Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (336)

Search Parameters:
Keywords = fragility surfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3667 KB  
Article
Multispectral Remote Sensing Monitoring Methods for Soil Fertility Assessment and Spatiotemporal Variation Characteristics in Arid and Semi-Arid Mining Areas
by Quanzhi Li, Zhenqi Hu, Yanwen Guo and Yulong Geng
Land 2025, 14(8), 1694; https://doi.org/10.3390/land14081694 - 21 Aug 2025
Viewed by 153
Abstract
Soil fertility is the essential attribute of soil quality. Large-scale coal mining has led to the continuous deterioration of the fragile ecosystems in arid and semi-arid mining areas. As one of the key indicators for land ecological restoration in these coal mining regions, [...] Read more.
Soil fertility is the essential attribute of soil quality. Large-scale coal mining has led to the continuous deterioration of the fragile ecosystems in arid and semi-arid mining areas. As one of the key indicators for land ecological restoration in these coal mining regions, rapidly and accurately monitoring topsoil fertility and its spatial variation information holds significant importance for ecological restoration evaluation. This study takes Wuhai City in the Inner Mongolia Autonomous Region of China as a case study. It establishes and evaluates various soil indicator inversion models using multi-temporal Landsat8 OLI multispectral imagery and measured soil sample nutrient content data. The research constructs a comprehensive evaluation method for surface soil fertility based on multispectral remote sensing monitoring and achieves spatiotemporal variation analysis of soil fertility characteristics. The results show that: (1) The 6SV (Second Simulation of the Satellite Signal in the Solar Spectrum Vector version)-SVM (Support Vector Machine) prediction model for surface soil indicators based on Landsat8 OLI imagery achieved prediction accuracy with R2 values above 0.85 for all six soil nutrient contents in the study area, thereby establishing for the first time a rapid assessment method for comprehensive topsoil fertility using multispectral remote sensing monitoring. (2) Long-term spatiotemporal evaluation of soil indicators was achieved: From 2015 to 2025, the spatial distribution of soil indicators showed certain variability, with soil organic matter, total phosphorus, available phosphorus, and available potassium contents demonstrating varying degrees of increase within different ranges, though the increases were generally modest. (3) Long-term spatiotemporal evaluation of comprehensive soil fertility was accomplished: Over the 10 years, Grade IV remained the dominant soil fertility level in the study area, accounting for about 32% of the total area. While the overall soil fertility level showed an increasing trend, the differences in soil fertility levels decreased, indicating a trend toward homogenization. Full article
Show Figures

Figure 1

21 pages, 9316 KB  
Article
The Spatial Differentiation Characteristics of the Residential Environment Quality in Northern Chinese Cities: Based on a New Evaluation Framework
by Feng Ge, Jiayu Liu, Laigen Jia, Gaixiang Chen, Changshun Wang, Yuetian Wang, Hongguang Chen and Fanhao Meng
Sustainability 2025, 17(16), 7473; https://doi.org/10.3390/su17167473 - 19 Aug 2025
Viewed by 316
Abstract
Addressing the need to optimize human settlement quality in arid and semi-arid regions under rapid urbanization, this study innovatively constructs an evaluation framework integrating greenness, thermal conditions, impervious surfaces, water bodies, and air transparency. Focusing on 12 prefecture-level cities in Inner Mongolia, Northern [...] Read more.
Addressing the need to optimize human settlement quality in arid and semi-arid regions under rapid urbanization, this study innovatively constructs an evaluation framework integrating greenness, thermal conditions, impervious surfaces, water bodies, and air transparency. Focusing on 12 prefecture-level cities in Inner Mongolia, Northern China, it systematically reveals the spatial differentiation characteristics and driving mechanisms of human settlement quality. Findings indicate the following: (1) Regional human settlement quality exhibits a spindle-shaped structure dominated by the medium grade (Excellent: 18.13%, High: 23.34%, Medium: 46.48%, Low: 12.04%), with Ulanqab City having the highest proportion of Excellent areas (25.26%) and Ordos City the lowest proportion of Low-grade areas (6.20%), reflecting a critical transition period for regional quality enhancement. (2) Spatial patterns show pronounced east-west gradients and functional differentiation: western arid zones display significant blue-green space advantages but face high-temperature stress and rigid water constraints, eastern humid zones benefit from superior ecological foundations with weaker heat island effects, the core Hetao Plain experiences strong heat island effects due to high impervious surface density, while industrial cities confront prominent air pollution pressures. Consequently, implementing differentiated strategies—strengthening ecological protection/restoration in High/Low-grade zones and optimizing regulation to drive upgrades in Medium-grade zones—is essential for achieving three sustainable pathways: compact development, blue-green space optimization, and industrial upgrading, providing vital decision-making support for enhancing human settlement quality and promoting sustainable development in ecologically fragile cities across northern China. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

