Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,098)

Search Parameters:
Keywords = forecast energy consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 331 KiB  
Article
Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model
by Bartosz Jóźwik, Siba Prasada Panda, Aruna Kumar Dash, Pritish Kumar Sahu and Robert Szwed
Energies 2025, 18(15), 4167; https://doi.org/10.3390/en18154167 - 6 Aug 2025
Abstract
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more [...] Read more.
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more than one-third of global emissions. Using annual data from 1990 to 2021, we implement Long Short-Term Memory (LSTM) neural networks, which outperform traditional linear models in capturing nonlinearities and lagged effects. The dataset is split into training (1990–2013) and testing (2014–2021) intervals to ensure rigorous out-of-sample validation. Results reveal stark national differences. For India, coal, natural gas consumption, and economic growth are the strongest positive drivers of emissions, whereas renewable energy exerts a significant mitigating effect, and nuclear energy is negligible. In China, emissions are dominated by coal and petroleum use and by economic growth, while renewable and nuclear sources show weak, inconsistent impacts. We recommend retrofitting India’s coal- and gas-plants with carbon capture and storage, doubling clean-tech subsidies, and tripling annual solar-plus-storage auctions to displace fossil baseload. For China, priorities include ultra-supercritical upgrades with carbon capture, utilisation, and storage, green-bond-financed solar–wind buildouts, grid-scale storage deployments, and hydrogen-electric freight corridors. These data-driven pathways simultaneously cut flagship emitters, decouple GDP from carbon, provide replicable models for global net-zero research, and advance climate-resilient economic growth worldwide. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
31 pages, 1803 KiB  
Article
A Hybrid Machine Learning Approach for High-Accuracy Energy Consumption Prediction Using Indoor Environmental Quality Sensors
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Baglan Imanbek, Waldemar Wójcik and Yedil Nurakhov
Energies 2025, 18(15), 4164; https://doi.org/10.3390/en18154164 - 6 Aug 2025
Abstract
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance [...] Read more.
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance of hybrid machine learning ensembles for predicting hourly energy demand in a smart office environment using high-frequency IEQ sensor data. Environmental variables including carbon dioxide concentration (CO2), particulate matter (PM2.5), total volatile organic compounds (TVOCs), noise levels, humidity, and temperature were recorded over a four-month period. We evaluated two ensemble configurations combining support vector regression (SVR) with either Random Forest or LightGBM as base learners and Ridge regression as a meta-learner, alongside single-model baselines such as SVR and artificial neural networks (ANN). The SVR combined with Random Forest and Ridge regression demonstrated the highest predictive performance, achieving a mean absolute error (MAE) of 1.20, a mean absolute percentage error (MAPE) of 8.92%, and a coefficient of determination (R2) of 0.82. Feature importance analysis using SHAP values, together with non-parametric statistical testing, identified TVOCs, humidity, and PM2.5 as the most influential predictors of energy use. These findings highlight the value of integrating high-resolution IEQ data into predictive frameworks and demonstrate that such data can significantly improve forecasting accuracy. This effect is attributed to the direct link between these IEQ variables and the activation of energy-intensive systems; fluctuations in humidity drive HVAC energy use for dehumidification, while elevated pollutant levels (TVOCs, PM2.5) trigger increased ventilation to maintain indoor air quality, thus raising the total energy load. Full article
Show Figures

