Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,219)

Search Parameters:
Keywords = forest cover index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 71
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

25 pages, 28131 KiB  
Article
Landslide Susceptibility Assessment in Ya’an Based on Coupling of GWR and TabNet
by Jiatian Li, Ruirui Wang, Wei Shi, Le Yang, Jiahao Wei, Fei Liu and Kaiwei Xiong
Remote Sens. 2025, 17(15), 2678; https://doi.org/10.3390/rs17152678 - 2 Aug 2025
Viewed by 328
Abstract
Landslides are destructive geological hazards, making accurate landslide susceptibility assessment essential for disaster prevention and mitigation. However, existing studies often lack scientific rigor in negative sample construction and have unclear model applicability. This study focuses on Ya’an City, Sichuan Province, China, and proposes [...] Read more.
Landslides are destructive geological hazards, making accurate landslide susceptibility assessment essential for disaster prevention and mitigation. However, existing studies often lack scientific rigor in negative sample construction and have unclear model applicability. This study focuses on Ya’an City, Sichuan Province, China, and proposes an innovative approach to negative sample construction using Geographically Weighted Regression (GWR), which is then integrated with Tabular Network (TabNet), a deep learning architecture tailored to structured tabular data, to assess landslide susceptibility. The performance of TabNet is compared against Random Forest, Light Gradient Boosting Machine, deep neural networks, and Residual Networks. The experimental results indicate that (1) the GWR-based sampling strategy substantially improves model performance across all tested models; (2) TabNet trained using the GWR-based negative samples achieves superior performance over all other evaluated models, with an average AUC of 0.9828, exhibiting both high accuracy and interpretability; and (3) elevation, land cover, and annual Normalized Difference Vegetation Index are identified as dominant predictors through TabNet’s feature importance analysis. The results demonstrate that combining GWR and TabNet substantially enhances landslide susceptibility modeling by improving both accuracy and interpretability, establishing a more scientifically grounded approach to negative sample construction, and providing an interpretable, high-performing modeling framework for geological hazard risk assessment. Full article
Show Figures

Figure 1

23 pages, 5040 KiB  
Article
Population Density and Diversity of Millipedes in Four Habitat Classes: Comparison Concerning Vegetation Type and Soil Characteristics
by Carlos Suriel, Julián Bueno-Villegas and Ulises J. Jauregui-Haza
Ecologies 2025, 6(3), 55; https://doi.org/10.3390/ecologies6030055 - 1 Aug 2025
Viewed by 170
Abstract
Our study was conducted in the Valle Nuevo National Park and included four habitat classes: tussock grass (Sabapa), pine forest (Pinoc), broadleaf forest (Boslat), and agricultural ecosystem (Ecoag). We had two main objectives: to comparatively describe millipede communities and to determine the relationships [...] Read more.
Our study was conducted in the Valle Nuevo National Park and included four habitat classes: tussock grass (Sabapa), pine forest (Pinoc), broadleaf forest (Boslat), and agricultural ecosystem (Ecoag). We had two main objectives: to comparatively describe millipede communities and to determine the relationships between population density/diversity and soil physicochemical variables. The research was cross-sectional and non-manipulative, with a descriptive and correlational scope; sampling followed a stratified systematic design, with eight transects and 32 quadrats of 1 m2, covering 21.7 km. We found a sandy loam soil with an extremely acidic pH. The highest population density of millipedes was recorded in Sabapa, and the lowest in Ecoag. The highest alpha diversity was shared between Boslat (Margalef = 1.72) and Pinoc (Shannon = 2.53); Sabapa and Boslat showed the highest Jaccard similarity (0.56). The null hypothesis test using the weighted Shannon index revealed a statistically significant difference in diversity between the Boslat–Sabapa and Pinoc–Sabapa pairs. Two of the species recorded highly significant indicator values (IndVal) for two habitat classes. We found significant correlations (p < 0.05) between various soil physicochemical variables and millipede density and diversity. Full article
Show Figures

