Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = foodstuff labelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2345 KiB  
Article
Ultrasensitive Ochratoxin A Detection in Cereal Products Using a Fluorescent Aptasensor Based on RecJf Exonuclease-Assisted Target Recycling
by Yanxuan Li, Furong Shao, Jin Wu, Mingzhu Liu, Gaofang Cao, Zunquan Zhao, Jialei Bai and Zhixian Gao
Foods 2024, 13(4), 595; https://doi.org/10.3390/foods13040595 - 16 Feb 2024
Cited by 1 | Viewed by 1602
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in foodstuffs such as cereal grains. It greatly threatens human health owing to its strong toxicity and high stability. Aptasensors have emerged as promising tools for the analysis of small molecule contaminants. Nucleic-acid-based signal amplification [...] Read more.
Ochratoxin A (OTA) is a mycotoxin widely found in foodstuffs such as cereal grains. It greatly threatens human health owing to its strong toxicity and high stability. Aptasensors have emerged as promising tools for the analysis of small molecule contaminants. Nucleic-acid-based signal amplification enables detectable signals to be obtained from aptasensors. However, this strategy often requires the use of complex primers or multiple enzymes, entailing problems such as complex system instability. Herein, we propose a fluorescent aptasensor for the ultrasensitive detection of OTA in cereal products, with signal amplification through RecJf exonuclease-assisted target recycling. The aptamer/fluorescein-labeled complementary DNA (cDNA-FAM) duplex was effectively used as the target-recognition unit as well as the potential substrate for RecJf exonuclease cleavage. When the target invaded the aptamer-cDNA-FAM duplex to release cDNA-FAM, RecJf exonuclease could cleave the aptamer bonded with the target and release the target. Thus, the target-triggered cleavage cycling would continuously generate cDNA-FAM as a signaling group, specifically amplifying the response signal. The proposed exonuclease-assisted fluorescent aptasensor exhibited a good linear relationship with OTA concentration in the range from 1 pg/mL to 10 ng/mL with an ultralow limit of detection (6.2 ng/kg of cereal). The analytical method showed that recoveries of the cereal samples ranged from 83.7 to 109.3% with a repeatability relative standard deviation below 8%. Importantly, the proposed strategy is expected to become a common detection model because it can be adapted for other targets by replacing the aptamer. Thus, this model can guide the development of facile approaches for point-of-care testing applications. Full article
Show Figures

Figure 1

18 pages, 2488 KiB  
Article
Sensitive Immunochromatographic Determination of Salmonella typhimurium in Food Products Using Au@Pt Nanozyme
by Olga D. Hendrickson, Nadezhda A. Byzova, Irina V. Safenkova, Vasily G. Panferov, Boris B. Dzantiev and Anatoly V. Zherdev
Nanomaterials 2023, 13(23), 3074; https://doi.org/10.3390/nano13233074 - 4 Dec 2023
Cited by 10 | Viewed by 4785
Abstract
In this study, we developed a sensitive immunochromatographic analysis (ICA) of the Salmonella typhimurium bacterial pathogen contaminating food products and causing foodborne illness. The ICA of S. typhimurium was performed using Au@Pt nanozyme as a label ensuring both colorimetric detection and catalytic amplification [...] Read more.
In this study, we developed a sensitive immunochromatographic analysis (ICA) of the Salmonella typhimurium bacterial pathogen contaminating food products and causing foodborne illness. The ICA of S. typhimurium was performed using Au@Pt nanozyme as a label ensuring both colorimetric detection and catalytic amplification of the analytical signal due to nanozyme peroxidase-mimic properties. The enhanced ICA enabled the detection of S. typhimurium cells with the visual limit of detection (LOD) of 2 × 102 CFU/mL, which outperformed the LOD in the ICA with traditional gold nanoparticles by two orders of magnitude. The assay duration was 15 min. The specificity of the developed assay was tested using cells from various Salmonella species as well as other foodborne pathogens; it was shown that the test system detected only S. typhimurium. The applicability of ICA for the determination of Salmonella in food was confirmed in several samples of milk with different fat content, as well as chicken meat. For these real samples, simple pretreatment procedures were proposed. Recoveries of Salmonella in foodstuffs were from 74.8 to 94.5%. Due to rapidity and sensitivity, the proposed test system is a promising tool for the point-of-care control of the Salmonella contamination of different food products on the whole farm-to-table chain. Full article
Show Figures