Figure 1

18 pages, 2108 KiB  
Article
Machine Learning Forecasting of Commercial Buildings’ Energy Consumption Using Euclidian Distance Matrices
by Connor Scott and Alhussein Albarbar
Energies 2025, 18(15), 4160; https://doi.org/10.3390/en18154160 - 5 Aug 2025
Abstract
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods [...] Read more.
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods typically rely on extensive historical data collected via costly sensor installations—resources that many buildings lack. This study introduces a novel forecasting approach that eliminates the need for large-scale historical datasets or expensive sensors. By integrating custom-built models with existing energy data, the method applies calculated weighting through a distance matrix and accuracy coefficients to generate reliable forecasts. It uses readily available building attributes—such as floor area and functional type to position a new building within the matrix of existing data. A Euclidian distance matrix, akin to a K-nearest neighbour algorithm, determines the appropriate neural network(s) to utilise. These findings are benchmarked against a consolidated, more sophisticated neural network and a long short-term memory neural network. The dataset has hourly granularity over a 24 h horizon. The model consists of five bespoke neural networks, demonstrating the superiority of other models with a 610 s training duration, uses 500 kB of storage, achieves an R2 of 0.9, and attains an average forecasting accuracy of 85.12% in predicting the energy consumption of the five buildings studied. This approach not only contributes to the specific goal of a fully decarbonized energy grid by 2050 but also establishes a robust and efficient methodology for maintaining standards with existing benchmarks while providing more control over the method. Full article
Show Figures

Figure 1

21 pages, 1141 KiB  
Article
Monthly Load Forecasting in a Region Experiencing Demand Growth: A Case Study of Texas
by Jeong-Hee Hong and Geun-Cheol Lee
Energies 2025, 18(15), 4135; https://doi.org/10.3390/en18154135 - 4 Aug 2025
Abstract
In this study, we consider monthly load forecasting, which is an essential decision for energy infrastructure planning and investment. This study focuses on the Texas power grid, where electricity consumption has surged due to rising industrial activity and the increased construction of data [...] Read more.
In this study, we consider monthly load forecasting, which is an essential decision for energy infrastructure planning and investment. This study focuses on the Texas power grid, where electricity consumption has surged due to rising industrial activity and the increased construction of data centers driven by growing demand for AI. Based on an extensive exploratory data analysis, we identify key characteristics of monthly electricity demand in Texas, including an accelerating upward trend, strong seasonality, and temperature sensitivity. In response, we propose a regression-based forecasting model that incorporates a carefully designed set of input features, including a nonlinear trend, lagged demand variables, a seasonality-adjusted month variable, average temperature of a representative area, and calendar-based proxies for industrial activity. We adopt a rolling forecasting approach, generating 12-month-ahead forecasts for both 2023 and 2024 using monthly data from 2013 onward. Comparative experiments against benchmarks including Holt–Winters, SARIMA, Prophet, RNN, LSTM, Transformer, Random Forest, LightGBM, and XGBoost show that the proposed model achieves superior performance with a mean absolute percentage error of approximately 2%. The results indicate that a well-designed regression approach can effectively outperform even the latest machine learning methods in monthly load forecasting. Full article
Show Figures

Figure 1

16 pages, 832 KiB  
Article
Development and Evaluation of Neural Network Architectures for Model Predictive Control of Building Thermal Systems
by Jevgenijs Telicko, Andris Krumins and Agris Nikitenko
Buildings 2025, 15(15), 2702; https://doi.org/10.3390/buildings15152702 - 31 Jul 2025
Viewed by 148
Abstract
The operational and indoor environmental quality of buildings has a significant impact on global energy consumption and human quality of life. One of the key directions for improving building performance is the optimization of building control systems. In modern buildings, the presence of [...] Read more.
The operational and indoor environmental quality of buildings has a significant impact on global energy consumption and human quality of life. One of the key directions for improving building performance is the optimization of building control systems. In modern buildings, the presence of numerous actuators and monitoring points makes manually designed control algorithms potentially suboptimal due to the complexity and human factors. To address this challenge, model predictive control based on artificial neural networks can be employed. The advantage of this approach lies in the model’s ability to learn and understand the dynamic behavior of the building from monitoring datasets. It should be noted that the effectiveness of such control models is directly dependent on the forecasting accuracy of the neural networks. In this study, we adapt neural network architectures such as GRU and TCN for use in the context of building model predictive control. Furthermore, we propose a novel hybrid architecture that combines the strengths of recurrent and convolutional neural networks. These architectures were compared using real monitoring data collected with a custom-developed device introduced in this work. The results indicate that, under the given experimental conditions, the proposed hybrid architecture outperforms both GRU and TCN models, particularly when processing large sequential input vectors. Full article
Show Figures