Figure 1

21 pages, 11816 KiB  
Article
The Dual Effects of Climate Change and Human Activities on the Spatiotemporal Vegetation Dynamics in the Inner Mongolia Plateau from 1982 to 2022
by Guangxue Guo, Xiang Zou and Yuting Zhang
Land 2025, 14(8), 1559; https://doi.org/10.3390/land14081559 - 29 Jul 2025
Viewed by 165
Abstract
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This [...] Read more.
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This study employs Sen’s slope estimation, BFAST analysis, residual trend method and Geodetector to analyze the spatial patterns of Normalized Difference Vegetation Index (NDVI) variability and distinguish between climatic and anthropogenic influences. Key findings include the following: (1) From 1982 to 2022, vegetation cover across the IMP exhibited a significant greening trend. Zonal analysis showed that this spatial heterogeneity was strongly regulated by regional hydrothermal conditions, with varied responses across land cover types and pronounced recovery observed in high-altitude areas. (2) In the western arid regions, vegetation trends were unstable, often marked by interruptions and reversals, contrasting with the sustained greening observed in the eastern zones. (3) Vegetation growth was primarily temperature-driven in the eastern forested areas, precipitation-driven in the central grasslands, and severely limited in the western deserts due to warming-induced drought. (4) Human activities exerted dual effects: significant positive residual trends were observed in the Hetao Plain and southern Horqin Sandy Land, while widespread negative residuals emerged across the southern deserts and central grasslands. (5) Vegetation change was driven by climate and human factors, with recovery mainly due to climate improvement and degradation linked to their combined impact. These findings highlight the interactive mechanisms of climate change and human disturbance in regulating terrestrial vegetation dynamics, offering insights for sustainable development and ecosystem education in climate-sensitive systems. Full article
Show Figures

Figure 1

27 pages, 42290 KiB  
Article
Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City
by Rui Li, Zhongfa Zhou, Jie Kong, Cui Wang, Yanbi Wang, Rukai Xie, Caixia Ding and Xinyue Zhang
Remote Sens. 2025, 17(15), 2608; https://doi.org/10.3390/rs17152608 - 27 Jul 2025
Viewed by 342
Abstract
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes [...] Read more.
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes in land cover and their effects on carbon stocks from 2000 to 2035. A carbon stocks assessment framework was developed using a cellular automaton-based artificial neural network model (CA-ANN), the InVEST model, and the geographical detector model to predict future land cover changes and identify the primary drivers of variations in carbon stocks. The results indicate that (1) from 2000 to 2020, impervious surfaces expanded significantly, increasing by 199.73 km2. Compared to 2020, impervious surfaces are projected to increase by 1.06 km2, 13.54 km2, and 34.97 km2 in 2025, 2030, and 2035, respectively, leading to further reductions in grassland and forest areas. (2) Over time, carbon stocks in Guiyang exhibited a general decreasing trend; spatially, carbon stocks were higher in the western and northern regions and lower in the central and southern regions. (3) The level of greenness, measured by the normalized vegetation index (NDVI), significantly influenced the spatial variation of carbon stocks in Guiyang. Changes in carbon stocks resulted from the combined effects of multiple factors, with the annual average temperature and NDVI being the most influential. These findings provide a scientific basis for advancing low-carbon development and constructing an ecological civilization in Guiyang. Full article
(This article belongs to the Special Issue Smart Monitoring of Urban Environment Using Remote Sensing)
Show Figures

Figure 1

19 pages, 14165 KiB  
Article
The Relationship of Forest Fragmentation to Scots Pine Forest Mortality
by Debebe Dana Feleha, Pawel Netzel and Jakub Talaga
Land 2025, 14(8), 1537; https://doi.org/10.3390/land14081537 - 27 Jul 2025
Viewed by 165
Abstract
Forest mortality (FM) is influenced by several independent factors, including forest fragmentation (FF) at different spatial scales and multi-scales, site conditions, and stand characteristics. The aim of this study was to investigate the relationship and effect of FF at various spatial scales on [...] Read more.
Forest mortality (FM) is influenced by several independent factors, including forest fragmentation (FF) at different spatial scales and multi-scales, site conditions, and stand characteristics. The aim of this study was to investigate the relationship and effect of FF at various spatial scales on the probability of Scots pine FM. The presented study also analyzed the relationship of the multi-scale fragmentation index effect on forest dieback. The relationship between multiple stressors emphasizes the distinct role of FF in influencing pine FM probability. Data on forest cover, deadwood volume of Scots pine forest, and environmental variables were obtained from the Forest Information System for Europe, the Polish National Forest Inventory, and existing databases, respectively. A generalized additive model approach was used to develop models. The results showed that, at small (50–600 m), large (800–3000 m), and multi spatial scales, the FF effect on Scots pine FM probabilities was statistically significant. There is a partial effect of multi-scale fragmentation on the probability of Scots pine FM, given a holistic view of the fragmentation effect that captures both small and large-scale effects. The study concludes that to calculate FF for a particular area, analyzing different scales and capturing multi-scale level fragmentation indices is crucial to studying the cumulative effect of fragmentation on the probability of Scots pine FM. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

