Research on Accurate Inversion Techniques for Forest Cover Using Spaceborne LiDAR and Multi-Spectral Data
Abstract
1. Introduction
2. Study Area
3. Data and Methods
3.1. Research Data Source and Processing
3.2. Object-Oriented Segmentation
3.2.1. Optimal Exponential Factor Method
3.2.2. Optimal Segmentation Parameter Evaluation
3.2.3. Accuracy Verification Method of Image Segmentation Results
3.3. Vegetation Cover Sampling Method for Spaceborne LiDAR
3.3.1. ICESat-2 Sampling Method for Vegetation Coverage
Topographic Section Extraction Method
Photon Point Classification Method
ICESat-2 Method for Calculating Vegetation Coverage
Sampling Method of GEDI Vegetation Coverage
3.4. Extraction of Feature Variables for Vegetation Coverage Modeling
3.4.1. Feature Variable Extraction Method Based on Passive Remote Sensing Data
3.4.2. The Feature Variable Extraction Method of DEM
3.4.3. Feature Variable First Method
3.5. Vegetation Coverage Based on Different Algorithms
3.6. The Number of Samples Collected Based on Land Use and the Number of Preferred Characteristic Variables
4. Results
4.1. Optimal Segmentation Data Set and Factor Setting Results
4.2. Extraction and Evaluation of Vegetation Coverage with Spaceborne LiDAR
4.2.1. Ground Profile Extraction Results
4.2.2. ICESat-2 Sampling Accuracy of Vegetation Coverage
4.2.3. Analysis of Sampling Accuracy of GEDI Vegetation Coverage
4.3. Extraction and Analysis of Feature Variables of Vegetation Coverage Modeling Based on Multi-Source Data
4.4. Study on Remote Sensing Estimation of Vegetation Coverage by Comparing Multiple Algorithms
4.4.1. Analysis of Fitting Ability of Different Regression Models
4.4.2. The Accuracy of the Simulation Results of Different Models
5. Discussion
5.1. Relationship Between Active and Passive Remote Sensing Feature Index and Vegetation Coverage
5.2. Selection of Machine Learning Methods
5.3. Enlightenment for Vegetation Coverage Inversion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Data Types | Description | Data Source |
---|---|---|
Field survey | Measurement of FVC data | Field investigation |
Spaceborne LiDAR | ICESat-2 | https://nsidc.org/data/icesat-2, accessed on 12 January 2024 |
GEDI | https://gedi.umd.edu/data/download, accessed on 12 January 2024 | |
Optical remote sensing | Sentinel-2 | https://www.gscloud.cn/, accessed on 12 January 2024 |
Synthetic aperture radar | Sentinel-1 | |
Terrain | DEM | https://www.gscloud.cn/, accessed on 12 January 2024 |
Land use/Land cover change | GlobeLand30 | http://www.globallandcover.com/, accessed on 12 January 2024 |
Abbreviation | Description |
---|---|
NDVI | Normalized difference vegetation index |
RVI | Ratio vegetation index |
EVI | Enhanced vegetation index |
TNDVI | Transformed normalized difference vegetation index |
RDVI | Renormalized vegetation index |
GEMI | Global environmental detection index |
SAVI | Soil adjusted vegetation index |
TSAVI | Adjustable vegetation index for transformed soil |
CI | Red edge chlorophyll index |
REP | Red edge position index |
PSRI | Plant senescence reflectance index |
NDCSI | Normalized vegetation canopy shadow index |
NDVHVV | Normalized radar vegetation index |
RAVHVV | Ratio radar vegetation index |
