Recycled Aggregate: A Solution to Sustainable Concrete
Abstract
1. Introduction
2. Material Properties
2.1. Basic Physical Properties
2.2. Mechanical Properties
2.3. Durability
- (1)
- Salt attacks
- (2)
- Carbonation
- (3)
- Freeze–thaw/wet–dry cycles
3. Test Techniques
4. Modeling
4.1. Analytical Models
4.1.1. Physical and Mechanical Models
- (1)
- Shrinkage
- (2)
- Strength and modulus of elasticity
- (3)
- Axial compression
- (4)
- Cyclic triaxial compression
- (5)
- Water absorption
4.1.2. Durability Models
- (1)
- Carbonation
- (2)
- Chloride diffusion
- (3)
- Freeze–thaw/wet–dry cycles
4.2. Numerical Modeling
4.2.1. Behavior Modeling
4.2.2. Prediction Models
5. Modification and Improvement
5.1. Aggregate Modification
5.1.1. Removal of the Attached Mortar
5.1.2. Enhancement of the Attached Mortar
- (1)
- Carbonation
- (2)
- Sodium silicate treatment
- (3)
- Coating
- (4)
- MICP treatment
5.2. Concrete Improvement
- (1)
- Supplementary cementitious materials
- (2)
- Fiber reinforcement
6. Application
7. Conclusions and Recommendation
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AE | Acoustic emission |
ASR | Alkali–silica reaction |
BSEM | Backscattered scanning electron microscopy |
C&D | Construction and demolition |
CRA | Coarse recycled aggregate |
CRAC | Coarse recycled aggregate concrete |
DIC | Digital image correlation |
DTG | Derivative thermal gravimetry |
EDS | Energy-dispersive spectrometry |
EICP | Enzyme-induced carbonate precipitation |
FEM | Finite element method |
FRA | Fine recycled aggregate |
FRCA | Fine recycled concrete aggregate |
FTIR | Fourier transform infrared |
ITZ | Interfacial transition zone |
MICP | Microbially induced carbonate precipitation |
NA | Natural aggregate |
NAC | Natural aggregate concrete |
NIT | Nano-indentation test |
NMR | Nuclear magnetic resonance |
RA | Recycled aggregate |
RAC | Recycled aggregate concrete |
RBA | Recycled brick aggregate |
RCA | Recycled concrete aggregate |
RCP | Recycled concrete powder |
RDME | Relative dynamic modulus of elasticity |
RP | Recycled powder |
SEM | Scanning electron microscopy |
TG | Thermogravimetric |
UPV | Ultrasonic pulse velocity |
W/C | Water-to-cement ratio |
X-CT | X-ray computed tomography |
XRD | X-ray diffraction |
XRF | X-ray fraction |
References
- Monteiro, P.J.; Miller, S.A.; Horvath, A. Towards sustainable concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef] [PubMed]
- York, I.; Europe, I. Concrete needs to lose its colossal carbon footprint. Nature 2021, 597, 593–594. [Google Scholar]
- Leslie, M. Construction Industry Innovation Takes Aim at Reducing Carbon Emissions. Engineering 2022, 19, 7–10. [Google Scholar] [CrossRef]
- Gursel, A.P.; Shehabi, A.; Horvath, A. Embodied energy and greenhouse gas emission trends from major construction materials of U.S. office buildings constructed after the mid-1940s. Build. Environ. 2023, 234, 110196. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, S.; Liang, J.; Zhao, Y.; Li, W.; Diao, Y.; Shang, D. A systematic design method for green buildings based on the combined system of flexible solar cells and reactors on buildings. Build. Environ. 2022, 209, 108657. [Google Scholar] [CrossRef]
- Ma, M.; Tam, V.W.; Le, K.N.; Osei-Kyei, R. Analysing the impacts of key factors on the price of recycled concrete: A system dynamics model. J. Build. Eng. 2023, 80, 108123. [Google Scholar] [CrossRef]
- Adesina, A.; Das, S. Evaluation of the Durability Properties of Engineered Cementitious Composites Incorporating Recycled Concrete as Aggregate. J. Mater. Civ. Eng. 2021, 33, 04020439. [Google Scholar] [CrossRef]
- Peduzzi, A.; Franco, A.; De Luca, G.; Coppola, O.; Bonati, A. Economical Assessment of Recycled Asphalt Pavement (RAP) Aggregate for Structural Concrete Production in Italy. Buildings 2023, 13, 2191. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, L.; Chang, X.; Wang, Y.; Liu, Y.; Jie, Z.; Ma, H.; Shi, C.; Guo, X.; Xue, S.; et al. Sustainable mix design and carbon emission analysis of recycled aggregate concrete based on machine learning and big data methods. J. Clean. Prod. 2025, 489, 144734. [Google Scholar] [CrossRef]
- Ma, X.; Hu, H.; Luo, Y.; Yao, W.; Wei, Y.; She, A. A carbon footprint assessment for usage of recycled aggregate and supplementary cementitious materials for sustainable concrete: A life-cycle perspective in China. J. Clean. Prod. 2025, 490, 144772. [Google Scholar] [CrossRef]
- Hu, K.; Gillani, S.T.A.; Tao, X.; Tariq, J.; Chen, D. Eco-friendly construction: Integrating demolition waste into concrete masonry blocks for sustainable development. Constr. Build. Mater. 2025, 460, 139797. [Google Scholar] [CrossRef]
- Pu, Y.; Li, L.; Shi, X.; Wang, Q.; Abomohra, A. A comparative life cycle assessment on recycled concrete aggregates modified by accelerated carbonation treatment and traditional methods. Waste Manag. 2023, 172, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Bardan, M.; Czarnecki, L. Green Recycled Aggregate in Concrete: Feasibility Study. Materials 2025, 18, 488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, M.; Wang, Y.; Zhang, M. Roles of carbonated recycled fines and aggregates in hydration, microstructure and mechanical properties of concrete: A critical review. Cem. Concr. Compos. 2023, 138, 104994. [Google Scholar] [CrossRef]