20 pages, 2305 KiB  
Article
Research on Accurate Inversion Techniques for Forest Cover Using Spaceborne LiDAR and Multi-Spectral Data
by Yang Yi, Mingchang Shi, Jin Yang, Jinqi Zhu, Jie Li, Lingyan Zhou, Luqi Xing and Hanyue Zhang
Forests 2025, 16(8), 1215; https://doi.org/10.3390/f16081215 - 24 Jul 2025
Viewed by 298
Abstract
Fractional Vegetation Cover (FVC) is an important parameter to reflect vegetation growth and describe plant canopy structure. This study integrates both active and passive remote sensing, capitalizing on the complementary strengths of optical and radar data, and applies various machine learning algorithms to [...] Read more.
Fractional Vegetation Cover (FVC) is an important parameter to reflect vegetation growth and describe plant canopy structure. This study integrates both active and passive remote sensing, capitalizing on the complementary strengths of optical and radar data, and applies various machine learning algorithms to retrieve FVC. The results demonstrate that, for FVC retrieval, the optimal combination of optical remote sensing bands includes B2 (490 nm), B5 (705 nm), B8 (833 nm), B8A (865 nm), and B12 (2190 nm) from Sentinel-2, achieving an Optimal Index Factor (OIF) of 522.50. The LiDAR data of ICESat-2 imagery is more suitable for extracting FVC than that of GEDI imagery, especially at a height of 1.5 m, and the correlation coefficient with the measured FVC is 0.763. The optimal feature variable combinations for FVC retrieval vary among different vegetation types, including synthetic aperture radar, optical remote sensing, and terrain data. Among the three models tested—multiple linear regression, random forest, and support vector machine—the random forest model outperformed the others, with fitting correlation coefficients all exceeding 0.974 and root mean square errors below 0.084. Adding LiDAR data on the basis of optical remote sensing combined with machine learning can effectively improve the accuracy of remote sensing retrieval of vegetation coverage. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

20 pages, 25345 KiB  
Article
Mangrove Damage and Early-Stage Canopy Recovery Following Hurricane Roslyn in Marismas Nacionales, Mexico
by Samuel Velázquez-Salazar, Luis Valderrama-Landeros, Edgar Villeda-Chávez, Cecilia G. Cervantes-Rodríguez, Carlos Troche-Souza, José A. Alcántara-Maya, Berenice Vázquez-Balderas, María T. Rodríguez-Zúñiga, María I. Cruz-López and Francisco Flores-de-Santiago
Forests 2025, 16(8), 1207; https://doi.org/10.3390/f16081207 - 22 Jul 2025
Viewed by 1222
Abstract
Hurricanes are powerful tropical storms that can severely damage mangrove forests through uprooting trees, sediment erosion, and saltwater intrusion, disrupting their critical role in coastal protection and biodiversity. After a hurricane, evaluating mangrove damage helps prioritize rehabilitation efforts, as these ecosystems play a [...] Read more.
Hurricanes are powerful tropical storms that can severely damage mangrove forests through uprooting trees, sediment erosion, and saltwater intrusion, disrupting their critical role in coastal protection and biodiversity. After a hurricane, evaluating mangrove damage helps prioritize rehabilitation efforts, as these ecosystems play a key ecological role in coastal regions. Thus, we analyzed the defoliation of mangrove forest canopies and their early recovery, approximately 2.5 years after the landfall of Category 3 Hurricane Roslyn in October 2002 in Marismas Nacionales, Mexico. The following mangrove traits were analyzed: (1) the yearly time series of the Combined Mangrove Recognition Index (CMRI) standard deviation from 2020 to 2025, (2) the CMRI rate of change (slope) following the hurricane’s impact, and (3) the canopy height model (CHM) before and after the hurricane using satellite and UAV-LiDAR data. Hurricane Roslyn caused a substantial decrease in canopy cover, resulting in a loss of 47,202 ha, which represents 82.8% of the total area of 57,037 ha. The CMRI standard deviation indicated early signs of canopy recovery in one-third of the mangrove-damaged areas 2.5 years post-impact. The CMRI slope indicated that areas near the undammed rivers had a maximum recovery rate of 0.05 CMRI units per month, indicating a predicted canopy recovery of ~2.5 years. However, most mangrove areas exhibited CMRI rates between 0.01 and 0.03 CMRI units per month, anticipating a recovery time between 40 months (approximately 3.4 years) and 122 months (roughly 10 years). Unfortunately, most of the already degraded Laguncularia racemosa forests displayed a negative CMRI slope, suggesting a lack of canopy recovery so far. Additionally, the CHM showed a median significant difference of 3.3 m in the canopy height of fringe-type Rhizophora mangle and Laguncularia racemosa forests after the hurricane’s landfall. Full article
Show Figures