Figure 1

20 pages, 3940 KiB  
Article
24 Hours Ahead Forecasting of the Power Consumption in an Industrial Pig Farm Using Deep Learning
by Boris Evstatiev, Nikolay Valov, Katerina Gabrovska-Evstatieva, Irena Valova, Tsvetelina Kaneva and Nicolay Mihailov
Energies 2025, 18(15), 4055; https://doi.org/10.3390/en18154055 - 31 Jul 2025
Viewed by 252
Abstract
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as [...] Read more.
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as pig farms. To achieve this, 24 individual models are trained using artificial neural networks that forecast the energy production 1 to 24 h ahead. The selected features include power consumption over the last 72 h, time-based data, average, minimum, and maximum daily temperatures, relative humidities, and wind speeds. The models’ Normalized mean absolute error (NMAE), Normalized root mean square error (NRMSE), and Mean absolute percentage error (MAPE) vary between 16.59% and 19.00%, 22.19% and 24.73%, and 9.49% and 11.49%, respectively. Furthermore, the case studies showed that in most situations, the forecasting error does not exceed 10% with several cases up to 25%. The proposed methodology can be useful for energy managers of animal farm facilities, and help them provide a better prognosis of their energy consumption for the Energy Market. The proposed methodology could be improved by selecting additional features, such as the variation of the controlled meteorological parameters over the last couple of days and the schedule of technological processes. Full article
(This article belongs to the Special Issue Application of AI in Energy Savings and CO2 Reduction)
Show Figures

Figure 1

27 pages, 881 KiB  
Article
Review of Methods and Models for Forecasting Electricity Consumption
by Kamil Misiurek, Tadeusz Olkuski and Janusz Zyśk
Energies 2025, 18(15), 4032; https://doi.org/10.3390/en18154032 - 29 Jul 2025
Viewed by 236
Abstract
This article presents a comprehensive review of methods used for forecasting electricity consumption. The studies analyzed by the authors encompass both classical statistical models and modern approaches based on artificial intelligence, including machine-learning and deep-learning techniques. Electricity load forecasting is categorized into four [...] Read more.
This article presents a comprehensive review of methods used for forecasting electricity consumption. The studies analyzed by the authors encompass both classical statistical models and modern approaches based on artificial intelligence, including machine-learning and deep-learning techniques. Electricity load forecasting is categorized into four time horizons: very short term, short term, medium term, and long term. The authors conducted a comparative analysis of various models, such as autoregressive models, neural networks, fuzzy logic systems, hybrid models, and evolutionary algorithms. Particular attention was paid to the effectiveness of these methods in the context of variable input data, such as weather conditions, seasonal fluctuations, and changes in energy consumption patterns. The article emphasizes the growing importance of accurate forecasts in the context of the energy transition, integration of renewable energy sources, and the management of the evolving electricity system, shaped by decentralization, renewable integration, and data-intensive forecasting demands. In conclusion, the authors highlight the lack of a universal forecasting approach and the need for further research on hybrid models that combine interpretability with high predictive accuracy. This review can serve as a valuable resource for decision-makers, grid operators, and researchers involved in energy system planning. Full article
(This article belongs to the Special Issue Electricity Market Modeling Trends in Power Systems: 2nd Edition)
Show Figures

