Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = frequency-shifted interferometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14879 KiB  
Article
Computational Adaptive Optics for HAR Hybrid Trench Array Topography Measurement by Utilizing Coherence Scanning Interferometry
by Wenyou Qiao, Zhishan Gao, Qun Yuan, Lu Chen, Zhenyan Guo, Xiao Huo and Qian Wang
Sensors 2025, 25(13), 4085; https://doi.org/10.3390/s25134085 - 30 Jun 2025
Viewed by 268
Abstract
High aspect ratio (HAR) sample-induced aberrations seriously affect the topography measurement for the bottom of the microstructure by coherence scanning interferometry (CSI). Previous research proposed an aberration compensating method using deformable mirrors at the conjugate position of the pupil. However, it failed to [...] Read more.
High aspect ratio (HAR) sample-induced aberrations seriously affect the topography measurement for the bottom of the microstructure by coherence scanning interferometry (CSI). Previous research proposed an aberration compensating method using deformable mirrors at the conjugate position of the pupil. However, it failed to compensate for the shift-variant aberrations introduced by the HAR hybrid trench array composed of multiple trenches with different parameters. Here, we propose a computational aberration correction method for measuring the topography of the HAR structure by the particle swarm optimization (PSO) algorithm without constructing a database and prior knowledge, and a phase filter in the spatial frequency domain is constructed to restore interference signals distorted by shift-variant aberrations. Since the aberrations of each sampling point are basically unchanged in the field of view corresponding to a single trench, each trench under test can be considered as a separate isoplanatic region. Therefore, a multi-channel aberration correction scheme utilizing the virtual phase filter based on isoplanatic region segmentation is established for hybrid trench array samples. The PSO algorithm is adopted to derive the optimal Zernike polynomial coefficients representing the filter, in which the interference fringe contrast is taken as the optimization criterion. Additionally, aberrations introduce phase distortion within the 3D transfer function (3D-TF), and the 3D-TF bandwidth remains unchanged. Accordingly, we set the non-zero part of the 3D-TF as a window function to preprocess the interferogram by filtering out the signals outside the window. Finally, experiments are performed in a single trench sample and two hybrid trench array samples with depths ranging from 100 to 300 μm and widths from 10 to 30 μm to verify the effectiveness and accuracy of the proposed method. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 6581 KiB  
Article
High-Precision Diagnosis of the Whole Process of Laser-Induced Plasma and Shock Waves Using Simultaneous Phase-Shift Interferometry
by Lou Gao, Hongchao Zhang, Jian Lu and Zhonghua Shen
Photonics 2025, 12(6), 601; https://doi.org/10.3390/photonics12060601 - 11 Jun 2025
Viewed by 712
Abstract
This study employs the simultaneous phase-shift interferometry (SPSI) system to diagnose laser-induced plasma (LIP) and shock wave (SW). In high-density LIP diagnostics, the Faraday rotation effect causes probe light polarization deflection, rendering traditional fixed-phase-demodulation methods ineffective, the Carré phase-recovery algorithm is adopted and [...] Read more.
This study employs the simultaneous phase-shift interferometry (SPSI) system to diagnose laser-induced plasma (LIP) and shock wave (SW). In high-density LIP diagnostics, the Faraday rotation effect causes probe light polarization deflection, rendering traditional fixed-phase-demodulation methods ineffective, the Carré phase-recovery algorithm is adopted and its applicability is verified. Uncertainty analysis and precision verification show that the total phase shift uncertainty is controlled within 0.045 radians, equivalent to a refractive index accuracy of 8.55×106, with sensitivity to weak perturbations improved by approximately one order of magnitude compared to conventional carrier-frequency interferometry. Experimental results demonstrate that the SPSI system precisely captures the initial spatiotemporal evolution of LIP and tracks shock waves at varying attenuation levels, exhibiting notable advantages in weak shock wave detection. This research validates the SPSI system’s high sensitivity to transient weak perturbations, offering a valuable diagnostic tool for high-vacuum plasmas, low-pressure shock waves, and stress waves in optical materials. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