H | Elevation |
S | Slope |
SinA | Sine in aspect (eastward degree) |
CosA | Cosine in aspect (northward degree) |
Vegetation Index | Calculation Formula | Number |
---|---|---|
NDVI | NDVI(i,j) = (bandi − bandj)/(bandi + bandj) | 45 |
RVI | SR(i,j) = bandi/bandj | 90 |
EVI | EVI = 2.5 × (band8 − band4)/(band8 + 6band4 − 7.5band2 + 1) | 1 |
TNDVI | TNDVI = sqrt[(band8 − band4)/(band8 + band4) + 0.5] | 1 |
RDVI | RDVI = (band8 − band4)/sqrt(band8 + band4) | 1 |
GEMI | GEMI = z × (1 − 0.25 × z) − (band4 − 0.125)/(1 − band4) | 1 |
SAVI | SAVI = 1.5 × (band8 − band4)/(band8 + band4 + 0.5) | 1 |
TSAVI | TSAVI = 0.5 × (band8 − 0.5 × band4 − 0.5)/(0.5 × band8 + band4 − 0.15) | 1 |
CI | CI = band7/band5 − 1 | 1 |
REP | REP = 705 + 35 × [(band4 + band7)/2 − band5]/(band6 − band5) | 1 |
PSRI | PSRI = (band4 − band3)/band6 | 1 |
NDCSI | NDCSI = (band8 − band4)/(band8 + band4) × (bandi − bandimin)/(bandimax − bandimin) | 3 |
NDVHVV | NDVHVV = (H − V)/(H + V) | 1 |
RAVHVV | RAVHVV = V/H | 1 |
Feature of Texture | Formula of Calculation | Meaning |
---|---|---|
Mean | The average gray value of remote sensing imagery reflects the uniform distribution of pixel values, and the texture regularity is positively correlated with the mean value | |
Variance | The variance of gray value in remote sensing imagery reflects the variation degree of gray value in remote sensing image | |
Entropy | The larger the entropy, the higher the complexity, the greater the amount of information | |
Contrast | Reflect the clarity of remote sensing imagery | |
Homogeneity | Reflects the magnitude of local homogeneity of remote sensing imagery | |
Dissimilarity | The similarity degree and dissimilarity degree of texture information of remote sensing imagery are higher, which indicates that texture information has stronger uniqueness | |
Correlation | The similarity of matrix elements in rows and columns in the gray co-occurrence matrix | |
Angular Second Moment | Image gray distribution uniformity degree and texture thickness degree; the larger the second angular distance, the clearer the image texture, the more uniform distribution |
Correlation Coefficient | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8A | B11 | B12 |
---|---|---|---|---|---|---|---|---|---|---|
B2 | 1 | |||||||||
B3 | 0.989 ** | 1 | ||||||||
B4 | 0.967 ** | 0.983 ** | 1 | |||||||
B5 | 0.939 ** | 0.966 ** | 0.963 ** | 1 | ||||||
B6 | 0.727 ** | 0.767 ** | 0.706 ** | 0.824 ** | 1 | |||||
B7 | 0.641 ** | 0.681 ** | 0.613 ** | 0.737 ** | 0.983 ** | 1 | ||||
B8 | 0.608 ** | 0.653 ** | 0.579 ** | 0.688 ** | 0.941 ** | 0.954 ** | 1 | |||
B8A | 0.597 ** | 0.639 ** | 0.572 ** | 0.705 ** | 0.972 ** | 0.992 ** | 0.951 ** | 1 | ||
B11 | 0.659 ** | 0.726 ** | 0.750 ** | 0.840 ** | 0.788 ** | 0.734 ** | 0.699 ** | 0.732 ** | 1 | |
B12 | 0.720 ** | 0.773 ** | 0.830 ** | 0.858 ** | 0.636 ** | 0.558 ** | 0.514 ** | 0.542 ** | 0.932 ** | 1 |
References
- Fang, H.; Li, S.; Zhang, Y.; Wei, S.; Wang, Y. New insights of global vegetation structural properties through an analysis of canopy clumping index, fractional vegetation cover, and leaf area index. Sci. Remote Sens. 2021, 4, 100027. [Google Scholar] [CrossRef]