Figure 1

15 pages, 2788 KiB  
Article
Low Gluten Beers Contain Variable Gluten and Immunogenic Epitope Content
by Mitchell G. Nye-Wood, Keren Byrne, Sally Stockwell, Angéla Juhász, Utpal Bose and Michelle L. Colgrave
Foods 2023, 12(17), 3252; https://doi.org/10.3390/foods12173252 - 29 Aug 2023
Cited by 2 | Viewed by 6655
Abstract
Gluten content labels inform food choice and people practicing a gluten-free diet rely upon them to avoid illness. The regulations differ between jurisdictions, especially concerning fermented foodstuffs such as beer. Gluten abundance is typically measured using ELISAs, which have come into question when [...] Read more.
Gluten content labels inform food choice and people practicing a gluten-free diet rely upon them to avoid illness. The regulations differ between jurisdictions, especially concerning fermented foodstuffs such as beer. Gluten abundance is typically measured using ELISAs, which have come into question when testing fermented or hydrolysed foodstuffs such as beer. Mass spectrometry can be used to directly identify gluten peptides and reveal false negatives recorded by ELISA. In this survey of gluten in control and gluten-free beers, gluten protein fragments that contain known immunogenic epitopes were detected using liquid chromatography-mass spectrometry in multiple beers that claim to be gluten-free and have sufficiently low gluten content, as measured by ELISA, to qualify as being gluten-free in some jurisdictions. In fact, several purportedly gluten-free beers showed equivalent or higher hordein content than some of the untreated, control beers. The shortcomings of ELISAs for beer gluten testing are summarised, the mismatch between ELISA and mass spectrometry results are explored, and the suitability of existing regulations as they pertain to the gluten content in fermented foods in different jurisdictions are discussed. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Graphical abstract

27 pages, 1868 KiB  
Review
Initiatives to Reduce the Content of Sodium in Food Products and Meals and Improve the Population’s Health
by Karolina Jachimowicz-Rogowska and Anna Winiarska-Mieczan
Nutrients 2023, 15(10), 2393; https://doi.org/10.3390/nu15102393 - 19 May 2023
Cited by 24 | Viewed by 10474
Abstract
Table salt is the main source of sodium (Na) in the human diet. Excessive supply of Na in a diet is strongly linked to many non-communicable human diseases, such as hypertension, obesity and stomach cancer. The World Health Organization recommends that daily intake [...] Read more.
Table salt is the main source of sodium (Na) in the human diet. Excessive supply of Na in a diet is strongly linked to many non-communicable human diseases, such as hypertension, obesity and stomach cancer. The World Health Organization recommends that daily intake of salt in adult diets should be kept below 5 g/person/day, which corresponds to 2 g Na/person/day. However, on average, adults consume about 9–10 g/person/day, and children and young people about 7–8 g/person/day. Initiatives to reduce salt intake include modifications of food composition in collaboration with the food industry, education of consumers, salt marking on foodstuff labels and taxation of salt. A need also exists to educate society so that they choose low-sodium products. In view of the food technology and amount of salt intake, the most important and the easiest change to make is to reduce the content of salt in baked goods. This paper analyses the results of surveys regarding strategies to reduce salt content in food products and considers multifaceted initiatives to reduce salt intake as a possible efficient method of improving the population’s health status. Full article
(This article belongs to the Special Issue Reducing Dietary Sodium and Improving Human Health 2.0)
Show Figures