17 pages, 3494 KiB  
Article
Membrane-Mediated Conversion of Near-Infrared Amplitude Modulation into the Self-Mixing Signal of a Terahertz Quantum Cascade Laser
by Paolo Vezio, Andrea Ottomaniello, Leonardo Vicarelli, Mohammed Salih, Lianhe Li, Edmund Linfield, Paul Dean, Virgilio Mattoli, Alessandro Pitanti and Alessandro Tredicucci
Photonics 2025, 12(3), 273; https://doi.org/10.3390/photonics12030273 - 16 Mar 2025
Viewed by 2699
Abstract
A platform for converting near-infrared (NIR) laser power modulation into the self-mixing (SM) signal of a quantum cascade laser (QCL) operating at terahertz (THz) frequencies is introduced. This approach is based on laser feedback interferometry (LFI) with a THz QCL using a metal-coated [...] Read more.
A platform for converting near-infrared (NIR) laser power modulation into the self-mixing (SM) signal of a quantum cascade laser (QCL) operating at terahertz (THz) frequencies is introduced. This approach is based on laser feedback interferometry (LFI) with a THz QCL using a metal-coated silicon nitride trampoline membrane resonator as both the external QCL laser cavity and the mechanical coupling element of the two-laser hybrid system. We show that the membrane response can be controlled with high precision and stability both in its dynamic (i.e., piezo-electrically actuated) and static state via photothermally induced NIR laser excitation. The responsivity to nanometric external cavity variations and robustness to optical feedback of the QCL LFI apparatus allows a highly sensitive and reliable transfer of the NIR power modulation into the QCL SM voltage, with a bandwidth limited by the thermal response time of the membrane resonator. Interestingly, a dual information conversion is possible thanks to the accurate thermal tuning of the membrane resonance frequency shift and displacement. Overall, the proposed apparatus can be exploited for the precise opto-mechanical control of QCL operation with advanced applications in LFI imaging and spectroscopy and in coherent optical communication. Full article
(This article belongs to the Special Issue The Three-Decade Journey of Quantum Cascade Lasers)
Show Figures

Figure 1

14 pages, 3906 KiB  
Article
Real-Time Respiratory Monitoring Using a Sparse-Sampled Frequency-Scanning White-Light Interferometry System
by Wenyan Liu, Cheng Qian, Kexin Li, Yiping Wang, Xiaoyan Cai and Qiang Liu
Photonics 2025, 12(1), 45; https://doi.org/10.3390/photonics12010045 - 6 Jan 2025
Viewed by 1245
Abstract
Fiber-optic tip sensors offer significant potential in biomedical applications due to their high sensitivity, compact size, and resistance to electromagnetic interference. This study focuses on advancing phase demodulation techniques for ultra-short Fabry–Pérot cavities within limited spectral bandwidths to enhance their application in biomedicine [...] Read more.
Fiber-optic tip sensors offer significant potential in biomedical applications due to their high sensitivity, compact size, and resistance to electromagnetic interference. This study focuses on advancing phase demodulation techniques for ultra-short Fabry–Pérot cavities within limited spectral bandwidths to enhance their application in biomedicine and diagnostics. We propose a novel sparse-sampled white-light interferometry system for respiratory monitoring, utilizing a monolithic integrated semiconductor tunable laser for quasi-continuous frequency scanning across 191.2–196.15 THz at a sampling rate of 5 kHz. A four-step phase-shifting algorithm (PSA) ensures precise phase demodulation, enabling high sensitivity for short-cavity fiber-optic sensors under constrained spectral bandwidth conditions. Humidity sensors fabricated via a self-growing polymerization process further enhance the system’s functionality. The experimental results demonstrate the system’s capability to accurately capture diverse breathing patterns—including normal, rapid, and deep states—with fast response and recovery times. These findings establish the system’s potential for real-time respiratory monitoring in clinical and point-of-care settings. Full article
(This article belongs to the Special Issue Advancements in Optical Fiber Sensing)
Show Figures

