Search for Extreme Mass Ratio Inspirals Using Particle Swarm Optimization and Reduced Dimensionality Likelihoods
Abstract
:1. Introduction
2. Data Description
2.1. TDI Combinations
2.2. Noise Model and Signal-to-Noise Ratio
2.3. Signal Model: EMRI Waveform
3. Generalized Likelihood Ratio Test
3.1. 13-Dimensional LLR
3.2. 8-Dimensional LLR
3.3. 7-Dimensional LLR
4. Particle Swarm Optimization
5. Results
- The 4-th PSO in the 8-dimensional searches is successful as indicated by the estimated SNR shown in bold. However, no similar successful search is observed in the 7-dimensional searches.
- Parameter estimation errors are determined by subtracting the corresponding signal parameter’s best-fit values from their true values. The six ODE-related parameters, namely, , M, , , , and , are expressed relative to their respective FIM (evaluated at the true location). The estimation error for D is expressed relative to its true value itself. For the parameters and that represent the sky’s location, we show the errors themselves. The sky’s locations and [26] contribute a degeneracy to the LLR in Equation (27). As a result, we use the asterisk (*) to show the corresponding errors after the degeneracy is taken care of.
- To consider the impact of weak harmonics beyond the loudest 10 on the estimation of the initial angles , and , as well as the angles and denoting the spin direction of the MBH, we conduct a rerun of the 5-dimensional local maximization using a waveform with all the 25 harmonics at the best-fit location from each PSO search, where the templates used in the search are restricted to the loudest 10 harmonics with . The estimated angles are then utilized in the estimation of the distance D using Equation (28).
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AK | Analytical Kludge |
CO | Compact Object |
CRLB | Cramer–Rao Lower Bound |
DFT | Discrete Fourier Transform |
EMRI | Extreme Mass Ratio Inspiral |
FIM | Fisher Information Matrix |
GWs | Gravitational Waves |
GLRT | Generalized Likelihood Ratio Test |
GPUs | Graphics Processing Units |
LDC | LISA Data Challenge |
LLR | Log-Likelihood Ratio |
LISA | Laser Interferometer Space Antenna |
MCMC | Markov Chain Monte Carlo |
MLDC | Mock LISA Data Challenge |
MBH | Massive Black Hole |
ODEs | Ordinary Differential Equations |
PSD | Power Spectral Density |
PSO | Particle Swarm Optimization |
SNR | Signal-to-Noise Ratio |
SSB | Solar System Barycenter |
TDI | Time Delay Interferometry |
References
- Amaro-Seoane, P. The gravitational capture of compact objects by massive black holes. In Handbook of Gravitational Wave Astronomy; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Babak, S.; Gair, J.; Sesana, A.; Barausse, E.; Sopuerta, C.F.; Berry, C.P.L.; Berti, E.; Amaro-Seoane, P.; Petiteau, A.; Klein, A. Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals. Phys. Rev. D 2017, 95, 103012. [Google Scholar] [CrossRef]
- Fan, H.M.; Hu, Y.M.; Barausse, E.; Sesana, A.; Zhang, J.D.; Zhang, X.; Zi, T.G.; Mei, J. Science with the TianQin observatory: Preliminary result on extreme-mass-ratio inspirals. Phys. Rev. D 2020, 102, 063016. [Google Scholar] [CrossRef]
- Gair, J.R.; Barack, L.; Creighton, T.; Cutler, C.; Larson, S.L.; Phinney, E.S.; Vallisneri, M. Event rate estimates for LISA extreme mass ratio capture sources. Class. Quant. Grav. 2004, 21, S1595–S1606. [Google Scholar] [CrossRef]
- Hu, W.R.; Wu, Y.L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev. 2017, 4, 685–686. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, Z.; Jin, G.; Wu, Y.; Hu, W. A brief analysis to Taiji: Science and technology. Results Phys. 2020, 16, 102918. [Google Scholar] [CrossRef]
- Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quant. Grav. 2016, 33, 035010. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Zweifel, P. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Chua, A.J.K.; Hee, S.; Handley, W.J.; Higson, E.; Moore, C.J.; Gair, J.R.; Hobson, M.P.; Lasenby, A.N. Towards a framework for testing general relativity with extreme-mass-ratio-inspiral observations. Mon. Not. R. Astron. Soc. 2018, 478, 28–40. [Google Scholar] [CrossRef]
- Yang, S.; Xin, S.; Zhang, C.; Han, W. Testing Gravity Theory With Extreme Mass-Ratio Inspirals: Recent Progress. MDPI Proc. 2019, 17, 11. [Google Scholar] [CrossRef]
- Cárdenas-Avendaño, A.; Sopuerta, C.F. Testing gravity with Extreme-Mass-Ratio Inspirals. arXiv 2024, arXiv:2401.08085. [Google Scholar]
- Zi, T.G.; Zhang, J.D.; Fan, H.M.; Zhang, X.T.; Hu, Y.M.; Shi, C.; Mei, J. Science with the TianQin Observatory: Preliminary results on testing the no-hair theorem with extreme mass ratio inspirals. Phys. Rev. D 2021, 104, 064008. [Google Scholar] [CrossRef]
- Carter, B. Axisymmetric Black Hole Has Only Two Degrees of Freedom. Phys. Rev. Lett. 1971, 26, 331–333. [Google Scholar] [CrossRef]
- Gürlebeck, N. No-hair theorem for Black Holes in Astrophysical Environments. Phys. Rev. Lett. 2015, 114, 151102. [Google Scholar] [CrossRef]
- Glampedakis, K.; Babak, S. Mapping spacetimes with LISA: Inspiral of a test-body in a ‘quasi-Kerr’ field. Class. Quant. Grav. 2006, 23, 4167–4188. [Google Scholar] [CrossRef]
- Barack, L.; Cutler, C. Using LISA EMRI sources to test off-Kerr deviations in the geometry of massive black holes. Phys. Rev. D 2007, 75, 042003. [Google Scholar] [CrossRef]
- Xin, S.; Han, W.B.; Yang, S.C. Gravitational waves from extreme-mass-ratio inspirals using general parametrized metrics. Phys. Rev. D 2019, 100, 084055. [Google Scholar] [CrossRef]
- Hannuksela, O.A.; Ng, K.C.Y.; Li, T.G.F. Extreme dark matter tests with extreme mass ratio inspirals. Phys. Rev. D 2020, 102, 103022. [Google Scholar] [CrossRef]
- Li, G.L.; Tang, Y.; Wu, Y.L. Probing dark matter spikes via gravitational waves of extreme-mass-ratio inspirals. Sci. China Phys. Mech. Astron. 2022, 65, 100412. [Google Scholar] [CrossRef]
- Yue, X.J.; Han, W.B.; Chen, X. Dark matter: An efficient catalyst for intermediate-mass-ratio-inspiral events. Astrophys. J. 2019, 874, 34. [Google Scholar] [CrossRef]
- Berry, C.P.L.; Hughes, S.A.; Sopuerta, C.F.; Chua, A.J.K.; Heffernan, A.; Holley-Bockelmann, K.; Mihaylov, D.P.; Miller, M.C.; Sesana, A. The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy. arXiv 2019, arXiv:1903.03686. [Google Scholar]
- Berry, C.P.; Hughes, S.A.; Sopuerta, C.F.; Chua, A.J.; Heffernan, A.; Holley-Bockelmann, K.; Sesana, A. Astrophysics with the Laser Interferometer Space Antenna. Living Rev. Rel. 2023, 26, 2. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Gair, J.R.; Freitag, M.; Miller, M.C.; Mandel, I.; Cutler, C.J.; Babak, S. Astrophysics, detection and science applications of intermediate- and extreme mass-ratio inspirals. Class. Quant. Grav. 2007, 24, R113–R169. [Google Scholar] [CrossRef]
- Laghi, D.; Tamanini, N.; Pozzo, W.D.; Sesana, A.; Gair, J.; Babak, S.; Izquierdo-Villalba, D. Gravitational-wave cosmology with extreme mass-ratio inspirals. Mon. Not. R. Astron. Soc. 2021, 508, 4512–4531. [Google Scholar] [CrossRef]
- Zhu, L.G.; Fan, H.M.; Chen, X.; Hu, Y.M.; Zhang, J.d. Improving the Cosmological Constraints by Inferring the Formation Channel of Extreme-mass-ratio Inspirals. arXiv 2024, arXiv:2403.04950. [Google Scholar]