Figure 1

14 pages, 4203 KiB  
Article
A Dual-Signaling Electrochemical Aptasensor Based on an In-Plane Gold Nanoparticles–Black Phosphorus Heterostructure for the Sensitive Detection of Patulin
by Jinqiong Xu, Jianbo Liu, Wuwu Li, Yongsheng Wei, Qinglin Sheng and Yonghui Shang
Foods 2023, 12(4), 846; https://doi.org/10.3390/foods12040846 - 16 Feb 2023
Cited by 13 | Viewed by 2538
Abstract
Patulin (PAT), a type of mycotoxin existing in foodstuffs, is harmful to food safety and human health. Thus, it is necessary to develop sensitive, selective and reliable analytical methods for PAT detection. In this study, a sensitive aptasensor based on a dual-signaling strategy [...] Read more.
Patulin (PAT), a type of mycotoxin existing in foodstuffs, is harmful to food safety and human health. Thus, it is necessary to develop sensitive, selective and reliable analytical methods for PAT detection. In this study, a sensitive aptasensor based on a dual-signaling strategy was fabricated, in which a methylene-blue-labeled aptamer and ferrocene monocarboxylic acid in the electrolyte acted as a dual signal, for monitoring PAT. To improve the sensitivity of the aptasensor, an in-plane gold nanoparticles–black phosphorus heterostructure (AuNPs-BPNS) was synthesized for signal amplification. Due to the combination of AuNPs-BPNS nanocomposites and the dual-signaling strategy, the proposed aptasensor has a good analytical performance for PAT detection with the broad linear range of 0.1 nM–100.0 μM and the low detection limit of 0.043 nM. Moreover, the aptasensor was successfully employed for real sample detection, such as apple, pear and tomato. It is expected that BPNS-based nanomaterials hold great promise for developing novel aptasensors and may provide a sensing platform for food safety monitoring. Full article
Show Figures

Graphical abstract

12 pages, 1473 KiB  
Article
A Dual-Mode Method Based on Aptamer Recognition and Time-Resolved Fluorescence Resonance Energy Transfer for Histamine Detection in Fish
by Xin Wang, Fu Yang, Chengfang Deng, Yujie Zhang, Xiao Yang, Xianggui Chen, Yukun Huang, Hua Ye, Jianjun Zhong and Zhouping Wang
Molecules 2022, 27(24), 8711; https://doi.org/10.3390/molecules27248711 - 9 Dec 2022
Cited by 11 | Viewed by 2717
Abstract
Histamine produced via the secretion of histidine decarboxylase by the bacteria in fish muscles is a toxic biogenic amine and of significant concern in food hygiene, since a high intake can cause poisoning in humans. This study proposed a fluorometric and colorimetric dual-mode [...] Read more.
Histamine produced via the secretion of histidine decarboxylase by the bacteria in fish muscles is a toxic biogenic amine and of significant concern in food hygiene, since a high intake can cause poisoning in humans. This study proposed a fluorometric and colorimetric dual-mode specific method for the detection of histamine in fish, based on the fluorescence labeling of a histamine specific aptamer via the quenching and optical properties of gold nanoparticles (AuNPs). Due to the fluorescence resonance energy transfer phenomenon caused by the proximity of AuNPs and NaYF4:Ce/Tb, resulting in the quenching of the fluorescence signal in the detection system, the presence of histamine will compete with AuNPs to capture the aptamer and release it from the AuNP surface, inducing fluorescence recovery. Meanwhile, the combined detection of the two modes showed good linearity with histamine concentration, the linear detection range of the dual-mode synthesis was 0.2–1.0 μmol/L, with a detection limit of 4.57 nmol/L. Thus, this method has good selectivity and was successfully applied to the detection of histamine in fish foodstuffs with the recoveries of 83.39~102.027% and 82.19~105.94% for Trichiurus haumela and Thamnaconus septentrionalis, respectively. In addition, this method was shown to be simple, rapid, and easy to conduct. Through the mutual verification and combined use of the two modes, a highly sensitive, rapid, and accurate dual-mode detection method for the analysis of histamine content in food was established, thereby providing a reference for the monitoring of food freshness. Full article
(This article belongs to the Special Issue Aptamer Generation and Bioapplication)
Show Figures