- Sobuz, H.R.; Rahman, M.; Aayaz, R.; Al-Rashed, W.S.; Datta, S.D.; Safayet, A.; Kabbo, K.I.; Abdullah, M. Combined influence of modified recycled concrete aggregate and metakaolin on high-strength concrete production: Experimental assessment and machine learning quantifications with advanced SHAP and PDP analyses. Constr. Build. Mater. 2025, 461, 139897. [Google Scholar] [CrossRef]
- Chandru, U.; Bahurudeen, A.; Senthilkumar, R. Systematic comparison of different recycled fine aggregates from construction and demolition wastes in OPC concrete and PPC concrete. J. Build. Eng. 2023, 75, 106768. [Google Scholar] [CrossRef]
- Fallah, M.A.; Ghasemzadeh Mousavinejad, S.H. A Comparative Study of Properties of Ambient-Cured Recycled GGBFS Geopolymer Concrete and Recycled Portland Cement Concrete. J. Mater. Civ. Eng. 2023, 35, 05022002. [Google Scholar] [CrossRef]
- Vo, D.-H.; Thi, K.-D.T.; Hwang, C.-L.; Liao, M.-C.; Hsu, W.-L.; Yehualaw, M.D. Mechanical properties of concrete produced with alkali-activated slag-fly ash and recycled concrete aggregate and designed using the densified mixture design algorithm (DMDA) method: Effects of recycled aggregate content and alkaline solution. Dev. Built Environ. 2023, 14, 100125. [Google Scholar] [CrossRef]
- Al-Luhybi, A.S.; Aziz, I.A.; Mohammad, K.I. Experimental assessment of mechanical and physical performance of latex modified concrete with fine recycled aggregate. Structures 2023, 48, 1932–1938. [Google Scholar] [CrossRef]
- Rifa, A.; Subhani, S.M.; Bahurudeen, A.; Santhosh, K.G. A systematic comparison of performance of recycled concrete fine aggregates with other alternative fine aggregates: An approach to find a sustainable alternative to river sand. J. Build. Eng. 2023, 78, 107695. [Google Scholar] [CrossRef]
- Wan, X.; Jia, Z.; Li, N.; Luo, H. Impact of Recycled Fine Aggregate on Physical and Mechanical Properties of Green Mortar. Materials 2025, 18, 696. [Google Scholar] [CrossRef]
- Wu, H.; Yang, D.; Wang, C.; Ma, Z. Microstructural and Macroperformance of Recycled Mortar with High-Quality Recycled Aggregate and Powder from High-Performance Concrete Waste. J. Mater. Civ. Eng. 2023, 35, 04022482. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, Y.; Yan, Y.; Xu, Z.; Li, A.; Wang, J.; Liu, P.; Li, L.; Wang, Z. Influence of aggregate characteristics on the plant growing environment of the planting concrete with SAC. J. Clean. Prod. 2024, 445, 141179. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, X.; Kou, Y.; Yu, Y.; Xie, T. Compressive Stress–Strain Relationship and Its Variability of Self-Compacting Concrete Incorporating Recycled Aggregate. J. Mater. Civ. Eng. 2023, 35, 04023001. [Google Scholar] [CrossRef]
- Kim, J.; Nciri, N.; Sicakova, A.; Kim, N. Characteristics of waste concrete powders from multi-recycled coarse aggregate concrete and their effects as cement replacements. Constr. Build. Mater. 2023, 398, 132525. [Google Scholar] [CrossRef]
- Gao, D.; Ji, D.; Gu, Z.; Yan, H.; Zhang, Y. Workability and mechanical properties analysis of hybrid fibers reinforced self-compacting concrete incorporating recycled aggregates based on acoustic emission technique. Structures 2023, 51, 1722–1741. [Google Scholar] [CrossRef]
- Xu, W.; Tang, Z.; Song, Y.; Xie, Y.; Lei, B.; Yu, H.; Long, G.; Kai, M. Drying shrinkage of geopolymeric recycled aggregate concrete. Constr. Build. Mater. 2023, 395, 132220. [Google Scholar] [CrossRef]
- Wu, B.; Cao, H.; Wu, Q. Compressive and shrinkage behaviors of recycled aggregate concrete containing recycled sand from weathered residual soil of granite and MgO expansion agent. J. Build. Eng. 2023, 68, 106154. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, Q.; Li, D.; Yu, Y.; Jiang, X.; Xu, J. Autogenous and drying shrinkage properties of precast recycled aggregate concrete. Case Stud. Constr. Mater. 2025, 22, e04355. [Google Scholar] [CrossRef]
- Haller, T.; Scherb, S.; Beuntner, N.; Thienel, K.-C. Renewable construction with lightweight concrete—Reclaimed recycled material systems with CO2-absorption. Constr. Build. Mater. 2025, 466, 140339. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Wang, P. Assessment of the engineering properties and economic advantage of recycled aggregate concrete developed from waste clay bricks and coconut shells. J. Build. Eng. 2023, 68, 106071. [Google Scholar] [CrossRef]
- Salas_Montoya, A.; Chung, C.-W.; Mira_Rada, B.E. Interaction effect of recycled aggregate type, moisture state, and mixing process on the properties of high-performance concretes. Case Stud. Constr. Mater. 2023, 18, e02208. [Google Scholar] [CrossRef]
- Zhong, C.; Zhang, L.; Mao, W.; Xing, S.; Chen, J.; Zhou, J. An investigation on mechanical properties and durability of metakaolin reinforced modified recycled concrete. Case Stud. Constr. Mater. 2024, 20, e02978. [Google Scholar] [CrossRef]