Figure 1

22 pages, 2531 KiB  
Article
Canopy Cover Drives Odonata Diversity and Conservation Prioritization in the Protected Wetland Complex of Thermaikos Gulf (Greece)
by Dimitris Kaltsas, Lydia Alvanou, Ioannis Ekklisiarchos, Dimitrios I. Raptis and Dimitrios N. Avtzis
Forests 2025, 16(7), 1181; https://doi.org/10.3390/f16071181 - 17 Jul 2025
Viewed by 234
Abstract
Odonata constitute an important invertebrate group that is strongly dependent on water conditions and sensitive to habitat disturbances, rendering them reliable indicators of habitat quality of both aquatic and terrestrial habitats. We studied the compositional and diversity patterns of Odonates in total, and [...] Read more.
Odonata constitute an important invertebrate group that is strongly dependent on water conditions and sensitive to habitat disturbances, rendering them reliable indicators of habitat quality of both aquatic and terrestrial habitats. We studied the compositional and diversity patterns of Odonates in total, and separately for the two suborders (Zygoptera, Anisoptera) in relation to geographic and ecological parameters at the riparian zone of four rivers and one canal within the Axios Delta National Park and the Natura 2000 SAC GR1220002 in northern Greece, using the line transect technique. In total, 6252 individuals belonging to 28 species were identified. The compositional and diversity patterns were significantly different between agricultural and natural sites. Odonata assemblages at croplands were comparatively poorer, dominated by a few, widely distributed, taxonomically proximal species, tolerant to environmental changes, as a result of modifications and consequent alterations of abiotic conditions at croplands, which also led to higher local contribution to β-diversity and species turnover. The absence of several percher, endophytic, and threatened species from agricultural sites led to significantly lower diversity, as a result of environmental filtering due to ecophysiological restrictions. Taxonomic and functional diversity, uniqueness, and Dragonfly Biotic Index (DBI) were significantly higher in riparian forests, due to the sensitivity of damselflies to dehydration, and the avoidance of habitat loss and extreme temperatures by dragonflies, which prefer natural shelters near the ecotone. The newly introduced Conservation Value Index (CVI) revealed 21 conservation hotspots of Odonata (14 at canopy cover sites), widely distributed within the borders of NATURA 2000 SAC GR1220002. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