Figure 1

19 pages, 3142 KiB  
Article
An Origami Paper-Based Biosensor for Allergen Detection by Chemiluminescence Immunoassay on Magnetic Microbeads
by Elisa Lazzarini, Andrea Pace, Ilaria Trozzi, Martina Zangheri, Massimo Guardigli, Donato Calabria and Mara Mirasoli
Biosensors 2022, 12(10), 825; https://doi.org/10.3390/bios12100825 - 4 Oct 2022
Cited by 19 | Viewed by 4110
Abstract
Food allergies are adverse health effects that arise from specific immune responses, occurring upon exposure to given foods, even if present in traces. Egg allergy is one of the most common food allergies, mainly caused by egg white proteins, with ovalbumin being the [...] Read more.
Food allergies are adverse health effects that arise from specific immune responses, occurring upon exposure to given foods, even if present in traces. Egg allergy is one of the most common food allergies, mainly caused by egg white proteins, with ovalbumin being the most abundant. As allergens can also be present in foodstuff due to unintended contamination, there is a need for analytical tools that are able to rapidly detect allergens in food products at the point-of-use. Herein, we report an origami paper-based device for detecting ovalbumin in food samples, based on a competitive immunoassay with chemiluminescence detection. In this biosensor, magnetic microbeads have been employed for easy and efficient immobilization of ovalbumin on paper. Immobilized ovalbumin competes with the ovalbumin present in the sample for a limited amount of enzyme-labelled anti-ovalbumin antibody. By exploiting the origami approach, a multistep analytical procedure could be performed using reagents preloaded on paper layers, thus providing a ready-to-use immunosensing platform. The assay provided a limit of detection (LOD) of about 1 ng mL−1 for ovalbumin and, when tested on ovalbumin-spiked food matrices (chocolate chip cookies), demonstrated good assay specificity and accuracy, as compared with a commercial immunoassay kit. Full article
(This article belongs to the Special Issue Biosensors in 2022)
Show Figures

Graphical abstract

17 pages, 615 KiB  
Article
Development of an Assay for Soy Isoflavones in Women’s Hair
by Souad Bensaada, Isabelle Raymond, Malena Breton, Isabelle Pellegrin, Jean-François Viallard and Catherine Bennetau-Pelissero
Nutrients 2022, 14(17), 3619; https://doi.org/10.3390/nu14173619 - 1 Sep 2022
Cited by 3 | Viewed by 2664
Abstract
Soy isoflavones, at adequate dosages, have estrogenic and anti-thyroidal effects in animals and humans, which can either be beneficial or adverse, depending on the consumer’s physiological status. Hence, this study presents an assay of soy isoflavones in hair, aiming to give new information [...] Read more.
Soy isoflavones, at adequate dosages, have estrogenic and anti-thyroidal effects in animals and humans, which can either be beneficial or adverse, depending on the consumer’s physiological status. Hence, this study presents an assay of soy isoflavones in hair, aiming to give new information about a person’s exposure to isoflavones, when health issues related to estrogenic or thyroidal effects are observed. Aqueous or organic extraction procedures following acidic, basic, or enzymatic digestions were tested on 60 hair samples (from volunteers) from a hairdresser, and a clinical trial 2017T2-29. The acidic digestion method was the most efficient regarding isoflavones. A specific inquiry was developed to assess the dietary habits of French consumers based on the analysis of 12,707 food labels from France. It was used to check for the reliability of the new assay method. A score for the consumer exposures to isoflavones was built considering, among other parameters, soy-based diets and foodstuff containing soy as an ingredient, i.e., “hidden-soy”. The correlation between this score and isoflavone measurements in hair reached 0.947; p < 0.001. Therefore, providing that relevant data are considered to assess isoflavone exposure, hair that smoothens daily isoflavone intake variations, is a relevant tissue to assess human isoflavone exposure for subsequent health analyses. Full article
(This article belongs to the Special Issue Dietary Phytoestrogens and Health)
Show Figures