- Miguel, F.; de Brito, J.; Silva, R.V. Durability-related performance of recycled aggregate concrete containing alkali-activated municipal solid waste incinerator bottom ash. Constr. Build. Mater. 2023, 397, 132415. [Google Scholar] [CrossRef]
- Gebremariam, H.G.; Taye, S.; Tarekegn, A.G. Disparity in research findings on parent concrete strength effects on recycled aggregate quality as a challenge in aggregate recycling. Case Stud. Constr. Mater. 2023, 19, e02342. [Google Scholar] [CrossRef]
- Mi, R.; Pan, G.; Zhou, F. Does carbonation affect the microstructural inhomogeneity of recycled aggregate concrete? J. Build. Eng. 2025, 99, 111650. [Google Scholar] [CrossRef]
- Huo, W.; Zhang, S.; Zhu, Z.; Sun, H.; Wan, Y.; Zhang, C.; Yang, L. ITZs characterization in full-component geopolymer recycled concrete based on quantitative BSE-EDS images and nanoindentation techniques. Constr. Build. Mater. 2025, 465, 140249. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Huang, Y.; Wang, J.; Weng, Y.; Ma, R.; Pang, K.S.H.; Ruan, S. Effects of varying grades/pretreatments of recycled aggregates on the development of pore structures and ITZs within reactive magnesia cement (RMC) concrete. Cem. Concr. Res. 2025, 190, 107782. [Google Scholar] [CrossRef]
- Wu, E.; Ma, X.; Fang, C.; Li, N.; Jia, L.; Jiang, P.; Wang, W. Strength performance and microscopic mechanism of cement mortar incorporating fine recycled concrete aggregate and natural sand. J. Build. Eng. 2025, 100, 111767. [Google Scholar] [CrossRef]
- Wang, C.-Q.; Ying, Y.; Gao, S.-H.; Huang, J.-S.; Shao, M.-S. Pozzolanic reaction, basic properties, carbon reduction and visual-isation of kerbstone prepared from recycled concrete. Case Stud. Constr. Mater. 2025, 22, e04303. [Google Scholar]
- Wu, B.; Zhang, T. Preparation of recycled sand from WRSG and compressive and flexural behavior of recycled aggregate concrete. Constr. Build. Mater. 2024, 414, 134944. [Google Scholar] [CrossRef]
- Adessina, A.; Ben Fraj, A.; Barthélémy, J.-F.; Gharbi, M. Failure mechanism in recycled sand mortars and recycled aggregate concretes: Experimental and multiscale approaches. J. Build. Eng. 2025, 101, 111882. [Google Scholar] [CrossRef]
- Zong, S.; Chang, C.; Rem, P.; Gebremariam, A.T.; Di Maio, F.; Lu, Y. Research on the influence of particle size distribution of high-quality recycled coarse aggregates on the mechanical properties of recycled concrete. Constr. Build. Mater. 2025, 465, 140253. [Google Scholar] [CrossRef]
- Vintimilla, C.; Etxeberria, M. Limiting the maximum fine and coarse recycled aggregates—Type B used in structural concrete. Constr. Build. Mater. 2025, 459, 139791. [Google Scholar] [CrossRef]
- Dadd, L.; Xie, T.; Bennett, B.; Visintin, P. Shear Friction in Single-Generation and Multigeneration Recycled Aggregate Con-crete. J. Mater. Civ. Eng. 2025, 37, 04024551. [Google Scholar] [CrossRef]
- Leemann, A.; Sanchez, L. Internal alkali transport in recycling concrete and its impact on alkali-silica reaction. Cem. Concr. Res. 2023, 174, 107334. [Google Scholar] [CrossRef]
- Marchi, T.; Diaz, E.G.; Salgues, M.; Souche, J.C.; Devillers, P. Internal curing capacity of recycled coarse aggregates incorporated in concretes with low water/cement ratios. Constr. Build. Mater. 2023, 409, 133893. [Google Scholar] [CrossRef]
- Ren, Q.; Pacheco, J.; de Brito, J.; Hu, J. Analysis of the influence of the attached mortar’s geometry on the mechanical behaviour of recycled aggregate concrete through mesoscale modelling. Eng. Fract. Mech. 2024, 297, 109876. [Google Scholar] [CrossRef]
- Yan, Z.-W.; Bai, Y.-L.; Zhang, Q.; Zeng, J.-J. Experimental study on dynamic properties of flax fiber reinforced recycled aggregate concrete. J. Build. Eng. 2023, 80, 108135. [Google Scholar] [CrossRef]
- Peng, L.; Zaland, S.; Tang, Z.; Zhao, H.; Hou, W.; Zhang, Y.; Wang, L. Strain rate effect on splitting tensile behavior and failure mechanisms of geopolymeric recycled aggregate concrete: Insights from acoustic emission characterization. J. Build. Eng. 2025, 102, 111970. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, X.; Fu, S. Cyclic stress-strain relation of recycled aggregate concrete under confining pressure. Constr. Build. Mater. 2025, 468, 140402. [Google Scholar] [CrossRef]
- Lin, D.; Wu, J.; Yan, P.; Chen, Y. Effect of residual mortar on compressive properties of modeled recycled coarse aggregate concrete. Constr. Build. Mater. 2023, 402, 132511. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, X.; Sun, C.; Jin, C.; Tam, V.W. Impact of carbonization and aggregate properties on modeled recycled concrete: Mechanical characteristics, stress concentration and damage evolution. Constr. Build. Mater. 2025, 467, 140327. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, H.; Liang, Y.; Shen, J.; Yang, H. Study on fracture characteristics and fracture mechanism of fully recycled aggregate concrete using AE and DIC techniques. Constr. Build. Mater. 2024, 419, 135540. [Google Scholar] [CrossRef]