Figure 1

20 pages, 19115 KiB  
Article
Correction of Ionospheric Phase in SAR Interferometry Considering Wavenumber Shift
by Gen Li, Zihan Hu, Yifan Wang, Zehua Dong and Han Li
Remote Sens. 2024, 16(14), 2555; https://doi.org/10.3390/rs16142555 - 12 Jul 2024
Viewed by 1514
Abstract
The ionospheric effects in repeat-pass SAR interferometry (InSAR) have become a rising concern with the increasing interest in low-frequency SAR. The ionosphere will introduce serious phase errors in the interferogram, which should be properly corrected. In this paper, the influence of the wavenumber [...] Read more.
The ionospheric effects in repeat-pass SAR interferometry (InSAR) have become a rising concern with the increasing interest in low-frequency SAR. The ionosphere will introduce serious phase errors in the interferogram, which should be properly corrected. In this paper, the influence of the wavenumber shift on the Range Split-Spectrum (RSS) method is analyzed quantitatively. It is shown that the split-spectrum processing deteriorates the coherence of the sub-band interferogram and then greatly reduces the estimation accuracy. The RSS method combined with common band filtering (CBF) can improve the coherence of sub-band interferograms and estimation accuracy, but the estimation is biased due to the RSS model mismatch. To address the problem, a modified truncated singular value decomposition (MTSVD) based multi-sub-band RSS method is proposed in this paper. The proposed method divides the range common spectrum into multiple sub-bands to jointly estimate the ionospheric phase. The performance of the proposed method is analyzed and validated based on simulation experiments. The results show that the proposed method has stronger robustness and higher accuracy. Full article
Show Figures

Figure 1

16 pages, 5426 KiB  
Article
Displacement Sensing for Laser Self-Mixing Interferometry by Amplitude Modulation and Integral Reconstruction
by Yidan Huang, Wenzong Lai and Enguo Chen
Sensors 2024, 24(12), 3785; https://doi.org/10.3390/s24123785 - 11 Jun 2024
Cited by 4 | Viewed by 1742
Abstract
To robustly and adaptively reconstruct displacement, we propose the amplitude modulation integral reconstruction method (AM-IRM) for displacement sensing in a self-mixing interferometry (SMI) system. By algebraically multiplying the SMI signal with a high-frequency sinusoidal carrier, the frequency spectrum of the signal is shifted [...] Read more.
To robustly and adaptively reconstruct displacement, we propose the amplitude modulation integral reconstruction method (AM-IRM) for displacement sensing in a self-mixing interferometry (SMI) system. By algebraically multiplying the SMI signal with a high-frequency sinusoidal carrier, the frequency spectrum of the signal is shifted to that of the carrier. This operation overcomes the issue of frequency blurring in low-frequency signals associated with continuous wavelet transform (CWT), enabling the precise extraction of the Doppler frequency of the SMI signal. Furthermore, the synchrosqueezing wavelet transform (SSWT) is utilized to enhance the frequency resolution of the Doppler signal. Our experimental results demonstrate that the proposed method achieves a displacement reconstruction accuracy of 21.1 nm (0.89%). Additionally, our simulations demonstrated that this method can accurately reconstruct target displacement under the conditions of time-varying optical feedback intensity or a signal-to-noise ratio (SNR) of 0 dB, with a maximum root mean square (RMS) error of 22.2 nm. These results highlight its applicability in real-world environments. This method eliminates the need to manually determine the window length for time–frequency conversion, calculate the parameters of the SMI system, or add additional optical devices, making it easy to implement. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 1125 KiB  
Article
The Optimization of Frequency Distribution Based on Genetic Algorithm for Space Gravitational Wave Observatories
by Lixiao Zeng, Haojie Li, Weilai Yao, Jianyu Wang and Xindong Liang
Appl. Sci. 2024, 14(12), 4963; https://doi.org/10.3390/app14124963 - 7 Jun 2024
Viewed by 1146
Abstract
The three spacecraft of the space gravitational wave antenna employ heterodyne interferometry to mitigate the effects of Doppler shift. Constrained by laser relative intensity noise (RIN) and the sampling frequency constraints of phase readout circuits, the widespread adoption of fixed offset frequencies effectively [...] Read more.
The three spacecraft of the space gravitational wave antenna employ heterodyne interferometry to mitigate the effects of Doppler shift. Constrained by laser relative intensity noise (RIN) and the sampling frequency constraints of phase readout circuits, the widespread adoption of fixed offset frequencies effectively regulates the frequency of heterodyne interferometric beat notes within a reasonable frequency domain of [5 MHz, 25 MHz]. In this work, a high-precision fitness genetic algorithm for heterodyne interferometry is utilized to generate the initial offset frequency distribution scheme. To address issues with unreasonable switching times and offset frequency settings in the initial scheme for partial frequency domains, optimization strategies are proposed from three aspects: frequency domain selection extension, switch times control, and numerical low frequency. Results demonstrate that the optimization of frequency domain selection extension narrows the reasonable frequency domain to [5 MHz, 15 MHz] and [7 MHz, 17 MHz]. Optimization of switch times control ensures that switching times of offset frequency distribution scheme generated under the settings of [6 MHz, 17 MHz] and wider frequency domains can be controlled within a reasonable range of 6 to 13 times. Fixed offset frequency settings are generally reduced by 24.3% after low-frequency optimization. This methodology and result can provide a reliable reference for Program Taiji and even related space gravitational wave antenna projects. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

