals that BFAK modifies the hydration kinetics, increasing the intensity and delaying the occurrence of the main hydration peak due to the formation of secondary sulfate phases such as Aphthitalite [(K3Na(SO4)2)]. This behavior leads to an extended setting time, which can be modulated by APA to ensure a controlled processing window. Flowability tests show that BFAK reduces the spread diameter, improving cohesion without causing excessive dispersion. Calibration cylinder tests confirm that the formulation with 1.5% APA and 2% BFAK achieves the maximum printable height (35 cm), reflecting superior buildability and load-bearing capacity. These findings underscore the novelty of combining BFAK and APA as a strategy to overcome current rheological limitations in digital construction. The synergistic effect between both additives provides tailored fresh-state properties and structural reliability, advancing the development of a sustainable SMC and printable cementitious materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 4164 KiB  
Review
Methodologies to Design Optimum 3D Printable Mortar Mix: A Review
by Isabelle Gerges, Faten Abi Farraj, Nicolas Youssef, Emmanuel Antczak and Fadi Hage Chehade
Buildings 2025, 15(14), 2497; https://doi.org/10.3390/buildings15142497 - 16 Jul 2025
Viewed by 230
Abstract
Nowadays, 3D printing has revolutionized the construction and building industry, enabling researchers to push the boundaries of creating structural components with this innovative technique. A key factor for the success of this approach lies in selecting the optimal mix design, which must possess [...] Read more.
Nowadays, 3D printing has revolutionized the construction and building industry, enabling researchers to push the boundaries of creating structural components with this innovative technique. A key factor for the success of this approach lies in selecting the optimal mix design, which must possess suitable properties for printing while ensuring strong performance once hardened. However, achieving this optimal mix is complex due to limited knowledge regarding the necessary fresh-state properties, the characteristics and proportions of the constituents, the influence of printing parameters on these properties, and the various challenges encountered during and post printing. This paper aims to address these aspects by offering a comprehensive review of the steps researchers have taken to develop an optimized 3D printable mix. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 1637 KiB  
Article
Influence of Laminated Expanded Clay Proportion on Mortar Properties
by Vanessa Gentil de Oliveira Almeida, Karolaine Rodrigues Farias, Veluza Anchieta Souza, Fernanda Martins Cavalcante de Melo, Herbet Alves de Oliveira, Alexandre Santos Pimenta, Sabir Khan and Rafael Rodolfo de Melo
J. Compos. Sci. 2025, 9(6), 309; https://doi.org/10.3390/jcs9060309 - 18 Jun 2025
Viewed by 627
Abstract
Mortar is widely used in civil construction. The inclusion of expanded clay as a lightweight aggregate reduces the density of mortar, enabling lighter structural elements and potentially lowering material and energy requirements during construction. This research aims to produce lightweight mortars by partially [...] Read more.
Mortar is widely used in civil construction. The inclusion of expanded clay as a lightweight aggregate reduces the density of mortar, enabling lighter structural elements and potentially lowering material and energy requirements during construction. This research aims to produce lightweight mortars by partially replacing fine aggregate with proportions of expanded clay. Six mortar formulations were prepared with varying proportions of expanded clay. The constituent materials of the mixtures and the mortars were characterized according to regulatory prescriptions. The results indicated that the increase in the replacement of fine aggregate with expanded clay reduced the consistency and density of the mass in the fresh state. No significant differences were observed in water absorption by immersion among the mortars in the hardened state. Regarding mechanical tests, most mortars’ tensile strength in bending remained stable. On the other hand, compressive strength decreased. The tensile adhesion was also reduced with the incorporation of expanded clay. After exposure to sodium sulfate solution, all tensile strength results in bending improved. The coefficient of the constructive quality indicated that the ideal replacement formulation is 20% expanded clay. These mortars represent a viable technical alternative, complying with current standards and contributing more efficiently and sustainably to civil construction. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