- Wang, D.; Lu, C.; Zhu, Z.; Zhang, Z.; Liu, S.; Ji, Y.; Xing, Z. Mechanical performance of recycled aggregate concrete in green civil engineering: Review. Case Stud. Constr. Mater. 2023, 19, e02384. [Google Scholar] [CrossRef]
- Wei, Y.; Li, L.; Li, Z.; Liu, S. Preparation of vegetative concrete with recycled aggregate: Mix proportion orthogonal test, curing methods, and microstructure. Constr. Build. Mater. 2025, 460, 139892. [Google Scholar] [CrossRef]
- Li, Y.; Huang, L.; Gao, C.; Mao, Z.; Qin, M. Workability and mechanical properties of GGBS-RFBP-FA ternary composite geopolymer concrete with recycled aggregates containing recycled fireclay brick aggregates. Constr. Build. Mater. 2023, 392, 131450. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, J.; Feng, Z.; Xiao, Z.; Li, L. Study on the modification mechanism of recycled brick-concrete aggregate concrete based on water glass solution immersion method. J. Build. Eng. 2024, 82, 108303. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Munir, M.J.; Wu, Y.-F.; Lin, X.; Ashiq, S.Z. Development of unified elastic modulus model of natural and recycled aggregate concrete for structural applications. Case Stud. Constr. Mater. 2023, 18, e01873. [Google Scholar] [CrossRef]
- Newell, P. An ancient battle between environment and concrete. Nat. Rev. Chem. 2021, 5, 513–514. [Google Scholar] [CrossRef]
- Lian, S.; Meng, T.; Zhao, Y.; Liu, Z.; Zhou, X.; Ruan, S. Experimental and theoretical analyses of chloride transport in recycled concrete subjected to a cyclic drying-wetting environment. Structures 2023, 52, 1020–1034. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, L.; Li, Z.; Zhang, Q. Effects of different fine aggregates as sand replacements on the carbonation properties of recycled aggregate concrete. Constr. Build. Mater. 2025, 468, 140416. [Google Scholar] [CrossRef]
- Vintimilla, C.; Etxeberria, M. Durable Structural Recycled Concrete for Different Exposure Environments. Materials 2025, 18, 587. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, J.; Wang, S.; Yang, T.; Qi, L.; Geng, J. The mechanical and interfacial properties of concrete prepared by recycled aggregates with chloride corrosion media. Constr. Build. Mater. 2021, 282, 122653. [Google Scholar] [CrossRef]
- Kang, X.; Tong, X.-Y.; Chen, R.-P.; Chen, Y.-Q. Effect of ITZ on chloride ion transport in recycled aggregate concrete: Analytical and numerical studies. J. Build. Eng. 2024, 83, 108443. [Google Scholar] [CrossRef]
- Liu, K.; Fu, K.; Bao, J.; Chen, C.; Zhang, R.; Sang, Y. Damage mechanism and mechanical behavior of recycled aggregate concrete under the coupled compressive loading and sulfate erosion. J. Build. Eng. 2025, 99, 111664. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, G.; Wu, Y.; Dai, M.; Jiang, M.; Xie, J. Recycled aggregate seawater–sea sand concrete and its durability after im-mersion in seawater. J. Build. Eng. 2023, 65, 105780. [Google Scholar] [CrossRef]
- Dousti, A.; Khaksar, H. Impact of Simultaneous Carbonation and Chloride Attack on Chloride Diffusion in Portland Cement Concrete Mixtures Blended with Natural Zeolite and Silica Fume. J. Mater. Civ. Eng. 2023, 35, 04023478. [Google Scholar] [CrossRef]
- Zou, G.; Wang, Q.; Wang, G.; Liu, W.; Zhang, S.; Ai, Z.; Chen, H.; Ma, H.; Song, D. Revealing excellent passivation performance of a novel Cr-alloyed steel rebar in carbonized concrete environment. J. Mater. Res. Technol. 2023, 23, 1848–1861. [Google Scholar] [CrossRef]
- Hajibabaee, P.; Behnood, A.; Ngo, T.; Golafshani, E.M. Carbonation depth assessment of recycled aggregate concrete: An application of conformal prediction intervals. Expert Syst. Appl. 2025, 268, 126231. [Google Scholar] [CrossRef]
- Yang, T.; Yang, S.; Sun, Z.; Wang, S.; Pang, R. Deterioration mechanism of alkali-activated slag and fly ash blended recycled aggregate concrete under freeze-thaw cycles. J. Build. Eng. 2025, 99, 111555. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Z.; Feng, X. Three-dimensional microstructural simulation of the thermodynamic behavior of recycled concrete under freeze-thaw action. J. Build. Eng. 2023, 80, 108099. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Wu, Y.; Wu, J.; Ding, S. Effect of X-ray CT characterized pore structure on the freeze–thaw resistance of 3D printed concrete with recycled coarse aggregate. Constr. Build. Mater. 2025, 469, 140492. [Google Scholar] [CrossRef]
- Lin, Y.; Feng, X.; Zhang, Z. Microscopic simulation of thermo-mechanical behaviors in recycled concrete under freeze–thaw action. Constr. Build. Mater. 2023, 409, 133892. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, H.; Long, W.J.; Guo, X.; Ji, Y.; Qin, Z.; Xing, F.; Sui, S. Investigation on the sulfate attack of metakaolin blended recycled concrete based on percolation theory. J. Mater. Res. Technol. 2023, 27, 2615–2626. [Google Scholar] [CrossRef]
- Almeida, F.; Fernández-Jiménez, A.; Vieira, C.S.; Cristelo, N.; Moreira, A.T.; de Lurdes Lopes, M. Greener Concrete Paving Blocks with Hybrid Alkaline Cements and Recycled Aggregates. J. Mater. Civ. Eng. 2025, 37, 04024503. [Google Scholar] [CrossRef]