Figure 1

20 pages, 1346 KiB  
Article
Integrated Smart Farm System Using RNN-Based Supply Scheduling and UAV Path Planning
by Dongwoo You, Yukai Chen and Donkyu Baek
Drones 2025, 9(8), 531; https://doi.org/10.3390/drones9080531 - 28 Jul 2025
Viewed by 344
Abstract
Smart farming has emerged as a promising solution to address challenges such as climate change, population growth, and limited agricultural infrastructure. To enhance the operational efficiency of smart farms, this paper proposes an integrated system that combines Recurrent Neural Networks (RNNs) and Unmanned [...] Read more.
Smart farming has emerged as a promising solution to address challenges such as climate change, population growth, and limited agricultural infrastructure. To enhance the operational efficiency of smart farms, this paper proposes an integrated system that combines Recurrent Neural Networks (RNNs) and Unmanned Aerial Vehicles (UAVs). The proposed framework forecasts future resource shortages using an RNN model and recent environmental data collected from the field. Based on these forecasts, the system schedules a resource supply plan and determines the UAV path by considering both dynamic energy consumption and priority levels, aiming to maximize the efficiency of the resource supply. Experimental results show that the proposed integrated smart farm framework achieves an average reduction of 81.08% in the supply miss rate. This paper demonstrates the potential of an integrated AI- and UAV-based smart farm management system in achieving both environmental responsiveness and operational optimization. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

54 pages, 5068 KiB  
Review
Application of Machine Learning Models in Optimizing Wastewater Treatment Processes: A Review
by Florin-Stefan Zamfir, Madalina Carbureanu and Sanda Florentina Mihalache
Appl. Sci. 2025, 15(15), 8360; https://doi.org/10.3390/app15158360 - 27 Jul 2025
Viewed by 658
Abstract
The treatment processes from a wastewater treatment plant (WWTP) are known for their complexity and highly nonlinear behavior, which makes them challenging to analyze, model, and especially, to control. This research studies how machine learning (ML) with a focus on deep learning (DL) [...] Read more.
The treatment processes from a wastewater treatment plant (WWTP) are known for their complexity and highly nonlinear behavior, which makes them challenging to analyze, model, and especially, to control. This research studies how machine learning (ML) with a focus on deep learning (DL) techniques can be applied to optimize the treatment processes of WWTPs, highlighting those case studies that propose ML and DL methods that directly address this issue. This research aims to study the ML and DL systematic applications in optimizing the wastewater treatment processes from an industrial plant, such as the modeling of complex physical–chemical processes, real-time monitoring and prediction of critical wastewater quality indicators, chemical reactants consumption reduction, minimization of plant energy consumption, plant effluent quality prediction, development of data-driven type models as support in the decision-making process, etc. To perform a detailed analysis, 87 articles were included from an initial set of 324, using criteria such as wastewater combined with ML, DL, and artificial intelligence (AI), for articles from 2010 or newer. From the initial set of 324 scientific articles, 300 were identified using Litmaps, obtained from five important scientific databases, all focusing on addressing the specific problem proposed for investigation. Thus, this paper identifies gaps in the current research, discusses ML and DL algorithms in the context of optimizing wastewater treatment processes, and identifies future directions for optimizing these processes through data-driven methods. As opposed to traditional models, IA models (ML, DL, hybrid and ensemble models, digital twin, IoT, etc.) demonstrated significant advantages in wastewater quality indicator prediction and forecasting, in energy consumption forecasting, in temporal pattern recognition, and in optimal interpretability for normative compliance. Integrating advanced ML and DL technologies into the various processes involved in wastewater treatment improves the plant systems’ predictive capabilities and ensures a higher level of compliance with environmental standards. Full article
Show Figures