- Song, D.-X.; Wang, Z.; He, T.; Wang, H.; Liang, S. Estimation and validation of 30 m fractional vegetation cover over China through integrated use of Landsat 8 and Gaofen 2 data. Sci. Remote Sens. 2022, 6, 100058. [Google Scholar] [CrossRef]
- Davide, A.; Gianelle, D.; Scotton, M.; Dalponte, M. Estimating grassland vegetation cover with remote sensing: A comparison between Landsat-8, Sentinel-2 and PlanetScope imagery. Ecol. Indic. 2022, 141, 109102. [Google Scholar] [CrossRef]
- Ding, X.; Wang, Q.; Tong, X. Integrating 250 m MODIS data in spectral unmixing for 500 m fractional vegetation cover estimation. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102860. [Google Scholar] [CrossRef]
- Wang, N.; Guo, Y.; Wei, X.; Zhou, M.; Wang, H.; Bai, Y. UAV-based remote sensing using visible and multispectral indices for the estimation of vegetation cover in an oasis of a desert. Ecol. Indic. 2022, 141, 109155. [Google Scholar] [CrossRef]
- Zhu, C.; Tian, J.; Tian, Q.; Wang, X.; Li, Q. Using NDVI-NSSI feature space for simultaneous estimation of fractional cover of non-photosynthetic vegetation and photosynthetic vegetation. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103282. [Google Scholar] [CrossRef]
- Younes, N.; Joyce, K.E.; Northfield, T.D.; Maier, S.W. The effects of water depth on estimating Fractional Vegetation Cover in mangrove forests. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101924. [Google Scholar] [CrossRef]
- Liu, J.; Fan, J.; Yang, C.; Xu, F.; Zhang, X. Novel vegetation indices for estimating photosynthetic and non-photosynthetic fractional vegetation cover from Sentinel data. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102793. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhang, Z.; Philpot, W.D.; Tian, Q.; Zhan, W.; Xi, Y.; Wang, X.; Zhu, C. Simultaneous estimation of fractional cover of photosynthetic and non-photosynthetic vegetation using visible-near infrared satellite imagery. Remote Sens. Environ. 2023, 290, 113549. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, F.; Zhang, M.; Meng, Q.; Jim, C.Y.; Shi, J.; Tan, M.L.; Ma, X. Landscape and vegetation traits of urban green space can predict local surface temperature. Sci. Total Environ. 2022, 825, 154006. [Google Scholar] [CrossRef] [PubMed]
- Verrelst, J.; Halabuk, A.; Atzberger, C.; Hank, T.; Steinhauser, S.; Berger, K. A comprehensive survey on quantifying non-photosynthetic vegetation cover and biomass from imaging spectroscopy. Ecol. Indic. 2023, 155, 110911. [Google Scholar] [CrossRef]
- Zhou, Y.; Lao, C.; Yang, Y.; Zhang, Z.; Chen, H.; Chen, Y.; Chen, J.; Ning, J.; Yang, N. Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices. Agric. Water Manag. 2021, 256, 107076. [Google Scholar] [CrossRef]
- Dou, Y.; Tian, F.; Wigneron, J.-P.; Tagesson, T.; Du, J.; Brandt, M.; Liu, Y.; Zou, L.; Kimball, J.S.; Fensholt, R. Reliability of using vegetation optical depth for estimating decadal and interannual carbon dynamics. Remote Sens. Environ. 2023, 285, 113390. [Google Scholar] [CrossRef]
- Sinha, S.K.; Padalia, H.; Dasgupta, A.; Verrelst, J.; Rivera, J.P. Estimation of leaf area index using PROSAIL based LUT inversion, MLRA-GPR and empirical models: Case study of tropical deciduous forest plantation, North India. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102027. [Google Scholar] [CrossRef] [PubMed]