- Gair, J.R.; Mandel, I.; Wen, L. Time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data. J. Phys. Conf. Ser. 2008, 122, 012037. [Google Scholar] [CrossRef]
- Gair, J.R.; Mandel, I.; Wen, L. Improved time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data. Class. Quant. Grav. 2008, 25, 184031. [Google Scholar] [CrossRef]
- Zhang, X.T.; Messenger, C.; Korsakova, N.; Chan, M.L.; Hu, Y.M.; Zhang, J.D. Detecting gravitational waves from extreme mass ratio inspirals using convolutional neural networks. Phys. Rev. D 2022, 105, 123027. [Google Scholar] [CrossRef]
- Zhao, T.; Zhou, Y.; Shi, R.; Cao, Z.; Ren, Z. DECODE: DilatEd COnvolutional neural network for Detecting Extreme-mass-ratio inspirals. arXiv 2023, arXiv:2308.16422. [Google Scholar]
- Yun, Q.; Han, W.B.; Guo, Y.Y.; Wang, H.; Du, M. Detecting extreme-mass-ratio inspirals for space-borne detectors with deep learning. arXiv 2023, arXiv:2309.06694. [Google Scholar]
- Yun, Q.; Han, W.B.; Guo, Y.Y.; Wang, H.; Du, M. The detection, extraction and parameter estimation of extreme-mass-ratio inspirals with deep learning. arXiv 2023, arXiv:2311.18640. [Google Scholar]
- Barack, L.; Pound, A. Self-force and radiation reaction in general relativity. Rept. Prog. Phys. 2019, 82, 016904. [Google Scholar] [CrossRef] [PubMed]
- Barack, L.; Cutler, C. LISA capture sources: Approximate waveform, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D 2004, 69, 082005. [Google Scholar] [CrossRef]
- Babak, S.; Baker, J.G.; Benacquista, M.J.; Cornish, N.J.; Crowder, J.; Larson, S.L.; Plagnol, E.; Porter, E.K.; Vallisneri, M.; Vecchio, A.; et al. The Mock LISA Data Challenges: From Challenge 1B to Challenge 3. Class. Quant. Grav. 2008, 25, 184026. [Google Scholar] [CrossRef]
- Arnaud, K.A.; Babak, S.; Baker, J.G.; Benacquista, M.J.; Cornish, N.J.; Cutler, C.; Finn, L.S.; Larson, S.L.; Littenberg, T.; Porter, E.K.; et al. An Overview of the second round of the Mock LISA Data Challenges. Class. Quant. Grav. 2007, 24, S551–S564. [Google Scholar] [CrossRef]
- Babak, S.; Baker, J.G.; Benacquista, M.J.; Cornish, N.J.; Larson, S.L.; Mandel, I.; McWilliams, S.T.; Whelan, J.T.; Petiteau, A.; Porte, E.K.; et al. The Mock LISA Data Challenges: From Challenge 3 to Challenge 4. Class. Quant. Grav. 2010, 27, 084009. [Google Scholar] [CrossRef]
- Porter, E.K. An Overview of LISA Data Analysis Algorithms. arXiv 2009, arXiv:0910.0373. [Google Scholar]
- Baghi, Q. The LISA Data Challenges. arXiv 2022, arXiv:2204.12142. [Google Scholar]
- Katz, M.L.; Chua, A.J.K.; Speri, L.; Warburton, N.; Hughes, S.A. Fast extreme-mass-ratio-inspiral waveforms: New tools for millihertz gravitational-wave data analysis. Phys. Rev. D 2021, 104, 064047. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, T.; Cao, Z.; Guo, Z.K.; Han, W.B.; Jin, H.B.; Wu, Y.L. Taiji data challenge for exploring gravitational wave universe. Front. Phys. 2023, 18, 64302. [Google Scholar] [CrossRef]
- Chua, A.J.K.; Cutler, C.J. Nonlocal parameter degeneracy in the intrinsic space of gravitational-wave signals from extreme-mass-ratio inspirals. Phys. Rev. D 2022, 106, 124046. [Google Scholar] [CrossRef]
- Bandopadhyay, D.; Moore, C.J. LISA stellar-mass black hole searches with semicoherent and particle-swarm methods. Phys. Rev. D 2023, 108, 084014. [Google Scholar] [CrossRef]
- Ye, C.Q.; Fan, H.M.; Torres-Orjuela, A.; Zhang, J.d.; Hu, Y.M. Identification of Gravitational-waves from Extreme Mass Ratio Inspirals. arXiv 2023, arXiv:2310.03520. [Google Scholar]