Graphical abstract

13 pages, 2792 KiB  
Article
Tracking Arachis hypogaea Allergen in Pre-Packaged Foodstuff: A Nanodiamond-Based Electrochemical Biosensing Approach
by Maria Freitas, André Carvalho, Henri P. A. Nouws and Cristina Delerue-Matos
Biosensors 2022, 12(6), 429; https://doi.org/10.3390/bios12060429 - 18 Jun 2022
Cited by 14 | Viewed by 3167
Abstract
The present work reports a nanodiamond-based voltammetric immunosensing platform for the analysis of a food allergen (Ara h 1) present in peanuts (Arachis hypogaea). The possibility of the usage of nanodiamonds (d = 11.2 ± 0.9 nm) on screen-printed carbon [...] Read more.
The present work reports a nanodiamond-based voltammetric immunosensing platform for the analysis of a food allergen (Ara h 1) present in peanuts (Arachis hypogaea). The possibility of the usage of nanodiamonds (d = 11.2 ± 0.9 nm) on screen-printed carbon electrodes (SPCE/ND) in a single-use two-monoclonal antibody sandwich assay was studied. An enhanced electroactive area (~18%) was obtained and the biomolecule binding ability was improved when the 3D carbon-based nanomaterial was used. The antibody-antigen interaction was recognized through the combination of alkaline phosphatase with 3-indoxyl phosphate and silver ions. Linear Sweep Voltammetry (LSV) was applied for fast signal acquisition and scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) support the voltammetric approach and confirm the presence of silver particles on the electrode surface. The proposed immunosensor provided a low limit of detection (0.78 ng·mL−1) and highly precise (RSD < 7.5%) and accurate results. Quantification of Ara h 1 in commercial foodstuffs (e.g., crackers, cookies, protein bars) that refer to the presence of peanuts (even traces) on the product label was successfully achieved. The obtained data were in accordance with recovery results (peanut addition, %) and the foodstuff label. Products with the preventive indication “may contain traces” revealed the presence of peanuts lower than 0.1% (m/m). The method’s results were validated by comparison with an enzyme-linked immunosorbent assay. This allows confident information about the presence of allergens (even at trace levels) that leads to profitable conditions for both industry and consumers. Full article
Show Figures

Figure 1

18 pages, 2371 KiB  
Review
Effective Use of Plant Proteins for the Development of “New” Foods
by Hiroyuki Yano and Wei Fu
Foods 2022, 11(9), 1185; https://doi.org/10.3390/foods11091185 - 19 Apr 2022
Cited by 29 | Viewed by 7649
Abstract
Diversity in our diet mirrors modern society. Affluent lifestyles and extended longevity have caused the prevalence of diabetes and sarcopenia, which has led to the increased demand of low-carb, high-protein foods. Expansion of the global population and Westernization of Asian diets have surged [...] Read more.
Diversity in our diet mirrors modern society. Affluent lifestyles and extended longevity have caused the prevalence of diabetes and sarcopenia, which has led to the increased demand of low-carb, high-protein foods. Expansion of the global population and Westernization of Asian diets have surged the number of meat eaters, which has eventually disrupted the supply–demand balance of meat. In contrast, some people do not eat meat for religious reasons or due to veganism. With these multiple circumstances, our society has begun to resort to obtaining protein from plant sources rather than animal origins. This “protein shift” urges food researchers to develop high-quality foods based on plant proteins. Meanwhile, patients with food allergies, especially gluten-related ones, are reported to be increasing. Additionally, growing popularity of the gluten-free diet demands development of foods without using ingredients of wheat origin. Besides, consumers prefer “clean-label” products in which products are expected to contain fewer artificial compounds. These diversified demands on foods have spurred the development of “new” foods in view of food-processing technologies as well as selection of the primary ingredients. In this short review, examples of foodstuffs that have achieved tremendous recent progress are introduced: effective use of plant protein realized low-carb, high protein, gluten-free bread/pasta. Basic manufacturing principles of plant-based vegan cheese have also been established. We will also discuss on the strategy of effective development of new foods in view of the better communication with consumers as well as efficient use of plant proteins. Full article
Show Figures