- Mao, P.; Zhang, J.; Li, M.; Liu, Y.; Wang, X.; Yan, R.; Shen, B.; Zhang, X.; Shen, J.; Zhu, X.; et al. Spatial and temporal variations in fractional vegetation cover and its driving factors in the Hulun Lake region. Ecol. Indic. 2022, 135, 108490. [Google Scholar] [CrossRef]
- Li, X.; Wigneron, J.-P.; Frappart, F.; Lannoy, G.D.; Fan, L.; Zhao, T.; Gao, L.; Tao, S.; Ma, H.; Peng, Z.; et al. The first global soil moisture and vegetation optical depth product retrieved from fused SMOS and SMAP L-band observations. Remote Sens. Environ. 2022, 282, 113272. [Google Scholar] [CrossRef]
- Li, L.; Mu, X.; Jiang, H.; Chianucci, F.; Hu, R.; Song, W.; Qi, J.; Liu, S.; Zhou, J.; Chen, L.; et al. Review of ground and aerial methods for vegetation cover fraction (fCover) and related quantities estimation: Definitions, advances, challenges, and future perspectives. ISPRS J. Photogramm. Remote Sens. 2023, 199, 133–156. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Zhou, T.; Sun, Y.; Yang, Z.; Zheng, S. Research on the identification of land types and tree species in the Engebei ecological demonstration area based on GF-1 remote sensing. Ecol. Inform. 2023, 77, 102242. [Google Scholar] [CrossRef]
- Mousivand, A.; Menenti, M.; Gorte, B.; Verhoef, W. Multi-temporal, multi-sensor retrieval of terrestrial vegetation properties from spectral–directional radiometric data. Remote Sens. Environ. 2015, 158, 311–330. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, T.; Ju, W.; Peng, Z.; Shi, J.; Rodríguez-Fernández, N.J.; Wigneron, J.-P.; Cosh, M.H.; Yang, K.; Lu, H.; et al. A twenty-year dataset of soil moisture and vegetation optical depth from AMSR-E/2 measurements using the multi-channel collaborative algorithm. Remote Sens. Environ. 2023, 292, 113595. [Google Scholar] [CrossRef]
- Yan, X.; Zuo, C.; Li, Z.; Chen, H.W.; Jiang, Y.; He, B.; Liu, H.; Chen, J.; Shi, W. Cooperative simultaneous inversion of satellite-based real-time PM2.5 and ozone levels using an improved deep learning model with attention mechanism. Environ. Pollut. 2023, 327, 121509. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guangrong, S.; Chen, Z.; Hao, S.; Zhouyiling, Z.; Shan, Y. Quantitative analysis and prediction of urban heat island intensity on urban–rural gradient: A case study of Shanghai. Sci. Total. Environ. 2022, 829, 154264. [Google Scholar] [CrossRef] [PubMed]
- Nill, L.; Grünberg, I.; Ullmann, T.; Gessner, M.; Boike, J.; Hostert, P. Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic. Remote Sens. Environ. 2022, 281, 113228. [Google Scholar] [CrossRef]
- Che, L.; Zhang, H.; Wan, L. Spatial distribution of permafrost degradation and its impact on vegetation phenology from 2000 to 2020. Sci. Total Environ. 2023, 877, 162889. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, F.; Schmidtlein, S.; Kattenborn, T. The retrieval of plant functional traits from canopy spectra through RTM-inversions and statistical models are both critically affected by plant phenology. Ecol. Indic. 2021, 121, 107062. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Z.; Feng, Y.; Li, X.; Tang, J. Development and application of a vegetation degradation classification approach for the temperate grasslands of northern China. Ecol. Indic. 2023, 154, 110857. [Google Scholar] [CrossRef]