20 pages, 851 KiB  
Article
Search for Extreme Mass Ratio Inspirals Using Particle Swarm Optimization and Reduced Dimensionality Likelihoods
by Xiao-Bo Zou, Soumya D. Mohanty, Hong-Gang Luo and Yu-Xiao Liu
Universe 2024, 10(4), 171; https://doi.org/10.3390/universe10040171 - 6 Apr 2024
Cited by 3 | Viewed by 1650
Abstract
Extreme-mass-ratio inspirals (EMRIs) are significant observational targets for spaceborne gravitational wave detectors, namely, LISA, Taiji, and Tianqin, which involve the inspiral of stellar-mass compact objects into massive black holes (MBHs) with a mass range of approximately 104107M [...] Read more.
Extreme-mass-ratio inspirals (EMRIs) are significant observational targets for spaceborne gravitational wave detectors, namely, LISA, Taiji, and Tianqin, which involve the inspiral of stellar-mass compact objects into massive black holes (MBHs) with a mass range of approximately 104107M. EMRIs are estimated to produce long-lived gravitational wave signals with more than 105 cycles before plunge, making them an ideal laboratory for exploring the strong-gravity properties of the spacetimes around the MBHs, stellar dynamics in galactic nuclei, and properties of the MBHs itself. However, the complexity of the waveform model, which involves the superposition of multiple harmonics, as well as the high-dimensional and large-volume parameter space, make the fully coherent search challenging. In our previous work, we proposed a 10-dimensional search using Particle Swarm Optimization (PSO) with local maximization over the three initial angles. In this study, we extend the search to an 8-dimensional PSO with local maximization over both the three initial angles and the angles of spin direction of the MBH, where the latter contribute a time-independent amplitude to the waveforms. Additionally, we propose a 7-dimensional PSO search by using a fiducial value for the initial orbital frequency and shifting the corresponding 8-dimensional Time Delay Interferometry responses until a certain lag returns the corresponding 8-dimensional log-likelihood ratio’s maximum. The reduced dimensionality likelihoods enable us to successfully search for EMRI signals with a duration of 0.5 years and signal-to-noise ratio of 50 within a wider search range than our previous study. However, the ranges used by both the LISA Data Challenge (LDC) and Mock LISA Data Challenge (MLDC) to generate their simulated signals are still wider than the those we currently employ in our direct searches. Consequently, we discuss further developments, such as using a hierarchical search to narrow down the search ranges of certain parameters and applying Graphics Processing Units to speed up the code. These advances aim to improve the efficiency, accuracy, and generality of the EMRI search algorithm. Full article
(This article belongs to the Special Issue Newest Results in Gravitational Waves and Machine Learning)
Show Figures