- Li, R.; Tang, X.; He, X.; Luo, W.; Shumuye, E.D.; Dong, B.; Tu, W.; Fang, G. Behavior of the interfacial transition zone in AAFS-based green recycled aggregate concrete at elevated temperatures. Constr. Build. Mater. 2025, 461, 139872. [Google Scholar] [CrossRef]
- Lin, Y.; He, T.; Da, Y.; Yang, R.; Zheng, D. Effects of recycled micro-powders mixing methods on the properties of recycled concrete. J. Build. Eng. 2023, 80, 107994. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Qiu, Z.; Zhang, Y. Experimental research on compressive properties of recycling polypropylene (PP) fiber recycled coarse aggregate concrete. J. Build. Eng. 2023, 76, 107403. [Google Scholar] [CrossRef]
- Xia, P.; Wang, S.; Chen, K.; Meng, T.; Chen, X.; Gong, F. A recycling approach of natural stone from crushed concrete based on freeze-thaw modification and usage of spalling mortar as recycled fine aggregate. Constr. Build. Mater. 2024, 416, 135287. [Google Scholar] [CrossRef]
- Geng, W.; Li, C.; Zeng, D.; Chen, J.; Wang, H.; Liu, Z.; Liu, L. Effect of epoxy resin surface-modified techniques on recycled coarse aggregate and recycled aggregate concrete. J. Build. Eng. 2023, 76, 107081. [Google Scholar] [CrossRef]
- Luo, S.; Lin, Q.; Lin, T.; Wang, D.; Wang, S. Effects of pressurized carbonation with presoaking in calcium hydroxide solution on the fracture behaviours of recycled coarse aggregate concrete. Constr. Build. Mater. 2023, 397, 132386. [Google Scholar] [CrossRef]
- Bai, J.; Diao, Y.; Jia, C.; Liu, C.; Zhang, M.; Wang, C. A review of advances in triaxial tests: Instruments, test techniques and prospects. KSCE J. Civ. Eng. 2022, 26, 3325–3341. [Google Scholar] [CrossRef]
- Nili, M.; Sabziparvar, N.; Sabziparvar, A. Creep and drying shrinkage of recycled aggregate concrete containing cement and alkali activated slag produced by water reduction method (WRM) and equivalent mortar volume (EMV). Constr. Build. Mater. 2023, 395, 132153. [Google Scholar] [CrossRef]
- Liu, G.; Hunger, M.; Tošić, N.; de la Fuente, A. Effect of free and embedded polypropylene fibres recovered from concrete recycling on the properties of new concrete. Constr. Build. Mater. 2023, 409, 134145. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, D.; Wu, K.; Wang, J. Optimization of sodium alginate aided bio-deposition treatment of recycled aggregates and its application in concrete. Cem. Concr. Compos. 2023, 139, 105031. [Google Scholar] [CrossRef]
- Ji, A.; Luo, M.; Zhao, Y.; Dai, J. Modification of recycled aggregate using calcium carbonate formed by homogeneous precipitation and its application in concrete. Constr. Build. Mater. 2025, 462, 139998. [Google Scholar] [CrossRef]
- Luo, M.; Zhao, Y.; Ji, A.; Ding, Z. Enhancing recycled aggregates quality through biological deposition treatment. J. Build. Eng. 2025, 100, 111681. [Google Scholar] [CrossRef]
- Siletani, A.H.; Asayesh, S.; Javid, A.A.S.; Korayem, A.H.; Ghanbari, M.A. Influence of coating recycled aggregate surface with different pozzolanic slurries on mechanical performance, durability, and micro-structure properties of recycled aggregate concrete. J. Build. Eng. 2024, 83, 108457. [Google Scholar] [CrossRef]
- Tejas, S.; Pasla, D. Assessment of mechanical and durability properties of composite cement-based recycled aggregate concrete. Constr. Build. Mater. 2023, 387, 131620. [Google Scholar] [CrossRef]
- Ashraf, M.J.; Idrees, M.; Akbar, A. Performance of silica fume slurry treated recycled aggregate concrete reinforced with carbon fibers. J. Build. Eng. 2023, 66, 105892. [Google Scholar] [CrossRef]
- Singh, P.K.; Rajhans, P. Effect of surface treatment and mixing approach on the durability performance of recycled aggregate geopolymer concrete against aggressive environment. J. Build. Eng. 2025, 101, 111867. [Google Scholar] [CrossRef]
- Chiranjeevi, K.; Kumar, D.H.; Yatish, R.G.; Mulangi, R.H.; Shankar, A.U.R. Optimization and Characterization of Ferrochrome and Recycled Concrete Aggregate Mixes for Pavement Base Layers. J. Mater. Civ. Eng. 2025, 37, 04024437. [Google Scholar] [CrossRef]
- Liu, X.; Si, Z.; Huang, L.; Zhao, P.; Zhang, L.; Li, M.; Yang, L. Research on the properties and modification mechanism of microbial mineralization deposition modified recycled concrete. J. Build. Eng. 2025, 102, 111963. [Google Scholar] [CrossRef]
- Biswal, U.S.; Dinakar, P. Evaluating corrosion resistance of recycled aggregate concrete integrating ground granulated blast furnace slag. Constr. Build. Mater. 2023, 370, 130676. [Google Scholar] [CrossRef]
- Brasileiro, K.P.T.V.; de Oliveira Nahime, B.; Lima, E.C.; Alves, M.M.; Ferreira, W.P.; dos Santos, I.S.; Filho, C.P.B.; dos Reis, I.C. Influence of recycled aggregates and silica fume on the performance of pervious concrete. J. Build. Eng. 2024, 82, 108347. [Google Scholar] [CrossRef]
- Tang, B.; Fan, M.; Yang, Z.; Sun, Y.; Yuan, L. A comparison study of aggregate carbonation and concrete carbonation for the enhancement of recycled aggregate pervious concrete. Constr. Build. Mater. 2023, 371, 130797. [Google Scholar] [CrossRef]