Figure 1

30 pages, 2463 KiB  
Article
Interlaboratory Validation of a DNA Metabarcoding Assay for Mammalian and Poultry Species to Detect Food Adulteration
by Stefanie Dobrovolny, Steffen Uhlig, Kirstin Frost, Anja Schlierf, Kapil Nichani, Kirsten Simon, Margit Cichna-Markl and Rupert Hochegger
Foods 2022, 11(8), 1108; https://doi.org/10.3390/foods11081108 - 12 Apr 2022
Cited by 15 | Viewed by 3129
Abstract
Meat species authentication in food is most commonly based on the detection of genetic variations. Official food control laboratories frequently apply single and multiplex real-time polymerase chain reaction (PCR) assays and/or DNA arrays. However, in the near future, DNA metabarcoding, the generation of [...] Read more.
Meat species authentication in food is most commonly based on the detection of genetic variations. Official food control laboratories frequently apply single and multiplex real-time polymerase chain reaction (PCR) assays and/or DNA arrays. However, in the near future, DNA metabarcoding, the generation of PCR products for DNA barcodes, followed by massively parallel sequencing by next generation sequencing (NGS) technologies, could be an attractive alternative. DNA metabarcoding is superior to well-established methodologies since it allows simultaneous identification of a wide variety of species not only in individual foodstuffs but even in complex mixtures. We have recently published a DNA metabarcoding assay for the identification and differentiation of 15 mammalian species and six poultry species. With the aim to harmonize analytical methods for food authentication across EU Member States, the DNA metabarcoding assay has been tested in an interlaboratory ring trial including 15 laboratories. Each laboratory analyzed 16 anonymously labelled samples (eight samples, two subsamples each), comprising six DNA extract mixtures, one DNA extract from a model sausage, and one DNA extract from maize (negative control). Evaluation of data on repeatability, reproducibility, robustness, and measurement uncertainty indicated that the DNA metabarcoding method is applicable for meat species authentication in routine analysis. Full article
Show Figures

