Energy Consumption Forecasting for Renewable Energy Communities: A Case Study of Loureiro, Portugal †
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Preprocessing
2.3. Exploratory Data Analysis and Feature Selection
2.4. Model Development
2.5. Evaluation Metrics
3. Results and Discussion
3.1. Experimental Design and Feature Configuration
3.2. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms and | |
Abbreviations | |
AI | Artificial Intelligence |
CNN | Convolutional Neural Network |
DL | Deep Learning |
DT | Decision Tree |
EMS | Energy Management System |
ML | Machine Learning |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
MSE | Mean Squared Error |
REC | Renewable Energy Community |
RF | Random Forest |
Coefficient of Determination | |
ReLU | Rectified Linear Unit |
Conv1D | One-Dimensional Convolutional Layer |
Mathematical Symbols | |
and Variables | |
Electrical energy consumption of the Renewable Energy Community | |
Actual energy consumption at time step k | |
Predicted energy consumption at time step k | |
Mean of actual energy values | |
n | Total number of observations (samples) |
References
- United Nations Environment Programme. Executive Summary 2022 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector. 2022. Available online: https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction (accessed on 16 July 2025).
- Mardani, A.; Liao, H.; Nilashi, M.; Alrasheedi, M.; Cavallaro, F. A multi-stage method to predict carbon dioxide emissions using dimensionality reduction, clustering, and machine learning techniques. J. Clean. Prod. 2020, 275, 122942. [Google Scholar] [CrossRef]
- Ceglia, F.; Esposito, P.; Faraudello, A.; Marrasso, E.; Rossi, P.; Sasso, M. An energy, environmental, management and economic analysis of energy efficient system towards renewable energy community. J. Clean. Prod. 2022, 369, 133269. [Google Scholar] [CrossRef]
- Monteiro, F.; Oliveira, R.; Almeida, J.; Gonçalves, P.; Bartolomeu, P.; Neto, J.; Deus, R. Electricity consumption dataset of a local energy cooperative. Data Brief 2024, 54, 110373. [Google Scholar] [CrossRef] [PubMed]
- Tien, P.W.; Wei, S.; Darkwa, J.; Wood, C.; Calautit, J.K. Machine learning and deep learning methods for enhancing building energy efficiency and indoor environmental quality—A review. Energy AI 2022, 10, 100198. [Google Scholar] [CrossRef]
- Safari, A.; Daneshvar, M.; Anvari-Moghaddam, A. Energy intelligence: A systematic review of artificial intelligence for energy management. Appl. Sci. 2024, 14, 11112. [Google Scholar] [CrossRef]
- Wang, R.; Yun, H.; Rayhana, R.; Bin, J.; Zhang, C.; Herrera, O.E.; Liu, Z.; Mérida, W. An adaptive federated learning system for community building energy load forecasting and anomaly prediction. Energy Build. 2023, 295, 113215. [Google Scholar] [CrossRef]
- Goudarzi, S.; Anisi, M.H.; Soleymani, S.A.; Ayob, M.; Zeadally, S. An IoT-based prediction technique for efficient energy consumption in buildings. IEEE Trans. Green Commun. Netw. 2021, 5, 2076–2088. [Google Scholar] [CrossRef]
- Eren, Y.; Küçükdemiral, İ. A comprehensive review on deep learning approaches for short-term load forecasting. Renew. Sustain. Energy Rev. 2024, 189, 114031. [Google Scholar] [CrossRef]
- Akter, R.; Shirkoohi, M.G.; Wang, J.; Mérida, W. An efficient hybrid deep neural network model for multi-horizon forecasting of power loads in academic buildings. Energy Build. 2025, 329, 115217. [Google Scholar] [CrossRef]
- Esposito, P.; Marrasso, E.; Martone, C.; Pallotta, G.; Roselli, C.; Sasso, M.; Tufo, M. A roadmap for the implementation of a renewable energy community. Heliyon 2024, 10, e28269. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.D.; Lewis, R.J. Missing data: How to best account for what is not known. JAMA 2015, 314, 940–941. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Zhao, H.X.; Magoulès, F. Feature Selection for Predicting Building Energy Consumption Based on Statistical Learning Method. J. Algorithms Comput. Technol. 2012, 6, 59–77. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Mallala, B.; Khan, P.A.; Pattepu, B.; Eega, P.R. Integrated energy management and load forecasting using machine learning. In Proceedings of the 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India, 10–12 July 2024; pp. 1004–1009. [Google Scholar] [CrossRef]
- Zhu, J.; Dong, H.; Zheng, W.; Li, S.; Huang, Y.; Xi, L. Review and prospect of data-driven techniques for load forecasting in integrated energy systems. Appl. Energy 2022, 321, 119269. [Google Scholar] [CrossRef]
- Xiang, W.; Xu, P.; Fang, J.; Zhao, Q.; Gu, Z.; Zhang, Q. Multi-dimensional data-based medium- and long-term power-load forecasting using double-layer CatBoost. Energy Rep. 2022, 8, 8511–8522. [Google Scholar] [CrossRef]
- Zhang, L.; Jánošík, D. Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches. Expert Syst. Appl. 2024, 241, 122686. [Google Scholar] [CrossRef]
Model | Baseline | Extended | ||||
---|---|---|---|---|---|---|
MSE | MAPE | MSE | MAPE | |||
CNN | 0.2711 | 7.00% | 0.7818 | 0.1692 | 5.68% | 0.8683 |
DT | 0.2679 | 6.71% | 0.7843 | 0.1580 | 5.22% | 0.8770 |
RF | 0.2332 | 6.33% | 0.8123 | 0.1362 | 4.93% | 0.8940 |
CatBoost | 0.2270 | 6.29% | 0.8173 | 0.1262 | 4.77% | 0.9018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, M.; Martone, C.; Perugini, I.; Petruzziello, E.M. Energy Consumption Forecasting for Renewable Energy Communities: A Case Study of Loureiro, Portugal. Eng. Proc. 2025, 101, 7. https://doi.org/10.3390/engproc2025101007
Akram M, Martone C, Perugini I, Petruzziello EM. Energy Consumption Forecasting for Renewable Energy Communities: A Case Study of Loureiro, Portugal. Engineering Proceedings. 2025; 101(1):7. https://doi.org/10.3390/engproc2025101007
Chicago/Turabian StyleAkram, Muhammad, Chiara Martone, Ilenia Perugini, and Emmanuele Maria Petruzziello. 2025. "Energy Consumption Forecasting for Renewable Energy Communities: A Case Study of Loureiro, Portugal" Engineering Proceedings 101, no. 1: 7. https://doi.org/10.3390/engproc2025101007
APA StyleAkram, M., Martone, C., Perugini, I., & Petruzziello, E. M. (2025). Energy Consumption Forecasting for Renewable Energy Communities: A Case Study of Loureiro, Portugal. Engineering Proceedings, 101(1), 7. https://doi.org/10.3390/engproc2025101007