- Babak, S.; Gair, J.R.; Porter, E.K. An Algorithm for detection of extreme mass ratio inspirals in LISA data. Class. Quant. Grav. 2009, 26, 135004. [Google Scholar] [CrossRef]
- Liu, J.S. Monte Carlo Strategies in Scientific Computing; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing; Prentice Hall: Hoboken, NJ, USA, 1993; Volumes 1–2. [Google Scholar]
- Cornish, N.J. Detection Strategies for Extreme Mass Ratio Inspirals. Class. Quant. Grav. 2011, 28, 094016. [Google Scholar] [CrossRef]
- Ali, A. Bayesian Inference on EMRI Signals in LISA Data. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 2011. [Google Scholar]
- Ali, A.; Christensen, N.; Meyer, R.; Rover, C. Bayesian inference on EMRI signals using low frequency approximations. Class. Quant. Grav. 2012, 29, 145014. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks, Perth, WA, Australia, 27 November 27–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1942–1948. [Google Scholar]
- Bratton, D.; Kennedy, J. Defining a Standard for Particle Swarm Optimization. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium, Honolulu, HI, USA, 1–5 April 2007; pp. 120–127. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 Congress on Evolutionary Computation, Istanbul, Turkey, 16–19 July 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 1, pp. 84–88. [Google Scholar]
- Clerc, M.; Kennedy, J. The particle swarm- explosion, stability, and convergence in a multidimen- sional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Zou, X.B.; Mohanty, S.D.; Luo, H.G.; Liu, Y.X. Swarm Intelligence Methods for Extreme Mass Ratio Inspiral Search: First Application of Particle Swarm Optimization. Universe 2024, 10, 96. [Google Scholar] [CrossRef]
- Wang, Y.; Mohanty, S.D. Particle Swarm Optimization and gravitational wave data analysis: Performance on a binary inspiral testbed. Phys. Rev. D 2010, 81, 063002. [Google Scholar] [CrossRef]
- Weerathunga, T.S.; Mohanty, S.D. Performance of Particle Swarm Optimization on the fully-coherent all-sky search for gravitational waves from compact binary coalescences. Phys. Rev. D 2017, 95, 24030. [Google Scholar] [CrossRef]
- Normandin, M.E.; Mohanty, S.D.; Weerathunga, T.S. Particle Swarm Optimization based search for gravitational waves from compact binary coalescences: Performance improvements. Phys. Rev. D 2018, 98, 044029. [Google Scholar] [CrossRef]
- Normandin, M.E.; Mohanty, S.D. Towards a real-time fully-coherent all-sky search for gravitational waves from compact binary coalescences using particle swarm optimization. Phys. Rev. D 2020, 101, 082001. [Google Scholar] [CrossRef]
- Leung, C. Estimation of Unmodeled Gravitational Wave Transients with Spline Regression and Particle Swarm Optimization. Siam Undergrad. Res. Online (Siuro) 2015, 8. [Google Scholar] [CrossRef]
- Mohanty, S.D. Spline Based Search Method For Unmodeled Transient Gravitational Wave Chirps. Phys. Rev. D 2017, 96, 102008. [Google Scholar] [CrossRef]
- Mohanty, S.D.; Fahnestock, E. Adaptive spline fitting with particle swarm optimization. Comput. Stat. 2021, 36, 155–191. [Google Scholar] [CrossRef]
- Mohanty, S.D.; Chowdhury, M.A.T. Glitch subtraction from gravitational wave data using adaptive spline fitting. Class. Quant. Grav. 2023, 40, 125001. [Google Scholar] [CrossRef]
- Wang, Y.; Mohanty, S.D.; Jenet, F.A. A coherent method for the detection and estimation of continuous gravitational wave signals using a pulsar timing array. Astrophys. J. 2014, 795, 96. [Google Scholar] [CrossRef]