20 pages, 4078 KiB  
Article
Investigating the Properties of Composite Cement-Based Mortar Containing High Volumes of GGBS and CCR
by Zahraa Jwaida, Awad Jadooe, Anmar Dulaimi, Raid R. A. Almuhanna, Hayder Al Hawesah, Luís Filipe Almeida Bernardo and Jorge Miguel de Almeida Andrade
J. Compos. Sci. 2025, 9(6), 301; https://doi.org/10.3390/jcs9060301 - 13 Jun 2025
Viewed by 469
Abstract
This study explores the potential of calcium carbide residue (CCR) as an alternative activator for ground granulated blast-furnace slag (GGBS) to reduce reliance on ordinary Portland cement (OPC) in mortar production. A series of OPC-GGBS-CCR ternary binders were prepared and evaluated for their [...] Read more.
This study explores the potential of calcium carbide residue (CCR) as an alternative activator for ground granulated blast-furnace slag (GGBS) to reduce reliance on ordinary Portland cement (OPC) in mortar production. A series of OPC-GGBS-CCR ternary binders were prepared and evaluated for their fresh and mechanical properties over various curing periods. The findings showed that mortars’ fresh and mechanical characteristics were significantly improved with longer curing times, suggesting CCR’s potential to efficiently activate GGBS, thereby benefiting the environment and economy. Significant enhancements in compressive strengths were observed after 7 days of curing, with increases of 44%, and 69–144% for OPC and OPC-GGBS-CCR ternary binders, respectively, while the utilization of activated binders led to flexural strength growth compared to three days of curing, with improvements of 70–173% for OPC-GGBS-CCR ternary binders, respectively. Microstructural analyses confirmed accelerated hydration and increased product formation due to CCR’s calcium content. An optimal mix ratio of OPC:GGBS:CCR = 1:1:0.5 demonstrated mechanical properties comparable to OPC mortars after 28 days, highlighting CCR’s potential for sustainable cementitious materials. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

28 pages, 2461 KiB  
Review
Recycled Aggregate: A Solution to Sustainable Concrete
by Jitao Bai, Chenxi Ge, Jiahe Liang and Jie Xu
Materials 2025, 18(12), 2706; https://doi.org/10.3390/ma18122706 - 9 Jun 2025
Viewed by 621
Abstract
Recycling construction and demolition (C&D) waste into recycled aggregate (RA) and recycled aggregate concrete (RAC) is conducive to natural resource conservation and industry decarbonization, which have been attracting much attention from the community. This paper aims to present a synthesis of recent scientific [...] Read more.
Recycling construction and demolition (C&D) waste into recycled aggregate (RA) and recycled aggregate concrete (RAC) is conducive to natural resource conservation and industry decarbonization, which have been attracting much attention from the community. This paper aims to present a synthesis of recent scientific insights on RA and RAC by conducting a systematic review of the latest advances in their properties, test techniques, modeling, modification and improvement, as well as applications. Over 100 papers published in the past three years were examined, extracting enlightening information and recommendations for engineering. The review shows that consistent conclusions have been drawn about the physical properties in that RA can reduce the workability and the setting time of fresh RAC and increase the porosity of hardened RAC. Its impact on drying and autogenous shrinkage is governed by its size and the strength of the parent concrete. RA generally acts negatively on the durability and mechanical properties of concrete, but such effects remain controversial as many opposite observations have been reported. Apart from the commonly used multiscale test techniques, real-time monitoring also plays an important role in the investigation of deformation and fracture processes. Analytical models for RAC were usually modified from the existing models for NAC or established through regression analysis, while for numerical models, the distribution of attached mortar should be considered to improve their accuracy. Machine learning models are effective in predicting RAC properties. Modification of RA can be implemented by either removing or strengthening the attached mortar, while the modification of RAC is mainly achieved by improving its microstructure. Current exploration of RAC applications mainly focuses on the optimization of concrete design and mix procedures, structural components, as well as multifunctional construction materials, revealing the room for its further exploitation in the industry. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 7344 KiB  
Article
Mortars with Mining Tailings Aggregates: Implications for Additive Manufacturing
by Martina Inmaculada Álvarez-Fernández, Diego-José Guerrero-Miguel, Celestino González-Nicieza, María Belén Prendes-Gero, Juan Carlos Peñas-Espinosa and Román Fernández-Rodríguez
Buildings 2025, 15(11), 1912; https://doi.org/10.3390/buildings15111912 - 1 Jun 2025
Viewed by 445
Abstract
There is no doubt that additive manufacturing (AM) with mortars presents an opportunity within the framework of a circular economy that should not be overlooked. The concepts of reduce, reuse, and recycle are fully aligned with this technology. One of the less explored [...] Read more.
There is no doubt that additive manufacturing (AM) with mortars presents an opportunity within the framework of a circular economy that should not be overlooked. The concepts of reduce, reuse, and recycle are fully aligned with this technology. One of the less explored possibilities is the utilisation of mining tailings as aggregates in printing mortars. This idea not only incorporates the concept of recycling but also contributes to a reduction in the production of potentially hazardous waste that would otherwise require storage in dams, thereby decreasing long-term environmental risks and improving the management of mineral resources. We employed a mortar composed of 12.5% material derived from mining tailings to highlight aspects of AM that are typically not subject to analysis, such as the necessity of considering contact interfaces between layers in structural design, the stackability of layers during the construction process, and the behaviour under fire and seismic events, which must be taken into account during the operational phase. Without aiming for exhaustiveness, we conducted a series of tests and computational modelling to show the significance of these factors, with the intention of drawing the attention of different stakeholders—including construction companies, regulatory authorities, standardisation agencies, insurers, and end-users. Full article
(This article belongs to the Special Issue Advances in the Implementation of Circular Economy in Buildings)
Show Figures