- Ciccioli, P.; Silibello, C.; Finardi, S.; Pepe, N.; Ciccioli, P.; Rapparini, F.; Neri, L.; Fares, S.; Brilli, F.; Mircea, M.; et al. The potential impact of biogenic volatile organic compounds (BVOCs) from terrestrial vegetation on a Mediterranean area using two different emission models. Agric. For. Meteorol. 2023, 328, 109255. [Google Scholar] [CrossRef]
- Yang, S.; Yang, J.; Shi, S.; Song, S.; Luo, Y.; Du, L. The rising impact of urbanization-caused CO2 emissions on terrestrial vegetation. Ecol. Indic. 2023, 148, 110079. [Google Scholar] [CrossRef]
- Tian, J.; Liu, J.; Wang, J.; Li, C.; Yu, F.; Chu, Z. A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China. Atmos. Res. 2017, 191, 141–155. [Google Scholar] [CrossRef]
- Guo, H.; Shi, M.; Yang, J.; Chen, C. Precise spatial distribution of suitability of Pinus tabulaeformis in Daqing River Basin, Baiyangdian. J. Zhejiang AF Univ. 2021, 38, 1100–1108. (In Chinese) [Google Scholar] [CrossRef]
- Guo, Z.; Wang, T.; Liu, S.; Kang, W.; Chen, X.; Feng, K.; Zhi, Y. Comparison of the backpropagation network and the random forest algorithm based on sampling distribution effects consideration for estimating nonphotosynthetic vegetation cover. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102573. [Google Scholar] [CrossRef]
- Yi, Y.; Shi, M.; Gao, M.; Zhang, G.; Xing, L.; Zhang, C.; Xie, J. Comparative Study on Object-Oriented Identification Methods of Plastic Greenhouses Based on Landsat Operational Land Imager. Land 2023, 12, 121120. [Google Scholar] [CrossRef]
- Chavez, P.S.; Berlin, G.L.; Sowers, L.B. Statistical method for selecting Landsat MSS ratios. J. Appl. Photogr. Eng. 1982, 8, 23–30. [Google Scholar]
- Liang, L.; Li, X.; Huang, Y.; Qin, Y.; Huang, H. Integrating remote sensing, GIS and dynamic models for landscape-level simulation of forest insect disturbance. Ecol. Model. 2017, 354, 1–10. [Google Scholar] [CrossRef]
- Liu, G.; Jin, Q.; Li, J.; Li, L.; He, C.; Huang, Y.; Yao, Y. Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China. Catena 2017, 158, 286–297. [Google Scholar] [CrossRef]
- Zhao, R.; Ni, W.; Zhang, Z.; Dai, H.; Yang, C.; Li, Z.; Liang, Y.; Liu, Q.; Pang, Y.; Li, Z.; et al. Optimizing ground photons for canopy height extraction from ICESat-2 data in mountainous dense forests. Remote Sens. Environ. 2023, 299, 113851. [Google Scholar] [CrossRef]
- Zang, J.; Ni, W.; Zhang, Y. Spatially-explicit mapping annual oil palm heights in peninsular Malaysia combining ICESat-2 and stand age data. Remote Sens. Environ. 2023, 295, 113693. [Google Scholar] [CrossRef]
- Chen, C.; Wu, H.; Yang, Z.; Li, Y. Adaptive coarse-to-fine clustering and terrain feature-aware-based method for reducing LiDAR terrain point clouds. ISPRS J. Photogramm. Remote Sens. 2023, 200, 89–105. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Pitts, K. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221, 247–259. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.; Neuenschwander, A.; Zhou, T.; Srinivasan, S.; Harbeck, K. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sens. Environ. 2019, 224, 1–11. [Google Scholar] [CrossRef]
