Effects of Natural Seashell Presence on the Engineering Performance of Sea Sand Concrete
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Design
2.3. Test Specimen Preparation
2.4. Analysis of Shell Content in Sea Sand
2.5. Sea Sand Preparation with Different Shell Content
2.6. Fresh and Hardened Properties
2.7. Durability of Sea Sand Concrete
2.7.1. Accelerated Corrosion Testing
2.7.2. Rapid Chloride Penetration (RCPT)
2.7.3. Chemical Resistance
2.7.4. Water Absorption Rate
3. Results and Discussion
3.1. Sea Sand Particle Size Distribution and Seashell Distribution
3.2. Flowability of Mortar
3.3. Compressive Strength
3.4. Accelerated Corrosion Testing
3.4.1. Increased Porosity and Interfacial Transition Zone (ITZ) Weakness
3.4.2. Heterogeneity and Anisotropy
3.4.3. Preferential Chloride Penetration Pathways
3.5. Rapid Chloride Permeability Testing (RCPT)
3.6. Acid Exposure Testing
3.7. Water Absorption Rate
4. Conclusions and Recommendations
- Shell content distribution in natural sea sand in Sri Lanka is size-dependent, with the highest concentration (6.49%) in the 0.3 mm to 0.6 mm range. The typical seashell content levels in sea sand in Sri Lanka are found to be in the range of 1–3%.
- The presence of seashells up to 5% does not significantly hinder the workability of cement mortar, with flow percentages remaining stable between 100% and 114%. This indicates that seashells do not hinder mixing or placement processes.
- Both 7-day and 28-day compressive strength remain relatively consistent from 0% to 5% seashells, indicating that seashell content does not significantly impact the strength within this range.
- The differences in water absorption ratios among varying shell contents (0–5%) are minimal.
- The rapid chloride penetration test results indicate that seashell content has a limited and non-linear influence on chloride ingress in concrete. Higher contents (3–5%) appear to improve particle packing and pore tortuosity, thereby stabilizing or marginally reducing chloride penetration.
- Accelerated corrosion test results suggest that a high shell content (>3%) increases the risk of chloride-induced corrosion.
- Exposure to sulfuric acid revealed similar mass loss and strength reduction across all mixes, regardless of the shell content, indicating that low shell contents (0–5%) do not promote chemical degradation in sea sand concrete.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACT | Accelerated Corrosion Test |
RCPT | Rapid Chloride Permeability Test |
SCM | Supplementary Cementitious Materials |
SLLRDC | Sri Lanka Land Reclamation and Development Corporation |
SLS | Sri Lanka Standard |
SSH | Seashell (content) |
References
- Hu, X.; Xiao, J.; Zhang, K.; Zhang, Q. The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand. J. Build. Eng. 2022, 51, 104294. [Google Scholar] [CrossRef]
- Liu, T.; Ju, Y.; Lyu, H.; Zhuo, Q.; Qian, H.; Li, Y. Identification and analysis of seashells in sea sand using computer vision and machine learning. Case Stud. Constr. Mater. 2023, 18, e02121. [Google Scholar] [CrossRef]
- Yang, S.; Zang, C.; Xu, J.; Fan, G. Determination of fracture parameters of seawater sea sand concrete based on maximum fracture load. J. Mater. Civ. Eng. 2020, 32, 04019315. [Google Scholar] [CrossRef]
- Yin, H.; Li, Y.; Lv, H.; Gao, H. Durability of sea-sand containing concrete: Effects of chloride ion penetration. Min. Sci. Technol. 2011, 21, 123–127. [Google Scholar]
- Zhao, Y.; Hu, X.; Shi, C.; Zhang, Z.; Zhu, D. A review on seawater sea-sand concrete: Mixture proportion, hydration, microstructure and properties. Constr. Build. Mater. 2021, 295, 123602. [Google Scholar] [CrossRef]
- Guo, M.; Hu, B.; Xing, F.; Zhou, X.; Sun, M.; Sui, L.; Zhou, Y. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis. Constr. Build. Mater. 2020, 234, 117339. [Google Scholar] [CrossRef]