Figure 1

14 pages, 1658 KiB  
Article
Thermal Conductivity and Thermal Behavior of Mortar Containing Wood Shavings and Sawdust
by Stamatia Gavela, Nikolaos Nikoloutsopoulos, Theodora Kassandra Galati and Anastasia Sotiropoulou
Appl. Sci. 2025, 15(11), 5911; https://doi.org/10.3390/app15115911 - 24 May 2025
Viewed by 561
Abstract
In the frame of an extended research program dealing with wood shavings and wood sawdust utilization in mortar, thermal conductivity and thermal behavior under various temperatures of mortars containing wood shavings and sawdust as a replacement for a part of the conventional aggregates [...] Read more.
In the frame of an extended research program dealing with wood shavings and wood sawdust utilization in mortar, thermal conductivity and thermal behavior under various temperatures of mortars containing wood shavings and sawdust as a replacement for a part of the conventional aggregates were studied. Mixes with 0, 30, 50 and 70% replacement of conventional fine limestone aggregates with wood shavings were made. Also, mixes with 0, 10 and 20% replacement of aggregates with wood sawdust were made. The density of fresh concrete and the thermal conductivity of hardened concrete were determined. Thermal conductivity was determined with the guarded hot plate method according to standard ΕΝ 12667:2001. Specimens were also submitted to 100, 200, 300, 400, 500 and 600 °C. Flexural and compressive strength were determined 24 h after thermal strain. Results showed that thermal conductivity decreased when volume replacement increased, both for the use of wood shavings and sawdust, thus improving the thermal properties of mortar. Flexural and compressive strength exponentially decrease as exposure temperature increases. Full article
(This article belongs to the Special Issue Sustainable Concretes: Latest Advances and Prospects)
Show Figures

Figure 1

22 pages, 11588 KiB  
Article
Seawater-Activated Mineral Synergy in Sulfoaluminate Cement: Corrosion Resistance Optimization via Orthogonal Design
by Chuanlin Wang, Shupeng Zhou, Qingyou Ou, Junkai Liu and Ming Wu
Materials 2025, 18(11), 2428; https://doi.org/10.3390/ma18112428 - 22 May 2025
Cited by 1 | Viewed by 349
Abstract
Mineral admixtures exhibit significant enhancement effects on the seawater corrosion resistance of sulfoaluminate cement (SAC). This study systematically investigates the influence mechanisms of fly ash (FA), silica fume (SF), and slag powder (SP) on the physicochemical properties of SAC-based materials. Experimental results demonstrate [...] Read more.
Mineral admixtures exhibit significant enhancement effects on the seawater corrosion resistance of sulfoaluminate cement (SAC). This study systematically investigates the influence mechanisms of fly ash (FA), silica fume (SF), and slag powder (SP) on the physicochemical properties of SAC-based materials. Experimental results demonstrate that FA effectively enhances the fluidity of fresh SAC paste while mitigating drying shrinkage. Under standard curing conditions, the compressive strength of SAC mortar decreases with increasing FA content, reaching optimal performance at a 5% replacement level. However, in seawater immersion environments, FA undergoes chemical activation induced by seawater ions, leading to a positive correlation between mortar strength and FA content, with the 10% replacement ratio demonstrating maximum efficacy. SF addition reduces workability but significantly suppresses shrinkage deformation. While exhibiting detrimental effects on flexural strength under standard curing (optimal dosage: 7.5%), a 5.0% SF content manifests superior seawater resistance in marine environments. SP incorporation minimally impacts mortar rheology but exacerbates shrinkage behavior, showing limited improvement in both standard-cured compressive strength and seawater corrosion resistance. Orthogonal experimental analysis reveals that SF exerts the most pronounced influence on SAC mortar fluidity. Both standard curing and seawater immersion conditions indicate FA as the dominant factor affecting mechanical strength parameters. The optimal composite formulation, determined through orthogonal combination testing, achieves peak compressive strength with 5% FA, 5% SF, and 5% SP synergistic incorporation. Full article
Show Figures