27 pages, 17902 KB  
Article
Identification of Dominant Controlling Factors and Susceptibility Assessment of Coseismic Landslides Triggered by the 2022 Luding Earthquake
by Jin Wang, Mingdong Zang, Jianbing Peng, Chong Xu, Zhandong Su, Tianhao Liu and Menghao Li
Remote Sens. 2025, 17(16), 2797; https://doi.org/10.3390/rs17162797 - 12 Aug 2025
Viewed by 272
Abstract
Coseismic landslides are geological events in which slopes, either on the verge of instability or already in a fragile state, experience premature failure due to seismic shaking. On 5 September 2022, an Ms 6.8 earthquake struck Luding County, Sichuan Province, China, triggering numerous [...] Read more.
Coseismic landslides are geological events in which slopes, either on the verge of instability or already in a fragile state, experience premature failure due to seismic shaking. On 5 September 2022, an Ms 6.8 earthquake struck Luding County, Sichuan Province, China, triggering numerous landslides that caused severe casualties and property damage. This study systematically interprets 13,717 coseismic landslides in the Luding earthquake’s epicentral area, analyzing their spatial distribution concerning various factors, including elevation, slope gradient, slope aspect, plan curvature, profile curvature, surface cutting degree, topographic relief, elevation coefficient variation, lithology, distance to faults, epicentral distance, peak ground acceleration (PGA), distance to rivers, fractional vegetation cover (FVC), and distance to roads. The analytic hierarchy process (AHP) was improved by incorporating frequency ratio (FR) to address the subjectivity inherent in expert scoring for factor weighting. The improved AHP, combined with the Pearson correlation analysis, was used to identify the dominant controlling factor and assess the landslide susceptibility. The accuracy of the model was verified using the area under the receiver operating characteristic (ROC) curve (AUC). The results reveal that 34% of the study area falls into very-high- and high-susceptibility zones, primarily along the Moxi segment of the Xianshuihe fault and both sides of the Dadu river valley. Tianwan, Caoke, Detuo, and Moxi are at particularly high risk of coseismic landslides. The elevation coefficient variation, slope aspect, and slope gradient are identified as the dominant controlling factors for landslide development. The reliability of the proposed model was evaluated by calculating the AUC, yielding a value of 0.8445, demonstrating high reliability. This study advances coseismic landslide susceptibility assessment and provides scientific support for post-earthquake reconstruction in Luding. Beyond academic insight, the findings offer practical guidance for delineating priority zones for risk mitigation, planning targeted engineering interventions, and establishing early warning and monitoring strategies to reduce the potential impacts of future seismic events. Full article
(This article belongs to the Special Issue Advances in AI-Driven Remote Sensing for Geohazard Perception)
Show Figures

