Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (945)

Search Parameters:
Keywords = food diagnostics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 972 KiB  
Article
Rapid and Accurate Detection of the Most Common Bee Pathogens; Nosema ceranae, Aspergillus flavus, Paenibacillus larvae and Black Queen Cell Virus
by Simona Marianna Sanzani, Raied Abou Kubaa, Badr-Eddine Jabri, Sabri Ala Eddine Zaidat, Rocco Addante, Naouel Admane and Khaled Djelouah
Insects 2025, 16(8), 810; https://doi.org/10.3390/insects16080810 (registering DOI) - 5 Aug 2025
Abstract
Honey bees are essential pollinators for the ecosystem and food crops. However, their health and survival face threats from both biotic and abiotic stresses. Fungi, microsporidia, and bacteria might significantly contribute to colony losses. Therefore, rapid and sensitive diagnostic tools are crucial for [...] Read more.
Honey bees are essential pollinators for the ecosystem and food crops. However, their health and survival face threats from both biotic and abiotic stresses. Fungi, microsporidia, and bacteria might significantly contribute to colony losses. Therefore, rapid and sensitive diagnostic tools are crucial for effective disease management. In this study, molecular assays were developed to quickly and efficiently detect the main honey bee pathogens: Nosema ceranae, Aspergillus flavus, Paenibacillus larvae, and Black queen cell virus. In this context, new primer pairs were designed for use in quantitative Real-time PCR (qPCR) reactions. Various protocols for extracting total nucleic acids from bee tissues were tested, indicating a CTAB-based protocol as the most efficient and cost-effective. Furthermore, excluding the head of the bee from the extraction, better results were obtained in terms of quantity and purity of extracted nucleic acids. These assays showed high specificity and sensitivity, detecting up to 250 fg of N. ceranae, 25 fg of P. larvae, and 2.5 pg of A. flavus DNA, and 5 pg of BQCV cDNA, without interference from bee DNA. These qPCR assays allowed pathogen detection within 3 h and at early stages of infection, supporting timely and efficient management interventions. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Graphical abstract

13 pages, 447 KiB  
Article
The Impact of Social Determinants of Health on Metabolic Dysfunction-Associated Steatotic Liver Disease Among Adults in the United States
by Vidhi Singh, Susan Cheng, Amanda Velazquez, Hirsh D. Trivedi and Alan C. Kwan
J. Clin. Med. 2025, 14(15), 5484; https://doi.org/10.3390/jcm14155484 - 4 Aug 2025
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease. It has known multifactorial pathophysiology, but the impact of social determinants of health (SDOH) on the rising prevalence of MASLD is poorly understood. We conducted a retrospective [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease. It has known multifactorial pathophysiology, but the impact of social determinants of health (SDOH) on the rising prevalence of MASLD is poorly understood. We conducted a retrospective cross-sectional study to examine the influence of SDOH on MASLD using nationwide data from the 2017–2018 National Health and Nutrition Examination Survey (NHANES) study. Methods: We identified participants with MASLD based on liver ultrasound-based controlled attenuation parameter measurements consistent with diagnostic guidelines. We then used logistic regression models to examine associations between SDOH variables and MASLD, with a pre-specified focus on education and income, sequentially adjusting for sociodemographic factors, medical comorbidities, and other SDOH. Results: Our study found that higher education (odds ratio [OR] 0.77, 95% confidence interval [CI] 0.62–0.97, p = 0.024) but not higher income (OR 1.12, 95% CI 0.91–1.37, p = 0.3) was associated with lower odds of MASLD in multivariable adjusted models. We also identified a significant interaction between education level and food security, as well as interactions between food security and other significant SDOH. In the stratified analyses, higher education was significantly associated with lower odds of MASLD among participants with food security (OR 0.71, 95% CI 0.55–0.91, p = 0.007) but not among those with food insecurity (OR 1.26, 95% CI 0.76–2.11, p = 0.4). Conclusions: Our findings identify the potential impact of SDOH on odds of MASLD and suggest increased importance of food security relative to other SDOH. Full article
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 - 3 Aug 2025
Viewed by 201
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