19 pages, 4141 KiB  
Article
Prediction of Potential Habitat for Korean Endemic Firefly, Luciola unmunsana Doi, 1931 (Coleoptera: Lampyridae), Using Species Distribution Models
by ByeongJun Jung, JuYeong Youn and SangWook Kim
Land 2025, 14(7), 1480; https://doi.org/10.3390/land14071480 - 17 Jul 2025
Viewed by 377
Abstract
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, [...] Read more.
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, it is difficult to collect, so research related to its distribution and restoration is relatively understudied. Therefore, this study predicted the potential habitats of Luciola unmunsana across South Korea using the single model Maximum Entropy (MaxEnt) and a multi-model ensemble model to prepare basic data necessary for a conservation and habitat restoration plan for the species. A total of 39 points of occurrence were built based on public data and prior research from the Jeonbuk Green Environment Support Center (JGESC), the Global Biodiversity Information Facility (GBIF), and the National Institute of Biological Resources (NIBR). Among the input variables, climate variables were based on the shared socioeconomic pathway (SSP) scenario-based ecological climate index, while nonclimate variables were based on topography, land cover maps, and the Enhanced Vegetation Index (EVI). The main findings of this study are summarized below. First, in predicting Luciola unmunsana potential habitats, the EVI, water network analysis, land cover, and annual precipitation (Bio12) were identified as good predictors in both models. Accordingly, areas with high vegetation activity in their forests, adjacent to water resources, and stable humidity were predicted as potential habitats. Second, by overlaying the predicted potential habitats and highly significant variables, we found that areas with high vegetation vigor within their forests, proximity to water systems, and relatively high annual precipitation, which can maintain stable humidity, are potential habitats for Luciola unmunsana. Third, literature surveys used to predict potential habitat sites, including Geumsan-gun, Chungcheongnam-do, Yeongam-gun, Jeollabuk-do, Mudeungsan Mountain, Gwangju-si, Korea, and Gijang-gun, Busan-si, Korea, confirmed the occurrence of Luciola unmunsana. This study is significant in that it is the first to develop a regional SDM for Luciola unmunsana, whose population is declining due to urbanization. In addition, by applying various environmental variables that reflect ecological characteristics, it contributes to more accurate predictions of the potential habitats of this species. The predicted results can be used as basic data for the future conservation of Luciola unmunsana and the establishment of habitat restoration strategies. Full article
Show Figures

Figure 1

33 pages, 12632 KiB  
Article
Analysis of LULC and Urban Thermal Variations in Industrial Cities Using Earth Observation Indices and Machine Learning: A Case Study of Gujranwala, Pakistan
by Zabih Ullah, Muhammad Sajid Mehmood, Shiyan Zhai and Yaochen Qin
Remote Sens. 2025, 17(14), 2474; https://doi.org/10.3390/rs17142474 - 16 Jul 2025
Viewed by 404
Abstract
Rapid urbanization and industrial development have significantly altered land use and cover across the globe, intensifying urban thermal environments and exacerbating the urban heat island (UHI) effect. Gujranwala, Pakistan, represents an industrial growth that has driven substantial land use/land cover (LULC) changes and [...] Read more.
Rapid urbanization and industrial development have significantly altered land use and cover across the globe, intensifying urban thermal environments and exacerbating the urban heat island (UHI) effect. Gujranwala, Pakistan, represents an industrial growth that has driven substantial land use/land cover (LULC) changes and temperature increases; however, the directional and distance-based patterns of these changes remain unquantified. Therefore, this study is conducted to examine spatiotemporal changes in LULC and variations in the Urban Thermal Field Variation Index (UTFVI) between 2001 and 2021 and to project future scenarios for 2031 and 2041 using (1) Earth Observation Indices (EOIs) with machine learning (ML) classifiers (Random Forest) for precise LULC mapping through the Google Earth Engine (GEE) platform, (2) Cellular Automata–Artificial Neural Networks (CA-ANNs) for future scenario projection, and (3) Gradient Directional Analysis (GDA) to quantify directional (16-axis) and distance-based (concentric zones) patterns of urban expansion and thermal variation from 2001–2021. The study revealed significant LULC changes, with built-up areas expanding by 7.5% from 2001 to 2021, especially in the east, northeast, and southeast directions within a 20 km radius. Due to urban encroachment, vegetation and cropland decreased by 1.47% and 1.83%, respectively. The urban thermal environment worsened, with the highest land surface temperature (LST) rising from 41 °C in 2001 to 55 °C in 2021. Additionally, the UTFVI showed expanding areas under the ‘strong’ and ‘strongest’ categories, increasing from 30.58% in 2001 to 33.42% in 2041. Directional analysis highlighted severe thermal stress in the southern and southwestern areas linked to industrial activities and urban sprawl. This integrated approach provides a template for analyzing urban thermal environments in developing cities, supporting targeted mitigation strategies through direction- and distance-specific planning interventions to mitigate UHI impacts. Full article
Show Figures