Graphical abstract

10 pages, 1240 KB  
Perspective
Designing for Equity: An Evaluation Framework to Assess Zero-Dose Reduction Efforts in Southern Madagascar
by Guillaume Demare, Elgiraud Ramarosaiky, Zavaniarivo Rampanjato, Nadine Muller, Beate Kampmann and Hanna-Tina Fischer
Vaccines 2025, 13(8), 834; https://doi.org/10.3390/vaccines13080834 - 5 Aug 2025
Viewed by 443
Abstract
Despite growing global momentum to reduce the number of children who never received a dose of any vaccine, i.e., zero-dose (ZD) children, persistent geographic and social inequities continue to undermine progress toward universal immunization coverage. In Madagascar, where routine vaccination coverage remains below [...] Read more.
Despite growing global momentum to reduce the number of children who never received a dose of any vaccine, i.e., zero-dose (ZD) children, persistent geographic and social inequities continue to undermine progress toward universal immunization coverage. In Madagascar, where routine vaccination coverage remains below 50% in most regions, the non-governmental organization Doctors for Madagascar and public sector partners are implementing the SOAMEVA program: a targeted community-based initiative to identify and reach ZD children in sixteen underserved districts in the country’s south. This paper outlines the equity-sensitive evaluation design developed to assess the implementation and impact of SOAMEVA. It presents a forward-looking evaluation framework that integrates both quantitative program monitoring and qualitative community insights. By focusing at the fokontany level—the smallest administrative unit in Madagascar—the evaluation captures small-scale variation in ZD prevalence and program reach, allowing for a detailed analysis of disparities often masked in aggregated data. Importantly, the evaluation includes structured feedback loops with community health workers and caregivers, surfacing local knowledge on barriers to immunization access and program adoption. It also tracks real-time adaptations to implementation strategy across diverse contexts, offering insight into how routine immunization programs can be made more responsive, sustainable, and equitable. We propose eight design principles for conducting equity-sensitive evaluation of immunization programs in similar fragile settings. Full article
(This article belongs to the Special Issue Inequality in Immunization 2025)
Show Figures

Figure 1

19 pages, 3112 KB  
Article
Durable Superhydrophobic Composite Coating Based on Hydrangea-like SiO2 Nanoparticles with Excellent Performance in Anticorrosion, Drag Reduction, and Antifouling
by Yuhao Xue, Yamei Zhao, Xiaoqi Gu, Mengdan Huo, Kunde Yang, Mingyu Liu, Sixian Fan and Maoyong Zhi
Materials 2025, 18(15), 3443; https://doi.org/10.3390/ma18153443 - 23 Jul 2025
Viewed by 344
Abstract
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic [...] Read more.
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic coating featuring a hierarchical, hydrangea-like micro/nanostructure was successfully fabricated on an aluminum alloy substrate via a simple one-step cold-spraying technique. The coating consisted of hydrangea-shaped SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDT) to produce multiscale roughness, while epoxy resin (EP) served as the binding matrix to enhance mechanical integrity. The hydrangea-like SiO2 nanostructures were characterized by solid cores and wrinkled, petal-like outgrowths. This unique morphology not only increased the surface roughness but also provided more active sites for air entrapment, thereby enhancing the coating’s overall performance. The h-SiO2@PFDT-EP composite coating exhibited excellent superhydrophobicity, with a WCA of 170.1° ± 0.8° and a SA of 2.7° ± 0.5°. Durability was evaluated through sandpaper abrasion, tape peeling, acid and alkali immersion, artificial weathering, and salt spray tests. The results demonstrated that the coating retained stable superhydrophobic performance under various environmental stresses. Compared with bare 6061 aluminum and EP coatings, its corrosion current density was reduced by four and three orders of magnitude, respectively. Furthermore, the coating achieved a maximum drag-reduction rate of 31.01% within a velocity range of 1.31–7.86 m/s. The coating also displayed excellent self-cleaning properties. Owing to its outstanding durability, corrosion resistance, and drag-reducing capability, this one-step fabricated superhydrophobic coating showed great promise for applications in marine engineering and defense. Full article
Show Figures