- Aragoncillo, A.M.; Cleary, D.; Thayasivam, U.; Lomboy, G. Water sorptivity prediction model for concrete with all coarse recycled concrete aggregates. Constr. Build. Mater. 2023, 394, 132128. [Google Scholar] [CrossRef]
- Rezaei, F.; Memarzadeh, A.; Davoodi, M.-R.; Dashab, M.-A.; Nematzadeh, M. Mechanical features and durability of concrete incorporating recycled coarse aggregate and nano-silica: Experimental study, prediction, and optimization. J. Build. Eng. 2023, 73, 106715. [Google Scholar] [CrossRef]
- Letelier, V.; Hott, F.; Bustamante, M.; Wenzel, B. Effect of recycled coarse aggregate treated with recycled binder paste coating and accelerated carbonation on mechanical and physical properties of concrete. J. Build. Eng. 2024, 82, 108311. [Google Scholar] [CrossRef]
- Wenzel, B.; Bustamante, M.; Muñoz, P.; Ortega, J.M.; Loyola, E.; Letelier, V. Physical and mechanical behavior of concrete specimens using recycled aggregate coated using recycled cement paste. Constr. Build. Mater. 2023, 393, 132015. [Google Scholar] [CrossRef]
- Wu, H.; Liang, C.; Zhang, Z.; Yao, P.; Wang, C.; Ma, Z. Utilizing heat treatment for making low-quality recycled aggregate into enhanced recycled aggregate, recycled cement and their fully recycled concrete. Constr. Build. Mater. 2023, 394, 132126. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, B. A mix design method for self-compacting recycled aggregate concrete targeting slump-flow and compressive strength. Constr. Build. Mater. 2023, 404, 133309. [Google Scholar] [CrossRef]
- Xu, J.; Chang, F.; Bai, J.; Liu, C. Statistical analysis on the fracture behavior of rubberized steel fiber reinforced recycled aggregate concrete based on acoustic emission. J. Mater. Res. Technol. 2023, 24, 8997–9014. [Google Scholar] [CrossRef]
- Mistri, A.; Dhami, N.; Bhattacharyya, S.K.; Barai, S.V.; Mukherjee, A. Performance of biocement treatment in improving the interfacial properties of recycled aggregate concrete. Constr. Build. Mater. 2023, 369, 130509. [Google Scholar] [CrossRef]
- Machado, L.C.; Damineli, B.L.; Rebmann, M.S.; Angulo, S.C. Simple way to model the mechanical properties of concretes with recycled concrete aggregates. J. Build. Eng. 2024, 84, 108213. [Google Scholar] [CrossRef]
- Ma, Q.; Xiao, J.; Ding, T.; Duan, Z.; Song, M.; Cao, X. The prediction of compressive strength for recycled coarse aggregate concrete in cold region. Case Stud. Constr. Mater. 2023, 19, e02546. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.-Y.; Cheng, S. Evaluation of modulus of elasticity of concrete containing both natural and recycled concrete aggregates. J. Clean. Prod. 2024, 447, 141591. [Google Scholar] [CrossRef]
- GB 50010-2010; [2015 Edition] Code for Design of Concrete Structures. National Standard of the People’s Republic of China: Beijing, China, 2010.
- Nguyen, T.-D.; Cherif, R.; Mahieux, P.-Y.; Lux, J.; Aït-Mokhtar, A.; Bastidas-Arteaga, E. Artificial intelligence algorithms for prediction and sensitivity analysis of mechanical properties of recycled aggregate concrete: A review. J. Build. Eng. 2023, 66, 105929. [Google Scholar] [CrossRef]
- Lux, J.; Hoong, J.D.L.H.; Mahieux, P.-Y.; Turcry, P. Classification and estimation of the mass composition of recycled ag-gregates by deep neural networks. Comput. Ind. 2023, 148, 103889. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Liang, J.; Meng, Y.; Rong, H.; Li, D.; Chen, Y.; Lv, J.; Jiang, Y.; Liu, Y. Straightening methods for RCA and RAC—A review. Cem. Concr. Compos. 2023, 141, 105145. [Google Scholar] [CrossRef]
- Bu, C.; Liu, L.; Wu, Q.; Sun, Y.; Zhang, M.; Zhan, J.; Zhang, W. Studies on the Thermal-Physical Treatment of Waste Concrete for Use in Lightweight Aggregate Concrete. J. Mater. Civ. Eng. 2023, 35, 04023445. [Google Scholar] [CrossRef]
- Dunant, C.F.; Joseph, S.; Prajapati, R.; Allwood, J.M. Electric recycling of Portland cement at scale. Nature 2024, 629, 1055–1061. [Google Scholar] [CrossRef]
- Khan, Z.A.; Balunaini, U.; Nguyen, N.H.; Costa, S. Evaluation of cement-treated recycled concrete aggregates for sustainable pavement base/subbase construction. Constr. Build. Mater. 2024, 449, 138417. [Google Scholar] [CrossRef]
- Pyzalski, M.; Brylewski, T.; Sujak, A.; Durczak, K. Changes in the Phase Composition of Calcium Aluminoferrites Based on the Synthesis Condition and Al2O3/Fe2O3 Molar Ratio. Materials 2023, 16, 4234. [Google Scholar] [CrossRef]
- Zhang, R.; Srivastava, M.G.; Braem, A.; Mignon, A.; Wang, J. Mesoporous silica nanoparticles loaded urea for enhancement of the cohesion of biogenic CaCO3 and its adhesion with recycled concrete aggregates. J. Build. Eng. 2025, 99, 111528. [Google Scholar] [CrossRef]
- Durczak, K.; Pyzalski, M.; Pilarski, K.; Brylewski, T.; Sujak, A. The Effect of Liquid Slurry-Enhanced Corrosion on the Phase Composition of Selected Portland Cement Pastes. Materials 2021, 14, 1707. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Zhang, R.; Wang, J. The influence of environmental factors and precipitation precursors on enzyme-induced carbonate precipitation (EICP) process and its application on modification of recycled concrete aggregates. J. Clean. Prod. 2023, 395, 136444. [Google Scholar] [CrossRef]