Figure 1

16 pages, 7053 KiB  
Article
Absolute Ranging with Time Delay Interferometry for Space-Borne Gravitational Wave Detection
by Dan Luo, Mingyang Xu, Panpan Wang, Hanzhong Wu and Chenggang Shao
Sensors 2024, 24(7), 2069; https://doi.org/10.3390/s24072069 - 24 Mar 2024
Viewed by 1564
Abstract
In future space-borne gravitational wave (GW) detectors, time delay interferometry (TDI) will be utilized to reduce the overwhelming noise, including the laser frequency noise and the clock noise etc., by time shifting and recombining the data streams in post-processing. The successful operation of [...] Read more.
In future space-borne gravitational wave (GW) detectors, time delay interferometry (TDI) will be utilized to reduce the overwhelming noise, including the laser frequency noise and the clock noise etc., by time shifting and recombining the data streams in post-processing. The successful operation of TDI relies on absolute inter-satellite ranging with meter-level precision. In this work, we numerically and experimentally demonstrate a strategy for inter-satellite distance measurement. The distances can be coarsely determined using the technique of arm-locking ranging with a large non-ambiguity range, and subsequently TDI can be used for precise distance measurement (TDI ranging) by finding the minimum value of the power of the residual noises. The measurement principle is introduced. We carry out the numerical simulations, and the results show millimeter-level precision. Further, we perform the experimental verifications based on the fiber link, and the distances can be measured with better than 0.05 m uncertainty, which can well satisfy the requirement of time delay interferometry. Full article
(This article belongs to the Special Issue Optical Instruments and Sensors and Their Applications)
Show Figures

Figure 1

11 pages, 2991 KiB  
Article
High-Bandwidth Heterodyne Laser Interferometer for the Measurement of High-Intensity Focused Ultrasound Pressure
by Ke Wang, Guangzhen Xing, Ping Yang, Min Wang, Zheng Wang and Qi Tian
Micromachines 2023, 14(12), 2225; https://doi.org/10.3390/mi14122225 - 11 Dec 2023
Cited by 1 | Viewed by 1763
Abstract
As a high-end medical technology, high-intensity focused ultrasound (HIFU) is widely used in cancer treatment and ultrasonic lithotripsy technology. The acoustic output level and safety of ultrasound treatments are closely related to the accuracy of sound pressure measurements. Heterodyne laser interferometry is applied [...] Read more.
As a high-end medical technology, high-intensity focused ultrasound (HIFU) is widely used in cancer treatment and ultrasonic lithotripsy technology. The acoustic output level and safety of ultrasound treatments are closely related to the accuracy of sound pressure measurements. Heterodyne laser interferometry is applied to the measurement of ultrasonic pressure owing to its characteristics of non-contact, high precision, and traceability. However, the upper limit of sound pressure measurement is limited by the bandwidth of the interferometer. In this paper, a high-bandwidth heterodyne laser interferometer for the measurement of high-intensity focused ultrasound pressure is developed and tested. The optical carrier with a frequency shift of 358 MHz is realized by means of an acousto-optic modulator. The selected electrical devices ensure that the electrical bandwidth can reach 1.5 GHz. The laser source adopts an iodine frequency-stabilized semiconductor laser with high-frequency spectral purity, which can reduce the influence of spectral purity on the bandwidth to a negligible level. The interference light path is integrated and encapsulated to improve the stability in use. An HIFU sound pressure measurement experiment is carried out, and the upper limit of the sound pressure measurement is obviously improved. Full article
(This article belongs to the Special Issue Progress and Application of Ultra-Precision Laser Interferometry)
Show Figures