Figure 1

21 pages, 5627 KiB  
Article
Effects of a Post-Harvest Management Practice on Structural Connectivity in Catchments with a Mediterranean Climate
by Daniel Sanhueza, Lorenzo Martini, Andrés Iroumé, Matías Pincheira and Lorenzo Picco
Forests 2025, 16(7), 1171; https://doi.org/10.3390/f16071171 - 16 Jul 2025
Viewed by 299
Abstract
Forest harvesting can alter sedimentary processes in catchments by reducing vegetation cover and exposing the soil surface. To mitigate these effects, post-harvest residue management is commonly used, though its effectiveness needs individual evaluation. This study assessed how windrowed harvest residues influence structural sediment [...] Read more.
Forest harvesting can alter sedimentary processes in catchments by reducing vegetation cover and exposing the soil surface. To mitigate these effects, post-harvest residue management is commonly used, though its effectiveness needs individual evaluation. This study assessed how windrowed harvest residues influence structural sediment connectivity in two forest catchments in south-central Chile with a Mediterranean climate. Using digital terrain models and the Index of Connectivity, scenarios with and without windrows were compared. Despite similar windrow characteristics, effectiveness varied between catchments. In catchment N01 (12.6 ha, average slope 0.28 m m−1), with 13.6% windrow coverage, connectivity remained unchanged, but in contrast, catchment N02 (14 ha, average slope 0.27 m m−1), with 21.9% coverage, showed a significant connectivity reduction. A key factor was windrows’ orientation: 83.9% aligned with contour lines in N02 versus 58.6% in N01. Distance to drainage channels also played a role, with the decreasing effect of connectivity at 50–60 m in N02. Bootstrap analysis confirmed significant differences between catchments. These results suggest that windrow configuration, particularly contour alignment, may be more critical than coverage percentage. For effective connectivity reduction, especially on moderate to steep slopes, forest managers should prioritize contour-aligned windrows. This study enhances our understanding of structural sediment connectivity and offers practical insights for sustainable post-harvest forest management. Full article
(This article belongs to the Special Issue Erosion and Forests: Drivers, Impacts, and Management)
Show Figures

Figure 1

20 pages, 19341 KiB  
Article
Human Activities Dominantly Driven the Greening of China During 2001 to 2020
by Xueli Chang, Zhangzhi Tian, Yepei Chen, Ting Bai, Zhina Song and Kaimin Sun
Remote Sens. 2025, 17(14), 2446; https://doi.org/10.3390/rs17142446 - 15 Jul 2025
Viewed by 299
Abstract
Vegetation is a fundamental component of terrestrial ecosystems. Understanding how vegetation changes and what drives these evolutions is crucial for developing a high-quality ecological environment and addressing global climate change. Extensive evidence has shown that China has undergone substantial vegetation changes, characterized primarily [...] Read more.
Vegetation is a fundamental component of terrestrial ecosystems. Understanding how vegetation changes and what drives these evolutions is crucial for developing a high-quality ecological environment and addressing global climate change. Extensive evidence has shown that China has undergone substantial vegetation changes, characterized primarily by greening. To quantify vegetation dynamics in China and assess the contributions of various drivers, we explored the spatiotemporal variations in the kernel Normalized Difference Vegetation Index (kNDVI) from 2001 to 2020, and quantitatively separated the influences of climate and human factors. The kNDVI time series were generated from the MCD19A1 v061 dataset based on the Google Earth Engine (GEE) platform. We employed the Theil-Sen trend analysis, the Mann-Kendall test, and the Hurst index to analyze the historical patterns and future trajectories of kNDVI. Residual analysis was then applied to determine the relative contributions of climate change and human activities to vegetation dynamics across China. The results show that from 2001 to 2020, vegetation in China showed a fluctuating but predominantly increasing trend, with a significant annual kNDVI growth rate of 0.002. The significant greening pattern was observed in over 48% of vegetated areas, exhibiting a clear spatial gradient with lower increases in the northwest and higher amplitudes in the southeast. Moreover, more than 60% of vegetation areas are projected to experience a sustained increase in the future. Residual analysis reveals that climate change contributed 21.89% to vegetation changes, while human activities accounted for 78.11%, being the dominant drivers of vegetation variation. This finding is further supported by partial correlation analysis between kNDVI and temperature, precipitation, and the human footprint. Vegetation dynamics were found to respond more strongly to human influences than to climate drivers, underscoring the leading role of human activities. Further analysis of tree cover fraction and cropping intensity data indicates that the greening in forests and croplands is primarily attributable to large-scale afforestation efforts and improved agricultural management. Full article
Show Figures