Figure 1

15 pages, 1374 KiB  
Article
Determination of Alternaria Toxins in Food by SPE and LC-IDMS: Development and In-House Validation of a Candidate Method for Standardisation
by Carlos Gonçalves, Ádam Tölgyesi, Katrien Bouten, Fernando Cordeiro and Joerg Stroka
Separations 2022, 9(3), 70; https://doi.org/10.3390/separations9030070 - 8 Mar 2022
Cited by 8 | Viewed by 4052
Abstract
Alternaria toxins (ATs) are frequently found contaminants in foodstuffs (e.g., alternariol), often reaching high concentrations (e.g., tenuazonic acid). They can spoil a wide variety of food categories (e.g., cereals, vegetables, seeds and drinks) and storage at fridge temperatures does not prevent the growth [...] Read more.
Alternaria toxins (ATs) are frequently found contaminants in foodstuffs (e.g., alternariol), often reaching high concentrations (e.g., tenuazonic acid). They can spoil a wide variety of food categories (e.g., cereals, vegetables, seeds and drinks) and storage at fridge temperatures does not prevent the growth of Alternaria fungi. Therefore, reliable and validated analytical methods are needed to protect human health and to ensure a transparent and fair trade. This paper describes new technical features that improved a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the analysis of ATs in tomato, wheat and sunflower seeds. This analytical method should be simple to implement in different laboratories across the EU and thus be an attractive candidate for standardisation. The major element for improvement was the use of isotopically labelled internal standards, only recently commercially available, thereby reducing the sample handling and improving the accuracy of the results. In addition, the sample extraction and the solid-phase extraction (SPE) enrichment/clean-up were fine-tuned, whereas a more suitable analytical column (XSelect HSS T3) with improved selectivity was also employed. Overall, this method shows adequate precision (repeatability < 5.7% RSD; intermediate precision < 7.0% RSD) and trueness (recoveries ranging from 74% to 112%). The limits of quantification in wheat (the most analytically demanding matrix) vary between 0.19 and 1.40 µg/kg. These figures were deemed satisfactory by the European Committee for Standardization (CEN) and have formed the basis for a subsequent interlaboratory validation study. The corresponding standard was published by CEN in 2021. Full article
Show Figures

Figure 1

13 pages, 1802 KiB  
Review
NMR Tracing of Food Geographical Origin: The Impact of Seasonality, Cultivar and Production Year on Data Analysis
by Olimpia Masetti, Angela Sorbo and Luigi Nisini
Separations 2021, 8(12), 230; https://doi.org/10.3390/separations8120230 - 1 Dec 2021
Cited by 19 | Viewed by 3633
Abstract
The traceability of typical foodstuffs is necessary to protect high quality of traditional products. It is well-known that several factors could influence metabolites content in certified foods, but soil composition, altitude, latitude and coded production protocols constitute the territorial conditions responsible for the [...] Read more.
The traceability of typical foodstuffs is necessary to protect high quality of traditional products. It is well-known that several factors could influence metabolites content in certified foods, but soil composition, altitude, latitude and coded production protocols constitute the territorial conditions responsible for the peculiar organoleptic and nutritional properties of labelled foods. Instead, regardless of origin, seasonality, cultivar, collection year can affect all agricultural products, so it is appropriate to include them in data analysis in order to obtain a correct interpretation of the differences linked to growing areas alone. Therefore, it is useful to use a flexible all-round technique, and NMR spectroscopy coupled with multivariate statistical analysis is considered a powerful means of assessing food authenticity. The purpose of this review is to investigate the relevance of year, cultivar, and seasonal period in the determination of food geographical origin using NMR spectroscopy. The strategy for testing these three factors may differ from author to author, but a preliminary study of cultivar or collection year effects on NMR spectra is the most popular method before starting the geographical characterization of samples. In summary, based on the available literature, the most significant influence is due to cultivar, followed by harvesting year, however seasonality is not considered a source of variability in data analysis. Full article
Show Figures

Graphical abstract

16 pages, 3209 KiB  
Article
Development of a DNA Metabarcoding Method for the Identification of Bivalve Species in Seafood Products
by Kristina Gense, Verena Peterseil, Alma Licina, Martin Wagner, Margit Cichna-Markl, Stefanie Dobrovolny and Rupert Hochegger
Foods 2021, 10(11), 2618; https://doi.org/10.3390/foods10112618 - 28 Oct 2021
Cited by 17 | Viewed by 3842
Abstract
The production of bivalve species has been increasing in the last decades. In spite of strict requirements for species declaration, incorrect labelling of bivalve products has repeatedly been detected. We present a DNA metabarcoding method allowing the identification of bivalve species belonging to [...] Read more.
The production of bivalve species has been increasing in the last decades. In spite of strict requirements for species declaration, incorrect labelling of bivalve products has repeatedly been detected. We present a DNA metabarcoding method allowing the identification of bivalve species belonging to the bivalve families Mytilidae (mussels), Pectinidae (scallops), and Ostreidae (oysters) in foodstuffs. The method, developed on Illumina instruments, targets a 150 bp fragment of mitochondrial 16S rDNA. We designed seven primers (three primers for mussel species, two primers for scallop species and a primer pair for oyster species) and combined them in a triplex PCR assay. In each of eleven reference samples, the bivalve species was identified correctly. In ten DNA extract mixtures, not only the main component (97.0–98.0%) but also the minor components (0.5–1.5%) were detected correctly, with only a few exceptions. The DNA metabarcoding method was found to be applicable to complex and processed foodstuffs, allowing the identification of bivalves in, e.g., marinated form, in sauces, in seafood mixes and even in instant noodle seafood. The method is highly suitable for food authentication in routine analysis, in particular in combination with a DNA metabarcoding method for mammalian and poultry species published recently. Full article
(This article belongs to the Special Issue Techniques for Food Authentication: Trends and Emerging Approaches)
Show Figures