- Ni-Meister, W.; Jupp, D.L.B.; Dubayah, R. Modeling LiDAR Waveforms in Heterogeneous and Discrete Canopies. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1943–1958. [Google Scholar] [CrossRef]
- Tillack, A.; Clasen, A.; Kleinschmit, B.; Förster, M. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens. Environ. 2014, 141, 52–63. [Google Scholar] [CrossRef]
- Fan, J.; Xu, Y.; Ge, H.; Yang, W. Vegetation growth variation in relation to topography in Horqin Sandy Land. Ecol. Indic. 2020, 113, 106215. [Google Scholar] [CrossRef]
- Yi, Y.; Shi, M.; Yi, X.D.; Liu, J.L.; Shen, G.R.; Yang, N.; Hu, X.L. Dynamic Changes of Plantations and Natural Forests in the Middle Reaches of the Yangtze River and Their Relationship with Climatic Factors. Forests 2022, 13, 1224. [Google Scholar] [CrossRef]
- Purwanto Latifah, S.; Yonariza Akhsani, F.; Sofiana, E.I.; Ferdiansah, M.R. Land cover change assessment using random forest and CA markov from remote sensing images in the protected forest of South Malang, Indonesia. Remote Sens. Appl. Soc. Environ. 2023, 32, 101061. [Google Scholar] [CrossRef]
- Ćalasan, M.; Abdel Aleem, S.H.E.; Zobaa, A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 2020, 210, 112716. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, X.; Wei, J.; Lv, A. Surface flux equilibrium estimates of evaporative fraction and evapotranspiration at global scale: Accuracy evaluation and performance comparison. Agric. Water Manag. 2024, 291, 108609. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, D.; Zhang, G.; Wu, X.; Yang, Y.; Wang, Z. Using SPOT VEGETATION for analyzing dynamic changes and influencing factors on vegetation restoration in the Three-River Headwaters Region in the last 20 years (2000–2019), China. Ecol. Eng. 2022, 183, 106742. [Google Scholar] [CrossRef]
- Wu, S.; Yang, P.; Ren, J.; Chen, Z.; Liu, C.; Li, H. Winter wheat LAI inversion considering morphological characteristics at different growth stages coupled with microwave scattering model and canopy simulation model. Remote Sens. Environ. 2020, 240, 111681. [Google Scholar] [CrossRef]
- Yue, J.; Tian, Q.; Dong, X.; Xu, N. Using broadband crop residue angle index to estimate the fractional cover of vegetation, crop residue, and bare soil in cropland systems. Remote Sens. Environ. 2020, 237, 111538. [Google Scholar] [CrossRef]
- Wang, B.; Jia, K.; Wei, X.; Xia, M.; Yao, Y.; Zhang, X.; Liu, D.; Tao, G. Generating spatiotemporally consistent fractional vegetation cover at different scales using spatiotemporal fusion and multiresolution tree methods. ISPRS J. Photogramm. Remote Sens. 2020, 167, 214–229. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, X.; Wang, K.; Ciais, P.; Tang, S.; Jin, L.; Li, L.; Piao, S. Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agric. For. Meteorol. 2021, 298, 108307. [Google Scholar] [CrossRef]
- Hong, P.; Xiao, J.; Liu, H.; Niu, Z.; Ma, Y.; Wang, Q.; Zhang, D.; Ma, Y. An inversion model of microplastics abundance based on satellite remote sensing: A case study in the Bohai Sea. Sci. Total Environ. 2024, 909, 168537. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.; Xu, W.; Ding, X. Improved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation. ISPRS J. Photogramm. Remote Sens. 2020, 164, 106–124. [Google Scholar] [CrossRef]