Graphical abstract

25 pages, 7406 KiB  
Article
Landslide Susceptibility Level Mapping in Kozhikode, Kerala, Using Machine Learning-Based Random Forest, Remote Sensing, and GIS Techniques
by Pradeep Kumar Badapalli, Anusha Boya Nakkala, Raghu Babu Kottala, Sakram Gugulothu, Fahdah Falah Ben Hasher, Varun Narayan Mishra and Mohamed Zhran
Land 2025, 14(7), 1453; https://doi.org/10.3390/land14071453 - 12 Jul 2025
Viewed by 1116
Abstract
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random [...] Read more.
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random Forest (RF) model integrated with Geographic Information Systems (GIS). A total of 231 historical landslide locations obtained from the Bhukosh portal were used as reference data. Eight predictive factors—Stream Order, Drainage Density, Slope, Aspect, Geology, Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Moisture Stress Index (MSI)—were derived from remote sensing and ancillary datasets, preprocessed, and reclassified for model input. The RF model was trained and validated using a 50:50 split of landslide and non-landslide points, with variable importance values derived to weight each predictive factor of the raster layer in ArcGIS. The resulting Landslide Susceptibility Index (LSI) was reclassified into five susceptibility zones: Very Low, Low, Moderate, High, and Very High. Results indicate that approximately 17.82% of the study area falls under high to very high susceptibility, predominantly in the steep, weathered, and high rainfall zones of the Western Ghats. Validation using Area Under the Curve–Receiver Operating Characteristic (AUC-ROC) analysis yielded an accuracy of 0.890, demonstrating excellent model performance. The output LSM provides valuable spatial insights for planners, disaster managers, and policymakers, enabling targeted mitigation strategies and sustainable land-use planning in landslide-prone regions. Full article
Show Figures

Figure 1

17 pages, 36560 KiB  
Article
Comparative Calculation of Spectral Indices for Post-Fire Changes Using UAV Visible/Thermal Infrared and JL1 Imagery in Jinyun Mountain, Chongqing, China
by Juncheng Zhu, Yijun Liu, Xiaocui Liang and Falin Liu
Forests 2025, 16(7), 1147; https://doi.org/10.3390/f16071147 - 11 Jul 2025
Viewed by 216
Abstract
This study used Jilin-1 satellite data and unmanned aerial vehicle (UAV)-collected visible-thermal infrared imagery to calculate twelve spectral indices and evaluate their effectiveness in distinguishing post-fire forest areas and identifying human-altered land-cover changes in Jinyun Mountain, Chongqing. The research goals included mapping wildfire [...] Read more.
This study used Jilin-1 satellite data and unmanned aerial vehicle (UAV)-collected visible-thermal infrared imagery to calculate twelve spectral indices and evaluate their effectiveness in distinguishing post-fire forest areas and identifying human-altered land-cover changes in Jinyun Mountain, Chongqing. The research goals included mapping wildfire impacts with M-statistic separability, measuring land-cover distinguishability through Jeffries–Matusita (JM) distance analysis, classifying land-cover types using the random forest (RF) algorithm, and verifying classification accuracy. Cumulative human disturbances—such as land clearing, replanting, and road construction—significantly blocked the natural recovery of burn scars, and during long-term human-assisted recovery periods over one year, the Red Green Blue Index (RGBI), Green Leaf Index (GLI), and Excess Green Index (EXG) showed high classification accuracy for six land-cover types: road, bare soil, deadwood, bamboo, broadleaf, and grass. Key accuracy measures showed producer accuracy (PA) > 0.8, user accuracy (UA) > 0.8, overall accuracy (OA) > 90%, and a kappa coefficient > 0.85. Validation results confirmed that visible-spectrum indices are good at distinguishing photosynthetic vegetation, thermal bands help identify artificial surfaces, and combined thermal-visible indices solve spectral confusion in deadwood recognition. Spectral indices provide high-precision quantitative evidence for monitoring post-fire land-cover changes, especially under human intervention, thus offering important data support for time-based modeling of post-fire forest recovery and improvement of ecological restoration plans. Full article
(This article belongs to the Special Issue Wildfire Behavior and the Effects of Climate Change in Forests)
Show Figures

Graphical abstract

Back to TopTop