- Wang, Y.; Mohanty, S.D.; Jenet, F.A. Coherent network analysis for continuous gravitational wave signals in a pulsar timing array: Pulsar phases as extrinsic parameters. Astrophys. J. 2015, 815, 125. [Google Scholar] [CrossRef]
- Zhu, X.; Wen, L.; Xiong, J.; Xu, Y.; Wang, Y.; Mohanty, S.D.; Hobbs, G.; Manchester, R.N. Detection and localization of continuous gravitational waves with pulsar timing arrays: The role of pulsar terms. Mon. Not. R. Astron. Soc. 2016, 461, 1317–1327. [Google Scholar] [CrossRef]
- Wang, Y.; Mohanty, S.D. Pulsar Timing Array Based Search for Supermassive Black Hole Binaries in the Square Kilometer Array Era. Phys. Rev. Lett. 2017, 118, 151104, Erratum: Phys. Rev. Lett. 2020, 124, 169901. [Google Scholar] [CrossRef]
- Wang, Y.; Mohanty, S.D.; Qian, Y.Q. Continuous gravitational wave searches with pulsar timing arrays: Maximization versus marginalization over pulsar phase parameters. J. Phys. Conf. Ser. 2017, 840, 012058. [Google Scholar] [CrossRef]
- Qian, Y.Q.; Mohanty, S.D.; Wang, Y. Iterative time-domain method for resolving multiple gravitational wave sources in pulsar timing array data. Phys. Rev. D 2022, 106, 023016. [Google Scholar] [CrossRef]
- Zhang, X.; Mohanty, S.D.; Zou, X.; Liu, Y. Resolving Galactic binaries in LISA data using particle swarm optimization and cross-validation. Phys. Rev. D 2021, 104, 02402. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhao, S.D.; Mohanty, S.D.; Liu, Y.X. Resolving Galactic binaries using a network of space-borne gravitational wave detectors. Phys. Rev. D 2022, 106, 102004. [Google Scholar] [CrossRef]
- Gao, P.; Fan, X.L.; Cao, Z.J.; Zhang, X.H. Fast resolution of Galactic binaries in LISA data. Phys. Rev. D 2023, 107, 123029. [Google Scholar] [CrossRef]
- Gao, P.; Fan, X.; Cao, Z. Simultaneously search for multi-target Galactic binary gravitational waves in reduced parameter space with LMPSO-CV. arXiv 2024, arXiv:2401.09300. [Google Scholar]
- Lu, Y.; Li, E.K.; Hu, Y.M.; Zhang, J.d.; Mei, J. An Implementation of Galactic White Dwarf Binary Data Analysis for MLDC-3.1. Res. Astron. Astrophys. 2023, 23, 015022. [Google Scholar] [CrossRef]
- Ciuprina, G.; Ioan, D.; Munteanu, I. Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans. Magn. 2002, 38, 1037–1040. [Google Scholar] [CrossRef]
- Robinson, J.; Rahmat-Samii, Y. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 2004, 52, 397–407. [Google Scholar] [CrossRef]
- Eberhart, R.C.; YShi, Y.; Kennedy, J. Swarm Intelligence; Elsevier: Piscataway, NJ, USA, 2001. [Google Scholar]
- Clerc, M. Particle Swarm Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 93. [Google Scholar]
- Engelbrecht, A.P. Fundamentals of Computational Swarm Intelligence; Wiley Chichester: Chichester, UK, 2005; Volume 1. [Google Scholar]
- Mohanty, S.D. Swarm Intelligence Methods for Statistical Regression; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Tinto, M.; Dhurandhar, S.V. Time Delay. Living Rev. Rel. 2005, 8, 4. [Google Scholar] [CrossRef]
- LISA Data Challenge, Code and Maunal. Available online: https://lisa-ldc.lal.in2p3.fr/static/data/pdf/LDC-manual-002.pdf (accessed on 3 April 2024).
- Babak, S.; Petiteau, A.; Hewitson, M. LISA Sensitivity and SNR Calculations. arXiv 2021, arXiv:2108.01167. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P.; Metcalf, M. Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing, 2nd ed.; (Fortran Numerical Recipes 2); Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- The Gsl Library. Available online: https://www.gnu.org/software/gsl/doc/html/multimin.html (accessed on 3 April 2024).