- Diao, Y.; Bai, J.; Zheng, G.; Hu, Q.; Li, P.; Liu, X.; Hu, W.; Huang, J. Development and optimization of biomimetic-chemically induced carbonate precipitation: A review of recent research. Biogeotechnics 2024, 3, 100110. [Google Scholar] [CrossRef]
- Diao, Y.; Bai, J.; Huang, J.; Li, P.; Yang, C. Strength characteristics of biomimetic carbonate precipitation (BCP) treated mortar under cyclic loading. J. Build. Eng. 2023, 75, 107013. [Google Scholar] [CrossRef]
- Diao, Y.; Bai, J.; Huang, J.; Yang, C. A high-performance model for direct shear behavior of biomimetic carbonate precipitation treated mortar. Mater. Lett. 2023, 349, 134739. [Google Scholar] [CrossRef]
- Diao, Y.; Bai, J.; Sun, C.; Huang, J.; Yang, C.; Hu, Q. A simplified model for shear behavior of mortar using biomimetic car-bonate precipitation. Materials 2023, 16, 5613. [Google Scholar] [CrossRef] [PubMed]
- Asante, B.; Wang, B.; Yan, L.; Kasal, B. Optimized mix design and fire resistance of geopolymer recycled aggregate concrete under elevated temperatures. Case Stud. Constr. Mater. 2025, 22, e04401. [Google Scholar] [CrossRef]
- Hurtado-Alonso, N.; Manso-Morato, J.; Revilla-Cuesta, V.; Skaf, M. Strength-based RSM optimization of concrete containing coarse recycled concrete aggregate and raw-crushed wind-turbine blade. Compos. Struct. 2025, 356, 118895. [Google Scholar] [CrossRef]
- Bulińska, S.; Sujak, A.; Pyzalski, M. From Waste to Renewables: Challenges and Opportunities in Recycling Glass Fibre Composite Products from Wind Turbine Blades for Sustainable Cement Production. Sustainability 2024, 16, 5150. [Google Scholar] [CrossRef]
- Wang, B.; Yan, L.; Fu, Q.; Kasal, B. A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete. Resour. Conserv. Recycl. 2021, 171, 105565. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, D.; Dong, H.; Sun, Y. Analytical and experimental investigation of bond behavior of confined recycled brick-concrete aggregate concrete. J. Build. Eng. 2025, 100, 111452. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, M.; Liu, J.; Zhang, P. Study of recycled aggregate concrete-filled circular steel columns with H-shaped steel reinforcement. Structures 2023, 55, 1960–1965. [Google Scholar]
- Liang, J.; Luo, X.; Wang, C.; Li, W. Study on eccentric compression performance of partially encased recycled concrete columns after high temperature. Structures 2025, 73, 108378. [Google Scholar] [CrossRef]
- Song, B.; Xu, X.; Shangguan, Y.; Wang, Q.; Yao, L.; Guo, L.; Lei, H. Experimental and numerical investigation of square glazed hollow beads recycled aggregate concrete-filled double-skin steel tubular (GRCFDST) short columns under axial compression. Constr. Build. Mater. 2025, 466, 140254. [Google Scholar] [CrossRef]
- Wang, H.; Huang, H.; Kang, Y.; Yin, L.; Cheng, Y. Flexural behaviour of recycled ceramic aggregate concrete-filled double skin round steel tubes. Structures 2025, 71, 108128. [Google Scholar] [CrossRef]
- Xiang, K.; Qu, X.-Y.; Pan, Z.; Song, T.-Y.; Zhou, H.; Tan, Q.-H. Full-coupled post-fire performance analysis of geopolymeric recycled aggregate concrete-filled steel tubular columns. Eng. Struct. 2025, 327, 119631. [Google Scholar] [CrossRef]
- Yan, G.-Y.; Chen, S.-D.; Xu, L.; Wang, D.; Liu, R.-Y.; Gao, X. Behavior of eccentrically loaded geopolymer recycled brick aggregate concrete-filled steel tube columns. J. Constr. Steel Res. 2025, 227, 109409. [Google Scholar] [CrossRef]
- Mansour, W.; Li, W.; Wang, P.; Badawi, M. Experimental and numerical evaluations of the shear performance of recycled aggregate RC beams strengthened using CFRP sheets. Eng. Struct. 2024, 301, 117368. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Dong, J.; Guan, Z.; Wang, Q. Experimental and numerical study on the compressive behaviour of CFRP-confined columns with recycled aggregate concrete. Constr. Build. Mater. 2025, 461, 139916. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, F.; Yang, H.; Wang, S. A unified calculation method for temperatures of recycled aggregate concrete members exposed to fire: Tests and numerical study. Structures 2023, 57, 105212. [Google Scholar] [CrossRef]
- González-Martínez, M.Á.; Gómez-Soberón, J.M.; Leal-Castañeda, E.J. Permeable Concrete with Recycled Aggregates. Study of Its Mechanical and Microstructural Properties. Materials 2025, 18, 770. [Google Scholar] [CrossRef] [PubMed]
- Konca, P.; Szer, I.; Szer, J.; Obidowski, D.; Gawin, D.; Wiśniewski, P.; Wiśniewski, B.; Jóźwik, K. Sustainable Infrastructure: Recycled Concrete Aggregates for Cycle Paths. Materials 2024, 18, 131. [Google Scholar] [CrossRef]
- Rosales, M.; Rosales, J.; Agrela, F.; López-Alonso, M.; Cuenca-Moyano, G. Execution of large-scale sustainable pavement with recycled materials. Assessment of mechanical behaviour and life cycle. Constr. Build. Mater. 2025, 463, 139967. [Google Scholar] [CrossRef]