Figure 1

15 pages, 3571 KiB  
Review
Sensing by Dynamics of Lasers with External Optical Feedback: A Review
by Bin Liu, Yangfan Jiang and Haining Ji
Photonics 2022, 9(7), 450; https://doi.org/10.3390/photonics9070450 - 27 Jun 2022
Cited by 16 | Viewed by 3772
Abstract
External optical feedback (EOF) has great impacts on the properties of lasers. It influences the stable operation of lasers. However, various applications based on lasers with EOF have been developed. One typical example is self-mixing interferometry technology, where modulated steady-state laser intensity is [...] Read more.
External optical feedback (EOF) has great impacts on the properties of lasers. It influences the stable operation of lasers. However, various applications based on lasers with EOF have been developed. One typical example is self-mixing interferometry technology, where modulated steady-state laser intensity is utilized for sensing and measurement. Other works show that laser dynamics can also be used for sensing, and the laser in this case is more sensitive to EOF. This paper reviews the sensing technology that uses the dynamics of lasers with EOF. We firstly introduce the basic operating principles of a laser with EOF and discuss the noise properties of and intensity modification in lasers induced by EOF. Then, sensing applications using laser dynamics are categorized and presented, including sensing by frequency-shifted optical feedback, relaxation oscillation frequency, and dynamics with self-mixing interferometry signals and laser optical chaos. Lastly, we present an analysis of the transient response waveform and spectrum of a laser with EOF, showing its potential for sensing. Full article
(This article belongs to the Special Issue Advances of Laser Diode and LED)
Show Figures

Figure 1

10 pages, 6024 KiB  
Communication
A Simple Phase-Sensitive Surface Plasmon Resonance Sensor Based on Simultaneous Polarization Measurement Strategy
by Meng-Chi Li, Kai-Ren Chen, Chien-Cheng Kuo, Yu-Xen Lin and Li-Chen Su
Sensors 2021, 21(22), 7615; https://doi.org/10.3390/s21227615 - 16 Nov 2021
Cited by 15 | Viewed by 3116
Abstract
The SPR phenomenon results in an abrupt change in the optical phase such that one can measure the phase shift of the reflected light as a sensing parameter. Moreover, many studies have demonstrated that the phase changes more acutely than the intensity, leading [...] Read more.
The SPR phenomenon results in an abrupt change in the optical phase such that one can measure the phase shift of the reflected light as a sensing parameter. Moreover, many studies have demonstrated that the phase changes more acutely than the intensity, leading to a higher sensitivity to the refractive index change. However, currently, the optical phase cannot be measured directly because of its high frequency; therefore, investigators usually have to use complicated techniques for the extraction of phase information. In this study, we propose a simple and effective strategy for measuring the SPR phase shift based on phase-shift interferometry. In this system, the polarization-dependent interference signals are recorded simultaneously by a pixelated polarization camera in a single snapshot. Subsequently, the phase information can be effortlessly acquired by a phase extraction algorithm. Experimentally, the proposed phase-sensitive SPR sensor was successfully applied for the detection of small molecules of glyphosate, which is the most frequently used herbicide worldwide. Additionally, the sensor exhibited a detection limit of 15 ng/mL (0.015 ppm). Regarding its simplicity and effectiveness, we believe that our phase-sensitive SPR system presents a prospective method for acquiring phase signals. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

19 pages, 7122 KiB  
Article
Ocean Surface Topography Altimetry by Large Baseline Cross-Interferometry from Satellite Formation
by Weiya Kong, Bo Liu, Xiaohong Sui, Running Zhang and Jinping Sun
Remote Sens. 2020, 12(21), 3519; https://doi.org/10.3390/rs12213519 - 27 Oct 2020
Cited by 9 | Viewed by 2753
Abstract
Imaging Radar Altimeter (IRA) is the current development tendency for ocean surface topography (OST) altimetry, which utilizes Synthetic Aperture Radar (SAR) and interferometry to improve the spatial resolution of OST to several kilometers or even better. Meanwhile, centimetric altimetry accuracy should be guaranteed [...] Read more.
Imaging Radar Altimeter (IRA) is the current development tendency for ocean surface topography (OST) altimetry, which utilizes Synthetic Aperture Radar (SAR) and interferometry to improve the spatial resolution of OST to several kilometers or even better. Meanwhile, centimetric altimetry accuracy should be guaranteed for applications such as geostrophic currents or marine gravity anomaly inversion. However, the baseline length of IRA which determines the altimetric sensitivity is confined by the satellite platform, in consideration of baseline vibration and payload capability. Therefore, the baseline length from a single satellite can extend to only tens of meters, making it difficult to achieve centimetric accuracy. Referring to the successful experience from TerraSAR-X/TanDEM-X, satellite formation can easily extend the baseline length to hundreds or thousands of meters, depending on the helix orbit. Therefore, we propose the large baseline IRA (LB-IRA) from satellite formation for OST altimetry: the carrier frequency shift (CFS) is brought in to compensate for the severe baseline decorrelation, and the helix orbit is carefully selected to prevent severe time decorrelation from along-track baseline. The numerical results indicate that the LB-IRA, whose cross-track baseline ranges between 629~1000 m and along-tack baseline ranges between 0~40 m, can achieve ~1 cm relative accuracy at 1 km resolution. Full article
(This article belongs to the Special Issue Advanced RF Sensors and Remote Sensing Instruments)
Show Figures