Figure 1

17 pages, 2818 KB  
Article
Carbon Density Change Characteristics and Driving Factors During the Natural Succession of Forests on Xinglong Mountain in the Transition Zone Between the Qinghai–Tibet and Loess Plateaus
by Wenzhen Zong, Zhengni Chen, Quanlin Ma, Lei Ling and Yiming Zhong
Atmosphere 2025, 16(7), 890; https://doi.org/10.3390/atmos16070890 - 20 Jul 2025
Viewed by 261
Abstract
The transition zone between the Qinghai–Tibet and Loess Plateaus is an important ecological functional area and carbon (C) reservoir in China. Studying the main drivers of C density changes in forest ecosystems is crucial to enhance the C sink potential of those ecosystems [...] Read more.
The transition zone between the Qinghai–Tibet and Loess Plateaus is an important ecological functional area and carbon (C) reservoir in China. Studying the main drivers of C density changes in forest ecosystems is crucial to enhance the C sink potential of those ecosystems in ecologically fragile regions. In this study, four stand types at different succession stages in the transition zone of Xinglong Mountain were selected as the study objective. The C densities of the ecosystem, vegetation, plant debris, and soil of each stand type were estimated, and the related driving factors were quantified. The results showed that the forest ecosystem C density continuously increased significantly with natural succession (381.23 Mg/hm2 to 466.88 Mg/hm2), indicating that the ecosystem has a high potential for C sequestration with progressive forest succession. The increase in ecosystem C density was mainly contributed to by the vegetation C density, which was jointly affected by the vegetation characteristics (C sink, mean diameter at breast height, mean tree height), litter C/N (nitrogen), and surface soil C/N, with factors explaining 95.1% of the variation in vegetation C density, while the net effect of vegetation characteristics was the strongest (13.9%). Overall, this study provides a new insight for understanding the C cycle mechanism in ecologically fragile areas and further improves the theoretical framework for understanding the C sink function of forest ecosystems. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

23 pages, 5058 KB  
Article
Integrated Assessment of Lake Degradation and Revitalization Pathways: A Case Study of Phewa Lake, Nepal
by Avimanyu Lal Singh, Bharat Raj Pahari and Narendra Man Shakya
Sustainability 2025, 17(14), 6572; https://doi.org/10.3390/su17146572 - 18 Jul 2025
Viewed by 527
Abstract
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from [...] Read more.
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from its catchment using RUSLE, shoreline encroachment analysis via satellite imagery and historical records, and identification of pollution sources and socio-economic factors through field surveys and community consultations. The results show that steep, sparsely vegetated slopes are the primary sediment sources, with Harpan Khola (a tributary of Phewa Lake) contributing over 80% of the estimated 339,118 tons of annual sediment inflow. From 1962 to 2024, the lake has lost approximately 5.62 sq. km of surface area, primarily due to a combination of sediment deposition and human encroachment. Pollution from untreated sewage, urban runoff, and invasive aquatic weeds further degrades water quality and threatens biodiversity. Based on the findings, this study proposes a way forward to mitigate sedimentation, encroachment, and pollution, along with a sustainable revitalization plan. The approach of this study, along with the proposed sustainability measures, can be replicated in other lake systems within Nepal and in similar watersheds elsewhere. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