Figure 1

16 pages, 1145 KiB  
Article
A Hybrid Transformer–Mamba Model for Multivariate Metro Energy Consumption Forecasting
by Liheng Long, Zhiyao Chen, Junqian Wu, Qing Fu, Zirui Zhang, Fan Feng and Ronghui Zhang
Electronics 2025, 14(15), 2986; https://doi.org/10.3390/electronics14152986 - 26 Jul 2025
Viewed by 346
Abstract
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, [...] Read more.
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, nonlinear, and time-varying nature of metro energy data. To address these challenges, this paper proposes MTMM, a novel hybrid model that integrates the multi-head attention mechanism of the Transformer with the efficient, state-space-based Mamba architecture. The Transformer effectively captures long-range temporal dependencies, while Mamba enhances inference speed and reduces complexity. Additionally, the model incorporates multivariate energy features, leveraging the correlations among different energy consumption types to improve predictive performance. Experimental results on real-world data from the Guangzhou Metro demonstrate that MTMM significantly outperforms existing methods in terms of both MAE and MSE. The model also shows strong generalization ability across different prediction lengths and time step configurations, offering a promising solution for intelligent energy management in metro systems. Full article
(This article belongs to the Special Issue AI Applications for Smart Grid)
Show Figures

Figure 1

10 pages, 6510 KiB  
Proceeding Paper
Energy Consumption Forecasting for Renewable Energy Communities: A Case Study of Loureiro, Portugal
by Muhammad Akram, Chiara Martone, Ilenia Perugini and Emmanuele Maria Petruzziello
Eng. Proc. 2025, 101(1), 7; https://doi.org/10.3390/engproc2025101007 - 25 Jul 2025
Viewed by 725
Abstract
Intensive energy consumption in the building sector remains one of the primary contributors to climate change and global warming. Within Renewable Energy Communities (RECs), improving energy management is essential for promoting sustainability and reducing environmental impact. Accurate forecasting of energy consumption at the [...] Read more.
Intensive energy consumption in the building sector remains one of the primary contributors to climate change and global warming. Within Renewable Energy Communities (RECs), improving energy management is essential for promoting sustainability and reducing environmental impact. Accurate forecasting of energy consumption at the community level is a key tool in this effort. Traditionally, engineering-based methods grounded in thermodynamic principles have been employed, offering high accuracy under controlled conditions. However, their reliance on exhaustive building-level data and high computational costs limits their scalability in dynamic REC settings. In contrast, Artificial Intelligence (AI)-driven methods provide flexible and scalable alternatives by learning patterns from historical consumption and environmental data. This study investigates three Machine Learning (ML) models, Decision Tree (DT), Random Forest (RF), and CatBoost, and one Deep Learning (DL) model, Convolutional Neural Network (CNN), to forecast community electricity consumption using real smart meter data and local meteorological variables. The study focuses on a REC in Loureiro, Portugal, consisting of 172 residential users from whom 16 months of 15 min interval electricity consumption data were collected. Temporal features (hour of the day, day of the week, month) were combined with lag-based usage patterns, including features representing energy consumption at the corresponding time in the previous hour and on the previous day, to enhance model accuracy by leveraging short-term dependencies and daily repetition in usage behavior. Models were evaluated using Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and the Coefficient of Determination R2. Among all models, CatBoost achieved the best performance, with an MSE of 0.1262, MAPE of 4.77%, and an R2 of 0.9018. These results highlight the potential of ensemble learning approaches for improving energy demand forecasting in RECs, supporting smarter energy management and contributing to energy and environmental performance. Full article
Show Figures

Figure 1

17 pages, 706 KiB  
Article
Empirical Energy Consumption Estimation and Battery Operation Analysis from Long-Term Monitoring of an Urban Electric Bus Fleet
by Tom Klaproth, Erik Berendes, Thomas Lehmann, Richard Kratzing and Martin Ufert
World Electr. Veh. J. 2025, 16(8), 419; https://doi.org/10.3390/wevj16080419 - 25 Jul 2025
Viewed by 355
Abstract
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational [...] Read more.
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational data, how energy consumption and charging behavior affect battery aging and how operational strategies can be optimized to extend battery life under realistic conditions. This article presents an energy consumption analysis with respect to ambient temperatures and average vehicle speed based exclusively on real-world data of an urban bus fleet, providing a data foundation for range forecasting and infrastructure planning optimized for public transport needs. Additionally, the State of Charge (SOC) window during operation and vehicle idle time as well as the charging power were analyzed in this case study to formulate recommendations towards a more battery-friendly treatment. The central research question is whether battery-friendly operational strategies—such as reduced charging power and lower SOC windows—can realistically be implemented in daily public transport operations. The impact of the recommendations on battery lifetime is estimated using a battery aging model on drive cycles. Finally, the reduction in CO2 emissions compared to diesel buses is estimated. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