Figure 1

20 pages, 3716 KiB  
Article
Antimicrobial Action of Ginger and Ornamental Rock Wastes for Cement Mortar
by Romário Moreira Siqueira, Bruna Sthefanie Paz de Souza, Jonas Alexandre, Aline Chaves Intorne, Edmilson José Maria, Sergio Neves Monteiro and Afonso Rangel Garcez de Azevedo
Sustainability 2025, 17(10), 4698; https://doi.org/10.3390/su17104698 - 20 May 2025
Viewed by 639
Abstract
This study investigated the technical feasibility and antimicrobial potential of incorporating ornamental rock, limestone, and ginger waste into coating mortars with the aim of developing an innovative and sustainable solution for civil construction. This study evaluated the synergistic action of these materials on [...] Read more.
This study investigated the technical feasibility and antimicrobial potential of incorporating ornamental rock, limestone, and ginger waste into coating mortars with the aim of developing an innovative and sustainable solution for civil construction. This study evaluated the synergistic action of these materials on the microbiological and mechanical resistance of mortar, contributing to the greater durability and efficiency of the coatings. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses were performed to characterize the morphology, chemical composition, and crystalline structure of the added materials, confirming their suitability for the cement matrix. Tests in the fresh state evaluated parameters such as density, consistency index, and entrained air content, demonstrating the viability of the formulations, whereas flexural and compressive strength tests indicated significant improvements in the mechanical performance of the modified mortar. Microbiological tests demonstrated a significant reduction in microbial colonization, indicating the action of ginger’s bioactive compounds, such as gingerol and shogaol, which have antimicrobial properties and are effective in inhibiting the growth of pathogenic microorganisms, as confirmed by the reduction in the bacterial colony count from 4 × 102 to 1 × 102 CFU mL−1. Comparisons with conventional compositions indicate that the proposed approach outperformed traditional formulations in terms of both mechanical resistance and microbiological control. Thus, the results validate this research as a promising strategy for improving the durability and performance of coating mortars, reducing maintenance costs, and promoting the sustainable use of alternative materials in civil construction. Full article
(This article belongs to the Special Issue Sustainable Advancements in Construction Materials)
Show Figures

Figure 1

26 pages, 7349 KiB  
Article
Performance of High Strength Fiber Reinforced Mortar Made with Ceramic Powder, Metakaolin, and Magnetized Water
by Osama Youssf, Khalid A. Eltawil, Mohamed M. Yousry Elshikh and Mostafa M. Keshta
Infrastructures 2025, 10(5), 124; https://doi.org/10.3390/infrastructures10050124 - 19 May 2025
Cited by 1 | Viewed by 508
Abstract
In recent years, there has been a notable concern about the production of cementitious composites due to its high cement consumption and the corresponding carbon footprint. This has led to significant progress within the construction sector in integrating various waste materials as cement [...] Read more.
In recent years, there has been a notable concern about the production of cementitious composites due to its high cement consumption and the corresponding carbon footprint. This has led to significant progress within the construction sector in integrating various waste materials as cement alternatives into cementitious composites. In this study, a sustainable high strength fiber reinforced mortar (HS-FRM) was designed with ceramic powder (CP) and metakaolin (MK) materials as partial replacements of the conventional HS-FRM by up to 80%. Magnetized water (MW) was used in the proposed HS-FRM as mixing water and replaced the normal tap water (TW) for producing a more sustainable and higher strength cementitious product. The HS-FRM was cured using four different curing methods, namely, tap water, seawater, air, and sunlight. Fresh, mechanical, durability, and microstructure characteristics were measured and analyzed for the proposed HS-FRM. The results showed that CP can enhance the slump of HS-FRM by up to 50% (achieved at 40% CP), while MK showed the same or less slump (by up to 33%) than that of the conventional HS-FRM. Using up to 80% of either CP or MK in the HS-FRM continuously decreased its 28-day compressive strength by up to 78% or 83%, respectively. The HS-FRM cured in tap water exhibited the highest compressive strength compared to the other curing conditions. The use of MW improved the workability of the HS-FRM by up to 225% and the compressive strength by up to 13%. The microstructure analyses interpreted the reported variation in the HS-FRM compressive strength and showed that using MW in the HS-FRM revealed a dense structure with an adequate bond between the fiber and the matrix with a relatively low number of micro-cracks and pores compared when using TW. The XRD analysis showed higher peaks of Q, C, and L with the presence of MW compared to mixtures made with TW. Full article
Show Figures