27 pages, 3599 KB  
Article
Progressive Shrinkage of the Alpine Periglacial Weathering Zone and Its Escalating Disaster Risks in the Gongga Mountains over the Past Four Decades
by Qiuyang Zhang, Qiang Zhou, Fenggui Liu, Weidong Ma, Qiong Chen, Bo Wei, Long Li and Zemin Zhi
Remote Sens. 2025, 17(14), 2462; https://doi.org/10.3390/rs17142462 - 16 Jul 2025
Viewed by 446
Abstract
The Alpine Periglacial Weathering Zone (APWZ) is a critical transitional belt between alpine vegetation and glaciers, and a highly sensitive region to climate change. Its dynamic variations profoundly reflect the surface environment’s response to climatic shifts. Taking Gongga Mountain as the study area, [...] Read more.
The Alpine Periglacial Weathering Zone (APWZ) is a critical transitional belt between alpine vegetation and glaciers, and a highly sensitive region to climate change. Its dynamic variations profoundly reflect the surface environment’s response to climatic shifts. Taking Gongga Mountain as the study area, this study utilizes summer Landsat imagery from 1986 to 2024 and constructs a remote sensing method based on NDVI and NDSI indices using the Otsu thresholding algorithm on the Google Earth Engine platform to automatically extract the positions of the upper limit of vegetation and the snowline. Results show that over the past four decades, the APWZ in Gongga Mountain has exhibited a continuous upward shift, with the mean elevation rising from 4101 m to 4575 m. The upper limit of vegetation advanced at an average rate of 17.43 m/a, significantly faster than the snowline shift (3.9 m/a). The APWZ also experienced substantial areal shrinkage, with an average annual reduction of approximately 13.84 km2, highlighting the differential responses of various surface cover types to warming. Spatially, the most pronounced changes occurred in high-elevation zones (4200–4700 m), moderate slopes (25–33°), and sun-facing aspects (east, southeast, and south slopes), reflecting a typical climate–topography coupled driving mechanism. In the upper APWZ, glacier retreat has intensified weathering and increased debris accumulation, while the newly formed vegetation zone in the lower APWZ remains structurally fragile and unstable. Under extreme climatic disturbances, this setting is prone to triggering chain-type hazards such as landslides and debris flows. These findings enhance our capacity to monitor alpine ecological boundary changes and identify associated disaster risks, providing scientific support for managing climate-sensitive mountainous regions. Full article
Show Figures

Figure 1

20 pages, 4860 KB  
Article
Effects of Micro-Topography on Soil Nutrients and Plant Diversity of Artificial Shrub Forest in the Mu Us Sandy Land
by Kai Zhao, Long Hai, Fucang Qin, Lei Liu, Guangyu Hong, Zihao Li, Long Li, Yongjie Yue, Xiaoyu Dong, Rong He and Dongming Shi
Plants 2025, 14(14), 2163; https://doi.org/10.3390/plants14142163 - 14 Jul 2025
Viewed by 382
Abstract
In ecological restoration of arid/semi-arid sandy lands, micro-topographic variations and artificial shrub arrangement synergistically drive vegetation recovery and soil quality improvement. As a typical fragile ecosystem in northern China, the Mu Us Sandy Land has long suffered wind erosion, desertification, soil infertility, and [...] Read more.
In ecological restoration of arid/semi-arid sandy lands, micro-topographic variations and artificial shrub arrangement synergistically drive vegetation recovery and soil quality improvement. As a typical fragile ecosystem in northern China, the Mu Us Sandy Land has long suffered wind erosion, desertification, soil infertility, and vegetation degradation, demanding precise vegetation configuration for ecological rehabilitation. This study analyzed soil nutrients, plant diversity, and their correlations under various micro-topographic conditions across different types of artificial shrub plantations in the Mu Us Sandy Land. Employing one-way and two-way ANOVA, we compared the significant differences in soil nutrients and plant diversity indices among different micro-topographic conditions and shrub species. Additionally, redundancy analysis (RDA) was conducted to explore the direct and indirect relationships between micro-topography, shrub species, soil nutrients, and plant diversity. The results show the following: 1. The interdune depressions have the highest plant diversity and optimal soil nutrients, with relatively suitable pH values; the windward slopes and slope tops, due to severe wind erosion, have poor soil nutrients, high pH values, and the lowest plant diversity. Both micro-topography and vegetation can significantly affect soil nutrients and plant diversity (p < 0.05), and vegetation has a greater impact on soil nutrients. 2. The correlation between surface soil nutrients and plant diversity is the strongest, and the correlation weakens with increasing soil depth; under different micro-topographic conditions, the influence of soil nutrients on plant diversity varies. 3. In sandy land ecological restoration, a “vegetation type + terrain matching” strategy should be implemented, combining the characteristics of micro-topography and the ecological functions of shrubs for precise configuration, such as planting Corethrodendron fruticosum on windward slopes and slope tops to rapidly replenish nutrients, promoting Salix psammophila and mixed plantation in interdune depressions and leeward slopes to accumulate organic matter, and prioritizing Amorpha fruticosa in areas requiring soil pH adjustment. This study provides a scientific basis and management insights for the ecological restoration and vegetation configuration of the Mu Us Sandy Land. Full article
(This article belongs to the Topic Plant-Soil Interactions, 2nd Volume)
Show Figures