- Bai, X.; Zhao, W.; Ji, S.; Qiao, R.; Dong, C.; Chang, X. Estimating fractional cover of non-photosynthetic vegetation for various grasslands based on CAI and DFI. Ecol. Indic. 2021, 131, 108252. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Vermeulen, L.M.; Munch, Z.; Palmer, A. Fractional vegetation cover estimation in southern African rangelands using spectral mixture analysis and Google Earth Engine. Comput. Electron. Agric. 2021, 182, 105980. [Google Scholar] [CrossRef]
Types | Samples of ICESat-2 | Number of Characteristic Variables |
---|---|---|
Wetland | 33 | 15 |
Cropland | 772 | 27 |
Shrubland | 1087 | 33 |
Grassland | 7724 | 41 |
Deciduous broadleaved forest | 1308 | 31 |
Others | 4971 | 40 |
Types | Visible Light | Near Infrared | Short Wave Infrared | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bands | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8A | B11 | B12 |
Standard deviation | 771.97 | 743.02 | 771.30 | 775.15 | 785.69 | 816.51 | 872.44 | 833.38 | 655.16 | 601.51 |
Mean value | 762.10 | 816.63 | 628.34 |
Fid | Composition | Optimal Factor Index | Fid | Composition | Optimal Factor Index |
---|---|---|---|---|---|
A | B2, B5, B6, B8A, B11 | 490.99 | B | B2, B5, B6, B8A, B12 | 501.02 |
C | B2, B5, B7, B8A, B11 | 497.12 | D | B2, B5, B7, B8A, B12 | 509.05 |
E | B2, B5, B8, B8A, B11 | 509.33 | F | B2, B5, B8, B8A, B12 | 522.50 |
G | B3, B5, B6, B8A, B11 | 476.50 | H | B3, B5, B6, B8A, B12 | 486.69 |
I | B3, B5, B7, B8A, B11 | 482.43 | J | B3, B5, B7, B8A, B12 | 494.43 |
K | B3, B5, B8, B8A, B11 | 494.22 | L | B3, B5, B8, B8A, B12 | 507.43 |
M | B4, B5, B6, B8A, B11 | 486.59 | N | B4, B5, B6, B8A, B12 | 495.14 |
O | B4, B5, B7, B8A, B11 | 492.65 | P | B4, B5, B7, B8A, B12 | 503.03 |
Q | B4, B5, B8, B8A, B11 | 504.71 | R | B4, B5, B8, B8A, B12 | 516.25 |
S | B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 | 220.23 |
Segmentation Coefficient | Number of Pixels | Accuracy (%) | ||
---|---|---|---|---|
Segmentation Scale | Shape Factor | Compactness | ||
59 | 0.1 | 0.5 | 2,241,826 | 72.6 |
82 | 0.1 | 0.5 | 1,192,036 | 87.67 |
114 | 0.1 | 0.5 | 633,804 | 70.78 |
147 | 0.1 | 0.5 | 385,285 | 50.68 |
Vegetation Coverage | Fitting Equation | R |
---|---|---|
0.5 | Y = 0.789x + 0.282 | 0.756 |
1.0 | Y = 0.831x + 0.232 | 0.762 |
1.5 | Y = 0.853x + 0.182 | 0.763 |
2.0 | Y = 0.854x + 0.141 | 0.748 |
2.5 | Y = 0.856x + 0.103 | 0.741 |
3.0 | Y = 0.847x + 0.076 | 0.731 |
3.5 | Y = 0.816x + 0.056 | 0.708 |
4.0 | Y = 0.795x + 0.036 | 0.692 |
4.5 | Y = 0.755x + 0.023 | 0.661 |
5.0 | Y = 0.727x + 0.010 | 0.637 |
Total | Y = 0.793x + 0.333 | 0.74 |
Methods | Types | Cropland | Grassland | Shrubland | Wetland | Broad-Leaved Forest | Others |
---|---|---|---|---|---|---|---|
DPM | R | 0.604 | 0.592 | 0.625 | 0.800 | 0.345 | 0.506 |
RMSE | 0.136 | 0.143 | 0.142 | 0.126 | 0.101 | 0.120 | |
SVM | R | 0.602 | 0.589 | 0.62 | 0.776 | 0.365 | 0.506 |
RMSE | 0.186 | 0.193 | 0.192 | 0.198 | 0.138 | 0.163 | |
RDF | R | 0.974 | 0.977 | 0.977 | 0.975 | 0.978 | 0.977 |
RMSE | 0.072 | 0.069 | 0.069 | 0.084 | 0.050 | 0.059 | |
DT | R | 0.702 | 0.602 | 0.615 | 0.801 | 0.450 | 0.601 |