Figure 1

19 pages, 7740 KiB  
Article
A Comprehensive Study on the Microstructure and Mechanical Behavior of Glycoluril–Formaldehyde Polymer-Modified Cement Paste
by Nakarajan Arunachelam, S. K. M. Pothinathan, C. Chella Gifta and N. P. Vignesh
Buildings 2025, 15(10), 1598; https://doi.org/10.3390/buildings15101598 - 9 May 2025
Viewed by 444
Abstract
Concrete is popular in construction due to its strong performance and low maintenance. However, some structures become unsafe over time due to poor maintenance and design flaws. As demand for maintenance grows, restoring older structures is a cost-effective option. Advanced repair techniques aim [...] Read more.
Concrete is popular in construction due to its strong performance and low maintenance. However, some structures become unsafe over time due to poor maintenance and design flaws. As demand for maintenance grows, restoring older structures is a cost-effective option. Advanced repair techniques aim to extend service life and improve concrete properties, with a focus on eco-friendly solutions. Recent trends have highlighted the potential of incorporating polymers into repair methods, but the use of glycoluril–formaldehyde, a polymeric material known for its hydrogen bonding capacity, remains unexplored in repairing existing structures. This research investigates the effects of glycoluril–formaldehyde in simple matrices like cement paste and mortar to understand its impact. By examining the chemical reactions between glycoluril–formaldehyde with cement paste, this study delves into the fresh, mechanical, and microstructural characteristics. To evaluate the influence of glycoluril–formaldehyde, cement paste specimens were subjected to various tests, including consistency, initial and final setting time, and miniature slump flow tests. Cement mortar specimens were then subjected to compression strength tests conducted at various ages. The results demonstrate that a 3% addition of glycoluril–formaldehyde in concrete offers optimum performance, ensuring improved mechanical strength and microstructure. The microstructural investigation using optical microscopy, an X-ray diffraction, and SEM analysis confirms the polymerization of glycoluril–formaldehyde and the formation of a denser microstructure. The thermogravimetric (TG) and differential thermogravimetric (DTG) analysis provides crucial insights into the thermal stability of the cementitious system, aiding its characterization for high-temperature applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 3143 KiB  
Article
The Effects of Milling Conditions on the Particle Size, Quality, and Noodle-Making Performance of Whole-Wheat Flour: A Mortar Mill Study
by Jeonghan Moon, Yujin Moon and Meera Kweon
Foods 2025, 14(9), 1609; https://doi.org/10.3390/foods14091609 - 1 May 2025
Viewed by 744
Abstract
In this study, we investigated the effects of mortar milling conditions on the quality and noodle-processing suitability of whole-wheat flours (WWFs). The WWFs were milled at varying pestle speeds (50 and 130 rpm) and for varying durations (10, 20, 40, and 60 min) [...] Read more.
In this study, we investigated the effects of mortar milling conditions on the quality and noodle-processing suitability of whole-wheat flours (WWFs). The WWFs were milled at varying pestle speeds (50 and 130 rpm) and for varying durations (10, 20, 40, and 60 min) and analyzed to determine their particle size distribution, physicochemical properties, dough-mixing characteristics, antioxidant activities, and noodle-making performance. High pestle speed (Group H) produced significantly smaller particle sizes, higher flour temperatures, greater moisture loss, and increased starch damage compared to that produced at low pestle speeds (Group L). Compared with Group L, Group H exhibited higher water and sodium carbonate solvent-retention capacity (SRC) values, increased pasting viscosities, and greater gluten strength owing to finer particles. Total phenolic content increased with reduced particle size, whereas antioxidant activity (ABTS radical scavenging) exhibited inconsistent trends. Fresh noodle properties varied with milling conditions; finer WWF particles improved dough resistance but reduced extensibility when water was adjusted according to water SRC. Thus, WWF particle size strongly influences flour functionality and noodle quality, which highlights the need for precise milling control. This study demonstrates, for the first time, the applicability of a mortar-type mill for producing WWFs, with implications for enhancing WWF functionality. Full article
Show Figures