Figure 1

22 pages, 13795 KB  
Article
The Nucleation and Degradation of Pothole Wetlands by Human-Driven Activities and Climate During the Quaternary in a Semi-Arid Region (Southern Iberian Peninsula)
by A. Jiménez-Bonilla, I. Expósito, F. Gázquez, J. L. Yanes and M. Rodríguez-Rodríguez
Geographies 2025, 5(3), 27; https://doi.org/10.3390/geographies5030027 - 24 Jun 2025
Viewed by 373
Abstract
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have [...] Read more.
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have been identified. We surveyed the regional geological framework, utilized digital elevation models (DEMs), orthophotos, and aerial images since 1956. Moreover, we analyzed precipitation and temperature data in Seville from 1900 to 2024, collected hydrometeorological data since 1990 and modelled the water level evolution from 2002 to 2025 in a representative pothole in the area. Our observations indicate a flooded surface reduction by more than 90% from the 1950s to 2025. Climatic data reveal an increase in annual mean temperatures since 1960 and a sharp decline in annual precipitation since 2000. The AD’s inception due to tectonic isolation during the Quaternary favoured the formation of pothole wetlands in the floodplain. The reduction in the hydroperiod and wetland degradation was primarily due to agricultural expansion since 1950, which followed an increase in groundwater extraction and altered the original topography. Recently, decreased precipitation has exponentially accelerated the degradation and even the complete disappearance of many potholes. This study underscores the fragility of small wetlands in the Mediterranean basin and the critical role of human management in their preservation. Restoring these ecosystems could be a highly effective nature-based solution, especially in semi-arid climates like southern Spain. These prairie potholes are crucial for enhancing groundwater recharge, which is vital for maintaining water availability in regions with limited precipitation. By facilitating rainwater infiltration into the aquifer, recharge potholes increase groundwater levels. Additionally, they capture and store run-off during heavy rainfall, reducing the risk of flooding and soil erosion. Beyond their hydrological functions, these wetlands provide habitats that support biodiversity and promote ecological resilience, reinforcing the need for their protection and recovery. Full article
Show Figures

Figure 1

14 pages, 3376 KB  
Article
A Study of Ultra-Thin Surface-Mounted MEMS Fibre-Optic Fabry–Pérot Pressure Sensors for the In Situ Monitoring of Hydrodynamic Pressure on the Hull of Large Amphibious Aircraft
by Tianyi Feng, Xi Chen, Ye Chen, Bin Wu, Fei Xu and Lingcai Huang
Photonics 2025, 12(7), 627; https://doi.org/10.3390/photonics12070627 - 20 Jun 2025
Viewed by 361
Abstract
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their [...] Read more.
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their large size, fragility, intrusiveness, limited range, frequency response limitations, accuracy issues, and low sampling frequency. Fibre-optic sensors’ small size, immunity to electromagnetic interference, and reduced susceptibility to environmental disturbances have led to their progressive development in maritime and aeronautic fields. This research proposes a novel hydrodynamic profile encapsulation method using ultra-thin surface-mounted micro-electromechanical system (MEMS) fibre-optic Fabry–Pérot pressure sensors (total thickness of 1 mm). The proposed sensor exhibits an exceptional linear response and low-temperature sensitivity in hydrostatic calibration tests and shows superior response and detection accuracy in water-entry tests of wedge-shaped bodies. This work exhibits significant potential for the in situ monitoring of hydrodynamic loads during water landing, contributing to the research of large amphibious aircraft. Furthermore, this research demonstrates, for the first time, the proposed surface-mounted pressure sensor in conjunction with a high-speed acquisition system for the in situ monitoring of hydrodynamic pressure on the hull of a large amphibious prototype. Following flight tests, the sensors remained intact throughout multiple high-speed hydrodynamic taxiing events and 12 full water landings, successfully acquiring the complete dataset. The flight test results show that this proposed pressure sensor exhibits superior robustness in extreme environments compared to traditional invasive electrical sensors and can be used for full-scale hydrodynamic load flight tests. Full article
Show Figures