- Lanka, M.S. Evaluation of the potential of sea sand as an alternative to river sand for concrete production in Sri Lanka. J. Geol. Soc. Sri Lanka 2014, 16, 109–117. [Google Scholar]
- Mahendran, R.; Godwin, K.; Gnana Selvan, T.; Murugan, M. Experimental study on concrete using sea sand as fine aggregate. Int. J. Sci. Eng. Res. 2016, 7, 48–52. [Google Scholar]
- Suraweera, A.; Fernando, P.; Muthurathna, S.; Guluwita, S. Analysis of the Waste Sludge Produced from the Offshore Sand Processing Plants in Sri Lanka. In Proceedings of the Innovation Geared Building Resilience—11th Annual Research Symposium, Battaramulla, Sri Lanka, 14–15 December 2021. [Google Scholar]
- Dolage, D.A.R.; Dias, M.G.S.; Ariyawansa, C.T. Offshore Sand as a Fine Aggregate for Concrete Production. Curr. J. Appl. Sci. Technol. 2013, 3, 813–825. [Google Scholar] [CrossRef]
- Pan, D.; Yaseen, S.A.; Chen, K.; Niu, D.; Leung, C.K.Y.; Li, Z. Study of the influence of seawater and sea sand on the mechanical and microstructural properties of concrete. J. Build. Eng. 2021, 42, 103006. [Google Scholar] [CrossRef]
- Li, H.; Liu, F.; Pan, Z.; Li, H.; Wu, Z.; Li, L.; Xiong, Z. Use of supplementary cementitious materials in seawater–sea sand concrete: State-of-the-art review. Constr. Build. Mater. 2024, 425, 136009. [Google Scholar] [CrossRef]
- Rodrigues, R.; Gaboreau, S.; Gance, J.; Ignatiadis, I.; Betelu, S. Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Constr. Build. Mater. 2021, 269, 121240. [Google Scholar] [CrossRef]
- Dhondy, T.; Remennikov, A.; Shiekh, M.N. Benefits of using sea sand and seawater in concrete: A comprehensive review. Aust. J. Struct. Eng. 2019, 20, 280–289. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Karaboğa, F.; Mermerdaş, K. Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin. Compos. Part B Eng. 2013, 45, 1288–1295. [Google Scholar] [CrossRef]
- Sampath, B.; Mohankuma, G. Preliminary study on the development of concrete with sea sandas fine aggregate. Indian J. Sci. Technol. 2016, 9, 1–5. [Google Scholar] [CrossRef]
- Eziefula, U.G.; Ezeh, J.C.; Eziefula, B.I. Properties of seashell aggregate concrete: A review. Constr. Build. Mater. 2018, 192, 287–300. [Google Scholar] [CrossRef]
- Boudjellal, K.; Bouabaz, M.; Bensebti, S.E. Formulation of a concrete based on grinded seashells as partial substitution for sand. Civ. Environ. Eng. Rep. 2020, 30, 56–71. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Boutouil, M.; Sebaibi, N.; Baraud, F.; Leleyter, L. Durability of pervious concrete using crushed seashells. Constr. Build. Mater. 2017, 135, 137–150. [Google Scholar] [CrossRef]
- Arulmoly, B.; Konthesingha, C. Pertinence of alternative fine aggregates for concrete and mortar: A brief review on river sand substitutions. Aust. J. Civ. Eng. 2022, 20, 272–307. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, X.; Chen, Z.; Ding, L.; Peng, Z.; Wu, Z. Effect of constituent content on mechanical behaviors of ultra-high performance seawater sea-sand concrete. Constr. Build. Mater. 2022, 351, 128952. [Google Scholar] [CrossRef]
- Elliott Richardson, A.; Fuller, T. Sea shells used as partial aggregate replacement in concrete. Struct. Surv. 2013, 31, 347–354. [Google Scholar] [CrossRef]
- Safi, B.; Saidi, M.; Daoui, A.; Bellal, A.; Mechekak, A.; Toumi, K. The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM). Constr. Build. Mater. 2015, 78, 430–438. [Google Scholar] [CrossRef]
- Ammari, M.Z.; Ghoraishi, M.; Abidou, A.; Al-Rousan, R.Z. Sand with crushed seashells and its effect on the strength of mortar and concrete used in the United Arab Emirates. Int. J. Civ. Eng. Technol. 2017, 8, 462–470. [Google Scholar]
- Xiao, J.; Qiang, C.; Nanni, A.; Zhang, K. Use of sea-sand and seawater in concrete construction: Current status and future opportunities. Constr. Build. Mater. 2017, 155, 1101–1111. [Google Scholar] [CrossRef]
- BS 882: 1992; Specification for Aggregates from Natural Sources for Concrete. British Standards Institution: London, UK, 1992.