RMSE | 0.102 | 0.123 | 0.185 | 0.156 | 0.118 | 0.152 | |
KNN | R | 0.856 | 0.896 | 0.901 | 0.852 | 0.862 | 0.895 |
RMSE | 0.095 | 0.085 | 0.091 | 0.101 | 0.078 | 0.084 |
Type | Samples | Types | Method | RMSE | Precision (e < 0.05) | Precision (e < 0.1) | Precision (e < 0.15) |
---|---|---|---|---|---|---|---|
Forestland | 866 | Pure broadleaved forest | RDF | 0.08 | 59% | 71% | 94% |
DT | 0.10 | 53% | 61% | 86% | |||
KNN | 0.09 | 51% | 67% | 81% | |||
DPM | 0.11 | 56% | 66% | 85% | |||
SVM | 0.11 | 48% | 56% | 79% | |||
120 | RDF | 0.11 | 59% | 64% | 83% | ||
DT | 0.12 | 42% | 51% | 69% | |||
KNN | 0.11 | 48% | 61% | 72% | |||
DPM | 0.15 | 40% | 53% | 71% | |||
SVM | 0.19 | 39% | 47% | 62% | |||
120 | Broadleaved relatively pure forest | RDF | 0.11 | 64% | 76% | 89% | |
DT | 0.10 | 52% | 63% | 85% | |||
KNN | 0.12 | 51% | 65% | 80% | |||
DPM | 0.13 | 50% | 64% | 81% | |||
SVM | 0.20 | 46% | 58% | 72% | |||
76 | Mixed broadleaved forest | RDF | 0.10 | 51% | 62% | 88% | |
DT | 0.12 | 49% | 59% | 71% | |||
KNN | 0.14 | 49% | 61% | 75% | |||
DPM | 0.14 | 46% | 49% | 63% | |||
SVM | 0.2 | 39% | 44% | 58% | |||
28 | Mixed coniferous broadleaved forest | RDF | 0.08 | 79% | 86% | 89% | |
DT | 0.09 | 68% | 59% | 71% | |||
KNN | 0.12 | 71% | 75% | 78% | |||
DPM | 0.10 | 61% | 64% | 86% | |||
SVM | 0.15 | 57% | 63% | 79% | |||
271 | Pure coniferous forest | RDF | 0.12 | 41% | 50% | 75% | |
DT | 0.13 | 49% | 58% | 71% | |||
KNN | 0.13 | 47% | 55% | 72% | |||
DPM | 0.15 | 43% | 49% | 66% | |||
SVM | 0.16 | 39% | 46% | 65% | |||
106 | Relatively coniferous forest | RDF | 0.13 | 56% | 64% | 77% | |
DT | 0.10 | 44% | 52% | 71% | |||
KNN | 0.13 | 48% | 58% | 73% | |||
DPM | 0.13 | 48% | 60% | 78% | |||
SVM | 0.14 | 46% | 59% | 75% | |||
52 | Coniferous mixed forest | RDF | 0.13 | 42% | 48% | 74% | |
DT | 0.12 | 46% | 53% | 72% | |||
KNN | 0.11 | 49% | 54% | 75% | |||
DPM | 0.14 | 65% | 77% | 81% | |||
SVM | 0.19 | 39% | 38% | 68% | |||
Shrubland and Grassland | 133 | RDF | 0.59 | 65% | 78% | 96% | |
DT | 0.22 | 59% | 76% | 91% | |||
KNN | 0.33 | 61% | 77% | 94% | |||
DPM | 0.70 | 62% | 74% | 99% | |||
SVM | 0.70 | 60% | 69% | 91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Y.; Shi, M.; Yang, J.; Zhu, J.; Li, J.; Zhou, L.; Xing, L.; Zhang, H. Research on Accurate Inversion Techniques for Forest Cover Using Spaceborne LiDAR and Multi-Spectral Data. Forests 2025, 16, 1215. https://doi.org/10.3390/f16081215
Yi Y, Shi M, Yang J, Zhu J, Li J, Zhou L, Xing L, Zhang H. Research on Accurate Inversion Techniques for Forest Cover Using Spaceborne LiDAR and Multi-Spectral Data. Forests. 2025; 16(8):1215. https://doi.org/10.3390/f16081215
Chicago/Turabian StyleYi, Yang, Mingchang Shi, Jin Yang, Jinqi Zhu, Jie Li, Lingyan Zhou, Luqi Xing, and Hanyue Zhang. 2025. "Research on Accurate Inversion Techniques for Forest Cover Using Spaceborne LiDAR and Multi-Spectral Data" Forests 16, no. 8: 1215. https://doi.org/10.3390/f16081215
APA StyleYi, Y., Shi, M., Yang, J., Zhu, J., Li, J., Zhou, L., Xing, L., & Zhang, H. (2025). Research on Accurate Inversion Techniques for Forest Cover Using Spaceborne LiDAR and Multi-Spectral Data. Forests, 16(8), 1215. https://doi.org/10.3390/f16081215