- Deng, J.; Zhao, X.; Li, S.; Zhao, J. Effects of Incorporating Acrylic Particles on Mechanical and Photocatalytic Properties of Recycled Concrete. J. Mater. Civ. Eng. 2024, 36, 04024423. [Google Scholar] [CrossRef]
- Liu, G.; Fei, H.; Zhang, J.; Wu, J.; Feng, Z.; Yang, S.; Li, F.; Zhang, Y. Enhancement mechanism for mechanical and water pu-rification performance of piezo-photocatalytic recycled aggregate pervious concrete containing hydrophobic BiOI/BaTiO3. Chem. Eng. J. 2024, 493, 152596. [Google Scholar] [CrossRef]
- Liu, C.; Bai, J.; Zhang, S.; Yang, Z.; Luo, M. Applications and advances in TiO2 based photocatalytic building materials. J. Phys. Conf. Ser. 2021, 2011, 012049. [Google Scholar] [CrossRef]
- Bai, J.; Wang, C.; Zhang, M.; Diao, Y. A review on drainage of dredged marine soils: Advances and prospects. Mar. Georesour. Geotechnol. 2025, 43, 260–270. [Google Scholar] [CrossRef]
- Bian, X.; Yang, H.; Liu, H.; Xu, Z.; Zhang, R. Experimental study on the improvement of sludge by vacuum preloading-stepped electroosmosis method with prefabricated horizontal drain. Geotext. Geomembr. 2024, 52, 753–761. [Google Scholar] [CrossRef]
Properties | Impact | Properties | Impact |
---|---|---|---|
Density | − | Setting time | − |
Void volume/porosity | + | Segregation resistance | − |
Air content | + | Drying shrinkage | + |
Water/capillary absorption | + | Autogenous shrinkage | − |
Workability/slump | − | Thermal conductivity | − |
Scale | Category | Test Techniques |
---|---|---|
Macroscale | Mechanical tests | For concrete: Compressive test [38,76,77,78,79,80], splitting tensile test [29,43,81], flexural/bending test [17,82], elastic modulus test [27,44], Young’s modulus test [32], shear test [53], monotonic/cyclic triaxial test [51,83], relative dynamic modulus of elasticity test [66,71], split Hopkinson pressure bar test [49], creep test [84], residual flexural tensile strength test [85], ultrasonic pulse attack [86], etc. For aggregate: Los Angeles abrasion test [35,43], crushing value test [58,82,86,87,88], impact test [35], etc. |
Durability tests | Carbonation/accelerated carbonation test [33,36], electrical resistivity test [89,90], (rapid) chloride penetration test [63,89], sulfate erosion test [66], acid attack test [91,92], dry–wet cycle test [61,93], freeze–thaw cycle test [71,94], half-cell potential test [95], corrosion rate test [95], electric flux test [87], etc. | |
Physical property tests | For aggregate or hardened concrete: Water absorption and capillary absorption test [25,88], permeability test [96], hardened density test [97], sorptivity test [90,98], water reversion test [23], ultrasonic pulse velocity test [31,99], thermal conductivity test [18,100], thermal diffusivity test [101], autogenous and drying shrinkage test [28,34], air content test [71], mercury intrusion porosimetry test [22,62], vacuum saturation test [102], specific gravity test [35], etc. For fresh concrete: Slump test [24,103], flow table test [25], compacting factor/drop test [15,19], Kelly ball penetration test [15], consistency test [21], setting time test [21], J-ring test [26], V-funnel test [26], rheometer test [26], etc. | |
Mesoscale | Pore structure analysis | X-ray computed tomography (X-CT) [23,38,73], nuclear magnetic resonance (NMR) [58], 3D surface topography [93], etc. |
Microscale | Characterization methods | For morphology analysis: Scanning electron microscopy (SEM) [38,46,66,100], backscattered scanning electron microscopy (BSEM) [36,37,76], etc. For chemical composition: X-ray diffraction (XRD) [38,61,76], thermogravimetric (TG) analysis or thermal gravimetry/derivative thermal gravimetry (TG/DTG) [38,61,96], energy-dispersive spectrometry (EDS) [46,76,93], X-ray fraction (XRF) [23,90], Fourier-transform infrared (FTIR) spectroscopy spectrum [22,30], etc. For micromechanics: Nanoindentation test (NIT) [38,92,93], microhardness test [78], etc. |
Branch | Topics | Cases |
---|---|---|
Concrete design | Mix optimization | Water reduction method |
Target workability and strength-based mix design | ||
Machine learning design method | ||
Reinforced RAC | Rebar behavior in RAC | |
Components | Composite structure | RAC-filled steel tube/steel-confined components |
Carbon fiber-reinforced polymer-confined RAC | ||
Real engineering | Pavement engineering | Photocatalytic pavement |
Geotechnical engineering | Drainage of foundations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Ge, C.; Liang, J.; Xu, J. Recycled Aggregate: A Solution to Sustainable Concrete. Materials 2025, 18, 2706. https://doi.org/10.3390/ma18122706
Bai J, Ge C, Liang J, Xu J. Recycled Aggregate: A Solution to Sustainable Concrete. Materials. 2025; 18(12):2706. https://doi.org/10.3390/ma18122706
Chicago/Turabian StyleBai, Jitao, Chenxi Ge, Jiahe Liang, and Jie Xu. 2025. "Recycled Aggregate: A Solution to Sustainable Concrete" Materials 18, no. 12: 2706. https://doi.org/10.3390/ma18122706
APA StyleBai, J., Ge, C., Liang, J., & Xu, J. (2025). Recycled Aggregate: A Solution to Sustainable Concrete. Materials, 18(12), 2706. https://doi.org/10.3390/ma18122706