- EN 12620:2013; Aggregates for Concrete. European Committee for Standardization: Brussels, Belgium, 2013.
- SLS1397:2010; Specification for Fine Agregates for Concrete and Mortar. Sri lanka Standards Institution: Colombo, Sri Lanka, 2010.
- EN 197-1:2011; Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements. British Standards Institution: London, UK, 2000.
- EN 933-1:1997/A1:2005; Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle size Distribution—Sieving Method. European Committee for Standardization: Brussels, Belgium, 2005.
- BS EN 1097-6:2013; Tests for Mechanical and Physical Properties of Aggregates. Determination of Particle Density and Water Absorption. The British Standards Institution: London, UK, 2013. [CrossRef]
- EN 1744-1:1998; Tests for Chemical Properties of Aggregates—Part 1: Chemical Analysis. British Standards Institution: London, UK, 1998.
- BS EN 933-8; Tests for Geometrical Properties of Aggregates. Assessment of Fines. Sand Equivalent Test. British Standards Institution: London, UK, 2012. [CrossRef]
- Marsh, B.K. Design of Normal Concrete Mixes; Building Research Establishment: London, UK, 1988. [Google Scholar]
- EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1. European Committee for Standardization: Brussels, Belgium, 2004.
- Olubajo, O.; Osha, O.; El-Nafaty, U.; Adamu, H. Effect of water-cement ratio on the mechanical properties of blended cement containing bottom ash and limestone. Civ. Environ. Res. 2014, 6, 1–9. [Google Scholar]
- Sheikh Hassani, M.; Torki, A.; Asadollahfardi, G.; Saghravani, S.F.; Shafaei, J. The effect of water to cement ratio and age on the mechanical properties of cement mortar and concrete made of micro-nano bubbles without adding any admixtures. Struct. Concr. 2021, 22, E756-68. [Google Scholar] [CrossRef]
- ASTM C109/C109M-20; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM C31/C31M-22; Standard Practice for Making and Curing Concrete Test Specimens in the Field. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM C1437-20; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C1202-22e1; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C642-97; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 1997.
- Hamada, H.M.; Abed, F.; Tayeh, B.; Al Jawahery, M.S.; Majdi, A.; Yousif, S.T. Effect of recycled seashells on concrete properties: A comprehensive review of the recent studies. Constr. Build. Mater. 2023, 376, 131036. [Google Scholar] [CrossRef]
- Khan, H.A.; Castel, A.; Khan, M.S.; Mahmood, A.H. Durability of calcium aluminate and sulphate resistant Portland cement based mortars in aggressive sewer environment and sulphuric acid. Cem. Concr. Res. 2019, 124, 105852. [Google Scholar] [CrossRef]
- Santos, B.S.; Machini, W.B.; Matias, G.; Moreira, N.F.; Portugal, P.M.; Torres, I.; Tadeu, A.; Almeida, J.A.S. Mortars with enhanced chemical resistance: Effects of sulphuric acid exposure. Dev. Built Environ. 2025, 21, 100592. [Google Scholar] [CrossRef]
- Gu, L.; Visintin, P.; Bennett, T. Sulphuric acid resistance of cementitious materials: Multiscale approach to assessing the degradation. J. Mater. Civ. Eng. 2020, 32, 04020171. [Google Scholar] [CrossRef]
- Ortega, J.M.; García-Vera, V.E.; Solak, A.M.; Tenza-Abril, A.J. Pore structure degradation of different cement mortars exposed to sulphuric acid. Appl. Sci. 2019, 9, 5297. [Google Scholar] [CrossRef]