Figure 1

12 pages, 2793 KB  
Article
Varying Synthesis Parameters of Potato Starch Aerogel for Aerospace Applications
by Jacob Staker, Daniel A. Scheiman, Janice Mather, Jamesa L. Stokes and Haiquan Guo
Gels 2025, 11(6), 467; https://doi.org/10.3390/gels11060467 - 18 Jun 2025
Viewed by 357
Abstract
Aerogels have the potential for usage in many daily and high-tech aerospace applications. Silica aerogels are fragile, while organic aerogels are much tougher, but they are both generally synthesized using toxic solvents. Biodegradable aerogels, if they possess similar properties as polymer aerogels, could [...] Read more.
Aerogels have the potential for usage in many daily and high-tech aerospace applications. Silica aerogels are fragile, while organic aerogels are much tougher, but they are both generally synthesized using toxic solvents. Biodegradable aerogels, if they possess similar properties as polymer aerogels, could be widely utilized in many aerospace applications and offer environmental benefits. In this work, potato starch aerogels were systematically studied. The potato starch concentration, the amount of plasticizer (glycerol), and an acid source (acetic acid) were varied. The relationship of the precursors on potato starch aerogel’s properties, such as density, shrinkage, porosity, BET surface area, mechanical properties, and thermal conductivities, were researched. The resulting potato starch aerogels possess suitable density, Young’s modulus, and thermal conductivity for use in many aerospace applications. Full article
(This article belongs to the Special Issue Polymer Aerogels and Aerogel Composites)
Show Figures

Graphical abstract

16 pages, 257 KB  
Article
The Ethics of Social Life in Sidonie de la Houssaye’s Louisiana Tales
by Christine A. Jones
Humanities 2025, 14(6), 129; https://doi.org/10.3390/h14060129 - 13 Jun 2025
Viewed by 433
Abstract
Creole writer Sidonie de la Houssaye (1820–1894) registered the threat of anglophone dominance after the Civil War on behalf of a host of characters drawn from the geographies and ideologies in and around her home in Louisiana. Her little-known literary tales depict the [...] Read more.
Creole writer Sidonie de la Houssaye (1820–1894) registered the threat of anglophone dominance after the Civil War on behalf of a host of characters drawn from the geographies and ideologies in and around her home in Louisiana. Her little-known literary tales depict the period as a cultural and linguistic border zone. In addition to the texture of Louisiana French and Creole heritage, the tales depict the vexed social dynamics of prejudice and fragility. In the context of this special issue on good and evil, the poorly known children’s tales offer insight into these pernicious tensions that persisted under the surface of moral victory after the Civil War. La Houssaye’s lessons for children take up the moral panic of a Louisiana reckoning with its legacies of racial violence and cultural erasure. This article argues that morality in these tales takes shape in interpersonal practices that can be learned to heal social ills. What I have called La Houssaye’s “ethics of social life” relies on education rather than condemnation to redefine human bonds. If a broader lesson emerges from the stories taken together, it suggests that structural change is slow to heal cultural wounds. We must ourselves be the agents of a healthier community. Full article
(This article belongs to the Special Issue Depiction of Good and Evil in Fairytales)
12 pages, 7533 KB  
Article
Determining Accurate Pore Structures of Polypropylene Membrane for ECMO Using FE-SEM Under Optimized Conditions
by Makoto Fukuda, Yoshiaki Nishite, Eri Murata, Koki Namekawa, Tomohiro Mori, Tsutomu Tanaka and Kiyotaka Sakai
Membranes 2025, 15(6), 174; https://doi.org/10.3390/membranes15060174 - 9 Jun 2025
Viewed by 852
Abstract
Long-term ECMOs are expected to be put into practical use in order to prepare for the next emerging severe infectious diseases after the novel coronavirus pandemic in 2019–2023. While polypropylene (PP) and polymethylpentene (PMP) are currently the mainstream materials for the hollow fiber [...] Read more.
Long-term ECMOs are expected to be put into practical use in order to prepare for the next emerging severe infectious diseases after the novel coronavirus pandemic in 2019–2023. While polypropylene (PP) and polymethylpentene (PMP) are currently the mainstream materials for the hollow fiber membranes of ECMO, the PP membrane coated with a silicone layer on the outer surface has also been commercialized. In this study, we sought a method to accurately observe the detailed pore morphologies of the PP membrane by suppressing irreversible changes in the morphology in SEM observation, which is a general-purpose observation with higher resolution. As a result, the convex surface morphologies of the PP membrane, which was a non-conductive porous structure, were confirmed in detail by utilizing the lower secondary electron image (LEI) mode (FE-SEM, JSM-7610F, JEOL Ltd., Tokyo, Japan) at low acceleration voltage, low magnification, and long working distance, to minimize morphological alterations caused by osmium (Os) sputtering. On the other hand, although the sputter-coating on non-conductive samples is mandatory for imaging morphologies with SEM, the non-sputtering method is also worthwhile for porous and fragile structures such as this sample to minimize morphological alterations. Furthermore, we propose a method to confirm the morphology of the deep part of the sample by utilizing the secondary electron image (SEI) mode at an appropriate acceleration voltage and high magnification with higher resolution. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