Figure 1

13 pages, 2222 KiB  
Article
Characterization of a Novel Lutein Cleavage Dioxygenase, EhLCD, from Enterobacter hormaechei YT-3 for the Enzymatic Synthesis of 3-Hydroxy-β-ionone from Lutein
by Zhangde Long, Naixin Duan, Yun Xue, Min Wang, Jigang Li, Zan Su, Qibin Liu, Duobin Mao and Tao Wei
Catalysts 2021, 11(11), 1257; https://doi.org/10.3390/catal11111257 - 20 Oct 2021
Cited by 4 | Viewed by 2397
Abstract
3-Hydroxy-β-ionone, a flavor and fragrance compound with fruity violet-like characteristics, is widely applied in foodstuff and beverages, and is currently produced using synthetic chemistry. In this study, a novel lutein cleavage enzyme (EhLCD) was purified and characterized from Enterobacter hormaechei YT-3 [...] Read more.
3-Hydroxy-β-ionone, a flavor and fragrance compound with fruity violet-like characteristics, is widely applied in foodstuff and beverages, and is currently produced using synthetic chemistry. In this study, a novel lutein cleavage enzyme (EhLCD) was purified and characterized from Enterobacter hormaechei YT-3 to convert lutein to 3-hydroxy-β-ionone. Enzyme EhLCD was purified to homogeneity by ammonium sulfate precipitation, Q-Sepharose, phenyl-Sepharose, and Superdex 200 chromatography. The molecular mass of purified EhLCD, obtained by SDS-PAGE, was approximately 50 kDa. The enzyme exhibited the highest activity toward lutein, followed by zeaxanthin, β-cryptoxanthin, and β-carotene, suggesting that EhLCD exhibited higher catalytic efficiency for carotenoid substrates bearing 3-hydroxy-ionone rings. Isotope-labeling experiments showed that EhLCD incorporated oxygen from O2 into 3-hydroxy-β-ionone and followed a dioxygenase reaction mechanism for different carotenoid substrates. These results indicated that EhLCD is the first characterized bacterial lutein cleavage dioxygenase. Active EhLCD was also confirmed to be a Fe2+-dependent protein with 1 molar equivalent of non-haem Fe2+. The purified enzyme displayed optimal activity at 45 °C and pH 8.0. The optimum concentrations of the substrate, enzyme, and Tween 40 for 3-hydroxy-β-ionone production were 60 μM lutein/L, 1.5 U/mL, and 2% (w/v), respectively. Under optimum conditions, EhLCD produced 3-hydroxy-β-ionone (637.2 mg/L) in 60 min with a conversion of 87.0% (w/w), indicating that this enzyme is a potential candidate for the enzymatic synthesis of 3-hydroxy-β-ionone in biotechnological applications. Full article
(This article belongs to the Special Issue Enzyme Catalysis, Biotransformation and Bioeconomy)
Show Figures

Figure 1

Back to TopTop