- Li, X.; Yao, X. Cooperatively Coevolving Particle Swarms for Large Scale Optimization. In IEEE Transactions on Evolutionary Computation; IEEE: Piscataway, NJ, USA, 2011; Volume 16, pp. 210–224. [Google Scholar] [CrossRef]
SNR Order (Descending) | LDC-1.2 Parameters | ||||
---|---|---|---|---|---|
1 | 2/0.654 | 2/0.583 | 2/0.855 | 2/0.362 | 4/0.338 |
2 | 3/0.281 | 3/0.326 | 3/0.123 | 3/0.338 | 5/0.334 |
power fraction | 0.935 | 0.909 | 0.978 | 0.700 | 0.671 |
3 | 4/0.053 | 4/0.075 | 4/0.015 | 4/0.184 | 3/0.241 |
4 | 5/0.007 | 5/0.012 | 1/0.005 | 5/0.085 | 2/0.059 |
5 | 1/0.005 | 1/0.005 | 5/0.002 | 1/0.031 | 1/0.029 |
Parameters | LDC Values | FIM | Search Range Absolute Value | Search Range in |
---|---|---|---|---|
29.490000 | 1 | 20.5249 | ||
27.9109 | ||||
2.1422000 | 20.7307 | |||
0.9697 | 31.7084 | |||
0.22865665 | 27.1354 | |||
(8D) 11 lags (7D) | 100 (8D) 0.3456 (7D) | |||
0.4989445 | 1300.5 | |||
2.232797 | 3677.5 |
1st PSO | 2nd PSO | 3rd PSO | 4th PSO | |
---|---|---|---|---|
Square root of fitness values | ||||
Best location from PSO | 47.546001 | 46.381273 | 47.069351 | 47.988164 |
Parameter estimation errors | ||||
−3.1 | −2.3 | 0.21 | 2.4 | |
1.9 | 2.1 | −1.1 | −2.6 | |
−2.1 | −2.1 | 0.96 | 2.5 | |
−2.2 | −2.2 | 0.91 | 2.5 | |
7.8 | 2.9 | 3.6 | −1.2 | |
−6.8 | −4.5 | −8.2 | −1.9 | |
−0.03 | 0.00011 | −0.12521 | 0.015 | |
0.068 | −0.078970 * | 0.13 | −0.012 | |
0.015 | −0.167177 * | −0.0062 | 0.046 | |
Overlap between the estimated and true signals | ||||
−0.970817 | 0.972518 | 0.964058 | −0.990312 | |
−0.965563 | 0.940148 | 0.939171 | −0.982537 | |
−0.968851 | 0.959972 | 0.954244 | −0.987405 |
1st PSO | 2nd PSO | 3rd PSO | 4th PSO | 5th PSO | 6th PSO | |
---|---|---|---|---|---|---|
Square root of fitness values | ||||||
Best location from PSO | 47.699082 | 47.329812 | 47.685694 | 47.738310 | 47.582240 | 47.023112 |
Parameter estimation errors | ||||||
4.7 | 4.4 | 0.48 | −1.3 | −0.89 | 4.9 | |
−5.1 | −5.0 | −0.92 | 1.5 | 0.28 | −4.3 | |
5.0 | 4.8 | 0.84 | −1.5 | −0.38 | 4.3 | |
5.0 | 4.8 | 0.82 | −1.5 | −0.4 | 4.3 | |
−2.8 | −1.8 | 1.5 | 0.2 | 3.2 | −7.0 | |
−0.21 | −0.21 | −0.21 | −0.035 | −0.21 | 0.14 | |
−0.09576 | −0.08430 | −0.04126 | 0.05260 | −0.05899 | −0.00204 | |
* | 0.078 | 0.042 | −0.043020 * | 0.094 | −0.019956 * | |
* | 0.06 | −0.048 | * | 0.039 | * | |
Overlap between the estimated and true signals | ||||||
0.977230 | 0.959595 | −0.976542 | −0.989005 | −0.969600 | −0.973063 | |
0.966966 | 0.951818 | −0.969133 | −0.976612 | −0.958945 | −0.955183 | |
0.973175 | 0.956625 | −0.973700 | −0.984385 | −0.965498 | −0.966438 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.-B.; Mohanty, S.D.; Luo, H.-G.; Liu, Y.-X. Search for Extreme Mass Ratio Inspirals Using Particle Swarm Optimization and Reduced Dimensionality Likelihoods. Universe 2024, 10, 171. https://doi.org/10.3390/universe10040171
Zou X-B, Mohanty SD, Luo H-G, Liu Y-X. Search for Extreme Mass Ratio Inspirals Using Particle Swarm Optimization and Reduced Dimensionality Likelihoods. Universe. 2024; 10(4):171. https://doi.org/10.3390/universe10040171
Chicago/Turabian StyleZou, Xiao-Bo, Soumya D. Mohanty, Hong-Gang Luo, and Yu-Xiao Liu. 2024. "Search for Extreme Mass Ratio Inspirals Using Particle Swarm Optimization and Reduced Dimensionality Likelihoods" Universe 10, no. 4: 171. https://doi.org/10.3390/universe10040171
APA StyleZou, X. -B., Mohanty, S. D., Luo, H. -G., & Liu, Y. -X. (2024). Search for Extreme Mass Ratio Inspirals Using Particle Swarm Optimization and Reduced Dimensionality Likelihoods. Universe, 10(4), 171. https://doi.org/10.3390/universe10040171