20 pages, 3069 KB  
Article
Assessing the Synergy of Spring Strip Tillage and Straw Mulching to Mitigate Soil Degradation and Enhance Productivity in Black Soils
by Zhihong Yang, Lanfang Bai, Tianhao Wang, Zhipeng Cheng, Zhen Wang, Yongqiang Wang, Fugui Wang, Fang Luo and Zhigang Wang
Agronomy 2025, 15(6), 1415; https://doi.org/10.3390/agronomy15061415 - 9 Jun 2025
Viewed by 483
Abstract
To address the critical challenges of wind erosion mitigation and sustainable soil management in the fragile agroecosystem of the black soil region in the foothills of the Daxing’anling Mountains, this study evaluated five tillage practices—conventional ridge tillage (CP), no tillage with straw removal [...] Read more.
To address the critical challenges of wind erosion mitigation and sustainable soil management in the fragile agroecosystem of the black soil region in the foothills of the Daxing’anling Mountains, this study evaluated five tillage practices—conventional ridge tillage (CP), no tillage with straw removal (NT), no tillage with straw mulching (R+NT), autumn strip tillage with straw mulching (R+STA), and spring strip tillage with straw mulching (R+STS)—across two landforms: gently sloped uplands and flat depressions. The results demonstrated that R+STS achieved superior performance across both landscapes, exhibiting a 42.99% reduction in the wind erosion rate, a 48.88% decrease in soil sediment discharge, and a 52.26% reduction in the soil creep amount compared to CP. These improvements were mechanistically linked to the enhanced surface microtopography (aerodynamic roughness increased by 1.8–2.3 fold) and optimized straw coverage (68–72%). R+STS also enhanced the topsoil fertility, increasing the total nitrogen (TN), soil organic carbon (SOC), alkaline nitrogen (AN), available phosphorus (AP), and rapidly available potassium (AK) by 22.07%, 12.94%, 14.92%, 32.94%, and 9.52%, respectively. Furthermore, it improved maize emergence and its yield by 10.04% and 9.99% compared to R+NT. Mantel tests and SEM revealed strong negative correlations between erosion and nutrients, identifying nitrogen availability as the key yield driver. R+STS offers a sustainable strategy for erosion control and productivity improvement in the black soil region. Full article
Show Figures

Figure 1

Back to TopTop