19 pages, 3498 KiB  
Article
Timestamp-Guided Knowledge Distillation for Robust Sensor-Based Time-Series Forecasting
by Jiahe Yan, Honghui Li, Yanhui Bai, Jie Liu, Hairui Lv and Yang Bai
Sensors 2025, 25(15), 4590; https://doi.org/10.3390/s25154590 - 24 Jul 2025
Viewed by 303
Abstract
Accurate time-series forecasting plays a vital role in sensor-driven applications such as energy monitoring, traffic flow prediction, and environmental sensing. While most existing approaches focus on extracting local patterns from historical observations, they often overlook the global temporal information embedded in timestamps. However, [...] Read more.
Accurate time-series forecasting plays a vital role in sensor-driven applications such as energy monitoring, traffic flow prediction, and environmental sensing. While most existing approaches focus on extracting local patterns from historical observations, they often overlook the global temporal information embedded in timestamps. However, this information represents a valuable yet underutilized aspect of sensor-based data that can significantly enhance forecasting performance. In this paper, we propose a novel timestamp-guided knowledge distillation framework (TKDF), which integrates both historical and timestamp information through mutual learning between heterogeneous prediction branches to improve forecasting robustness. The framework comprises two complementary branches: a Backbone Model that captures local dependencies from historical sequences, and a Timestamp Mapper that learns global temporal patterns encoded in timestamp features. To enhance information transfer and reduce representational redundancy, a self-distillation mechanism is introduced within the Timestamp Mapper. Extensive experiments on multiple real-world sensor datasets—covering electricity consumption, traffic flow, and meteorological measurements—demonstrate that the TKDF consistently improves the performance of mainstream forecasting models. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

24 pages, 3365 KiB  
Article
Energy Demand Forecasting Scenarios for Buildings Using Six AI Models
by Khaled M. Salem, Francisco J. Rey-Martínez, A. O. Elgharib and Javier M. Rey-Hernández
Appl. Sci. 2025, 15(15), 8238; https://doi.org/10.3390/app15158238 - 24 Jul 2025
Viewed by 287
Abstract
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural [...] Read more.
Understanding and forecasting energy consumption patterns is crucial for improving energy efficiency and human well-being, especially in diverse infrastructures like Spain. This research addresses a significant gap in energy demand forecasting across three building types by comparing six machine learning algorithms: Artificial Neural Networks, Random Forest, XGBoost, Radial Basis Function Network, Autoencoder, and Decision Trees. The primary aim is to identify the most effective model for predicting energy consumption based on historical data, contributing to the relationship between energy systems and urban well-being. The study emphasizes challenges in energy use and advocates for sustainable management practices. By forecasting energy demand over the next three years using linear regression, it provides actionable insights for energy providers, enhancing resilience in urban environments impacted by climate change. The findings deepen our understanding of energy dynamics across various building types and promote a sustainable energy future. Stakeholders will receive targeted recommendations for aligning energy production with consumption trends while meeting environmental responsibilities. Model performance is rigorously evaluated using metrics like Squared Mean Root Percentage Error (RMSPE) and Coefficient of Determination (R2), ensuring robust analysis. Training times for models in the LUCIA building ranged from 2 to 19 s, with the Decision Tree model showing the shortest times, highlighting the need to balance computational efficiency with model performance. Full article
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 207
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

Back to TopTop