Figure 1

28 pages, 6085 KiB  
Article
Ecofriendly Mortar with Paint Sludge Ash
by Solomon Asrat Endale, Mitiku Damtie Yehualaw, Woubishet Zewdu Taffese and Duy-Hai Vo
Materials 2025, 18(9), 2080; https://doi.org/10.3390/ma18092080 - 1 May 2025
Viewed by 591
Abstract
This research aims to address the environmental and economic challenges associated with conventional concrete by partially replacing cement—the most polluting, expensive, and energy-intensive ingredient—with industrial paint sludge ash (PSA), a highly contaminated industrial waste that is typically landfilled. Mortar mixtures were prepared with [...] Read more.
This research aims to address the environmental and economic challenges associated with conventional concrete by partially replacing cement—the most polluting, expensive, and energy-intensive ingredient—with industrial paint sludge ash (PSA), a highly contaminated industrial waste that is typically landfilled. Mortar mixtures were prepared with PSA replacement levels ranging from 0% to 20% in 5% increments while maintaining a constant water-to-binder ratio of 0.48. This study comprehensively evaluated the fresh, mechanical, durability, and microstructural properties of the PSA-modified mortar to assess its potential as an ecofriendly construction material. Results showed that as PSA content increased, the fresh properties, such as workability/slump flow and setting time, decreased, while the water demand for attaining normal consistency increased. Soundness tests indicated expansion up to 15% PSA replacement, beyond which expansion became more pronounced. Compressive strength improved significantly with PSA replacements of 5% to 15% compared to the control sample, with a slight decline at 15% relative to 5% and 10%. This trend was consistent with bulk density and ultrasonic pulse velocity measurements. Furthermore, the incorporation of PSA enhanced key durability properties, including water absorption, sulfate resistance, and porosity reduction, up to 15% PSA replacement. Microstructural analysis using SEM, XRD, TGA/DTA, and FTIR confirmed that PSA inclusion led to increased mortar densification, with the 10% PSA mix exhibiting thermal stability and minimal mass loss at elevated temperatures. FTIR spectra further indicated improved composition with higher PSA content. Overall, PSA proved to be a viable partial cement replacement, offering enhanced mortar properties without compromising performance. Its use contributes to sustainability by reducing reliance on cement, lowering construction costs, and eliminating the environmental and logistical burdens of paint sludge disposal. Full article
Show Figures

Figure 1

22 pages, 3629 KiB  
Review
Replacing Sand in Concrete: Review on Potential for Utilization of Bottom Ash from Combustion of Wood in Circulating Fluidized Bed Boilers
by Anders Hedegaard Jensen, Carola K. Edvardsen and Lisbeth M. Ottosen
Recycling 2025, 10(2), 73; https://doi.org/10.3390/recycling10020073 - 14 Apr 2025
Viewed by 1287
Abstract
Aggregates such as sand and gravel are the most mined resources on Earth and are the largest component in concrete. They are essential for construction but are becoming increasingly scarce. At the same time, large amounts of biomass ashes are produced in wood-fired [...] Read more.
Aggregates such as sand and gravel are the most mined resources on Earth and are the largest component in concrete. They are essential for construction but are becoming increasingly scarce. At the same time, large amounts of biomass ashes are produced in wood-fired power plants, offering potential as a partial substitute for decreasing sand resources. Due to the combustion technology of circulating fluidized bed boilers, their bottom ash offers high potential as a viable alternative to natural sand. This review examines previous research to assess the feasibility of replacing sand in concrete with bottom ash. Specific cementitious products are identified, where the substitution could realistically be performed in the concrete industry. Benefits and issues with partial substitution of bottom ash from wood combustion are discussed, and gaps in the research regarding sand replacements with bottom ash, notably the durability of the resulting concrete, are shown. Bottom ash has positive properties relevant for use in mortar and concrete, both regarding physical and chemical properties. Although limited research exists in the field, several researchers have demonstrated promising results when substituting sand for bottom ash in mortars. For lower substitution levels, little effect on the fresh and hardened properties is found. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

Back to TopTop