- He, X.; Zhou, J. Mechanical characteristics of sea-sand concrete in simulated marine environment. Constr. Build. Mater. 2021, 274, 122098. [Google Scholar] [CrossRef]
Chemical Component | SiO2 | Al2O3 | FeO3 | CaO | SrO | K2O | ZrO2 | TiO2 | Fe2O3 | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|
Seashells (%) | 6.67 | 0.69 | 2.59 | 88.32 | 0.53 | 0.02 | 0.16 | 0.18 | 2.59 | 0.76 | 43.8 |
Region | Code | Application | Limit % | Comment |
---|---|---|---|---|
British | BS 882: 1983 | 5–10 mm | 20 | By aggregate |
BS 882: 1992 [26] | ≥10 mm | 8 | By coarse aggregate | |
British/European Union | BSEN 12620-2013 [27] | SC10 | <10 | |
SCNR | No requirement | |||
British/European Union | BSEN 12620-2013 [27] | SC10 | ≤10 | |
SC Declared | ≥10 | |||
SCNR | No requirement | |||
Sri Lanka | SLS 1397:2010 [28] | 0.5–8 mm | ≤15 | By sand |
Characteristic | Sea Sand | Seashells | Standard |
---|---|---|---|
Fineness modulus | 2.37 | - | BS EN 933-1:1997 + A1:2005 [30] |
Specific gravity (SSD) | 2.68 | 1.54 | BS EN 1097-6: 2013 [31] |
Fines content < 0.075 mm (%) | 0.68 | - | BS EN 933-1:1997 + A1:2005 [30] |
Water absorption (%) | 0.2 | 0.3 | BS EN 1097-6: 2013 [31] |
Water soluble chloride content (%) | 0.0004 | - | BS EN 1744-1: 1998 [32] |
Shell content (%) | 1.9 | - | SLS 1397: 2010 [28] |
Silt content (%) | 4.2 | - | BS EN 933-8 [33] |
Mix ID | SSH Content | W/C | Water (kg/m3) | Cement (kg/m3) | FA (Sand) (kg/m3) | FA (SSH) (kg/m3) | CA (kg/m3) | SP (kg/m3) |
---|---|---|---|---|---|---|---|---|
SSH0% C | 0% | 0.65 | 200 | 308 | 725 | 0 | 1883 | 0 |
SSH1% C | 1% | 0.65 | 200 | 308 | 717.8 | 7.2 | 1883 | 0 |
SSH2% C | 2% | 0.65 | 200 | 308 | 710.5 | 14.5 | 1883 | 0 |
SSH3% C | 3% | 0.65 | 200 | 308 | 703.2 | 21.8 | 1883 | 0 |
SSH4% C | 4% | 0.65 | 200 | 308 | 696 | 29 | 1883 | 0 |
SSH5% C | 5% | 0.65 | 200 | 308 | 688.7 | 36.2 | 1883 | 0 |
SSH0% M | 0% | 0.45 | 243 | 555 | 1531 | 0 | 1531 | 11.1 |
SSH1% M | 1% | 0.45 | 243 | 555 | 1515.7 | 15.3 | 1531 | 11.1 |
SSH2% M | 2% | 0.45 | 243 | 555 | 1500.4 | 30.6 | 1531 | 11.1 |
SSH3% M | 3% | 0.45 | 243 | 555 | 1485.0 | 45.9 | 1531 | 11.1 |
SSH4% M | 4% | 0.45 | 243 | 555 | 1469.8 | 61.2 | 1531 | 11.1 |
SSH5% M | 5% | 0.45 | 243 | 555 | 1454.5 | 76.6 | 1531 | 11.1 |
Sieve Size | 4–2.36 | 2.36–1.18 | 1.18–0.6 | 0.6–0.3 | 0.3–0.15 | 0.15–0.075 |
---|---|---|---|---|---|---|
Retained sand percentage (%) | 0.35 | 3.40 | 22.32 | 39.60 | 23.11 | 10.71 |
Shell content per 1 kg of sea sand (g/kg) | 1.07 | 3.17 | 3.57 | 6.49 | 12.71 | 20.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koswaththa, A.; Abeyaratne, P.; Buddika, S.; Yapa, H.; Navaratnam, S. Effects of Natural Seashell Presence on the Engineering Performance of Sea Sand Concrete. Buildings 2025, 15, 2751. https://doi.org/10.3390/buildings15152751
Koswaththa A, Abeyaratne P, Buddika S, Yapa H, Navaratnam S. Effects of Natural Seashell Presence on the Engineering Performance of Sea Sand Concrete. Buildings. 2025; 15(15):2751. https://doi.org/10.3390/buildings15152751
Chicago/Turabian StyleKoswaththa, Anuradha, Pasindu Abeyaratne, Samith Buddika, Hiran Yapa, and Satheeskumar Navaratnam. 2025. "Effects of Natural Seashell Presence on the Engineering Performance of Sea Sand Concrete" Buildings 15, no. 15: 2751. https://doi.org/10.3390/buildings15152751
APA StyleKoswaththa, A., Abeyaratne, P., Buddika, S., Yapa, H., & Navaratnam, S. (2025). Effects of Natural Seashell Presence on the Engineering Performance of Sea Sand Concrete. Buildings, 15(15), 2751. https://doi.org/10.3390/buildings15152751