Graphical abstract

17 pages, 1503 KiB  
Article
Single-Element Dual-Interferometer for Precision Inertial Sensing
by Yichao Yang, Kohei Yamamoto, Victor Huarcaya, Christoph Vorndamme, Daniel Penkert, Germán Fernández Barranco, Thomas S. Schwarze, Moritz Mehmet, Juan Jose Esteban Delgado, Jianjun Jia, Gerhard Heinzel and Miguel Dovale Álvarez
Sensors 2020, 20(17), 4986; https://doi.org/10.3390/s20174986 - 3 Sep 2020
Cited by 9 | Viewed by 5084
Abstract
Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. [...] Read more.
Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry. By shifting the complexity of the setup to the signal processing stage, these methods enable devices with a size and weight not feasible using conventional techniques. In this paper we present the design of a novel sensor topology based on deep frequency modulation interferometry: the self-referenced single-element dual-interferometer (SEDI) inertial sensor, which takes simplification one step further by accommodating two interferometers in one optic. Using a combination of computer models and analytical methods we show that an inertial sensor with sub-picometer precision for frequencies above 10 mHz, in a package of a few cubic inches, seems feasible with our approach. Moreover we show that by combining two of these devices it is possible to reach sub-picometer precision down to 2 mHz. In combination with the given compactness, this makes the SEDI sensor a promising approach for applications in high precision inertial sensing for both next-generation space-based gravity missions employing drag-free control, and ground-based experiments employing inertial isolation systems with optical readout. Full article
Show Figures

Graphical abstract

15 pages, 5018 KiB  
Article
Precise Measurement of the Surface Shape of Silicon Wafer by Using a New Phase-Shifting Algorithm and Wavelength-Tuning Interferometer
by Fuqing Miao, Seokyoung Ahn and Yangjin Kim
Appl. Sci. 2020, 10(9), 3250; https://doi.org/10.3390/app10093250 - 7 May 2020
Cited by 10 | Viewed by 3606
Abstract
In wavelength-tuning interferometry, the surface profile of the optical component is a key evaluation index. However, the systematic errors caused by the coupling error between the higher harmonics and phase shift error are considerable. In this research, a new 10N − 9 [...] Read more.
In wavelength-tuning interferometry, the surface profile of the optical component is a key evaluation index. However, the systematic errors caused by the coupling error between the higher harmonics and phase shift error are considerable. In this research, a new 10N − 9 phase-shifting algorithm comprising a new polynomial window function and a DFT is developed. A new polynomial window function is developed based on characteristic polynomial theory. The characteristic of the new 10N − 9 algorithm is represented in the frequency domain by Fourier description. The phase error of the new algorithm is also discussed and compared with other phase-shifting algorithms. The surface profile of a silicon wafer was measured by using the 10N − 9 algorithm and a wavelength-tuning interferometer. The repeatability measurement error across 20 experiments was 2.045 nm, which indicates that the new 10N − 9 algorithm outperforms the conventional phase-shifting algorithm. Full article
Show Figures

Figure 1

Back to TopTop