21 pages, 2240 KiB  
Review
A Review of Fluorescent pH Probes: Ratiometric Strategies, Extreme pH Sensing, and Multifunctional Utility
by Weiqiao Xu, Zhenting Ma, Qixin Tian, Yuanqing Chen, Qiumei Jiang and Liang Fan
Chemosensors 2025, 13(8), 280; https://doi.org/10.3390/chemosensors13080280 - 2 Aug 2025
Viewed by 205
Abstract
pH is a critical parameter requiring precise monitoring across scientific, industrial, and biological domains. Fluorescent pH probes offer a powerful alternative to traditional methods (e.g., electrodes, indicators), overcoming limitations in miniaturization, long-term stability, and electromagnetic interference. By utilizing photophysical mechanisms—including intramolecular charge transfer [...] Read more.
pH is a critical parameter requiring precise monitoring across scientific, industrial, and biological domains. Fluorescent pH probes offer a powerful alternative to traditional methods (e.g., electrodes, indicators), overcoming limitations in miniaturization, long-term stability, and electromagnetic interference. By utilizing photophysical mechanisms—including intramolecular charge transfer (ICT), photoinduced electron transfer (PET), and fluorescence resonance energy transfer (FRET)—these probes enable high-sensitivity, reusable, and biocompatible sensing. This review systematically details recent advances, categorizing probes by operational pH range: strongly acidic (0–3), weakly acidic (3–7), strongly alkaline (>12), weakly alkaline (7–11), near-neutral (6–8), and wide-dynamic range. Innovations such as ratiometric detection, organelle-specific targeting (lysosomes, mitochondria), smartphone colorimetry, and dual-analyte response (e.g., pH + Al3+/CN) are highlighted. Applications span real-time cellular imaging (HeLa cells, zebrafish, mice), food quality assessment, environmental monitoring, and industrial diagnostics (e.g., concrete pH). Persistent challenges include extreme-pH sensing (notably alkalinity), photobleaching, dye leakage, and environmental resilience. Future research should prioritize broadening functional pH ranges, enhancing probe stability, and developing wide-range sensing strategies to advance deployment in commercial and industrial online monitoring platforms. Full article
Show Figures

Figure 1

16 pages, 2858 KiB  
Article
Reactive Aerosol Jet Printing of Ag Nanoparticles: A New Tool for SERS Substrate Preparation
by Eugenio Gibertini, Lydia Federica Gervasini, Jody Albertazzi, Lorenzo Maria Facchetti, Matteo Tommasini, Valentina Busini and Luca Magagnin
Coatings 2025, 15(8), 900; https://doi.org/10.3390/coatings15080900 (registering DOI) - 1 Aug 2025
Viewed by 118
Abstract
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman [...] Read more.
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool, offering improved sensitivity through the enhancement of Raman scattering by plasmonic nanostructures. While noble metals such as Ag and Au are currently the reference choices for SERS substrates, fabrication methods should balance enhancement efficiency, reproducibility and scalability. In this study, we propose a novel approach for SERS substrate fabrication using reactive Aerosol Jet Printing (r-AJP) as an innovative additive manufacturing technique. The r-AJP process enables in-flight Ag seed reduction and nucleation of Ag nanoparticles (NPs) by mixing silver nitrate and ascorbic acid aerosols before deposition, as suggested by computational fluid dynamics (CFD) simulations. The resulting coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, revealing the formation of nanoporous crystalline Ag agglomerates partially covered by residual matter. The as-prepared SERS substrates exhibited remarkable SERS activity, demonstrating a high enhancement factor (106) for rhodamine (R6G) detection. Our findings highlight the potential of r-AJP as a scalable and cost-effective fabrication strategy for next-generation SERS sensors, paving the way for the development of a new additive manufacturing tool for noble metal material deposition. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

17 pages, 3738 KiB  
Article
Beyond Spheres: Evaluating Gold Nano-Flowers and Gold Nano-Stars for Enhanced Aflatoxin B1 Detection in Lateral Flow Immunoassays
by Vinayak Sharma, Bilal Javed, Hugh J. Byrne and Furong Tian
Biosensors 2025, 15(8), 495; https://doi.org/10.3390/bios15080495 - 1 Aug 2025
Viewed by 207
Abstract
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the [...] Read more.
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the introduction of gold nanoparticles, which provide enhanced sensitivity and selectivity (compared, for example, to latex beads or carbon nanoparticles) for the detection of target analytes, due to their optical properties, chemical stability and ease of functionalization. In this work, gold nanoparticle-based LFIAs are developed for the detection of aflatoxin B1, and the relative performance of different morphology particles is evaluated. LFIA using gold nano-labels allowed for aflatoxin B1 detection over a range of 0.01 ng/mL–100 ng/mL. Compared to spherical gold nanoparticles and gold nano-flowers, star-shaped gold nanoparticles show increased antibody binding efficiency of 86% due to their greater surface area. Gold nano-stars demonstrated the highest sensitivity, achieving a limit of detection of 0.01ng/mL, surpassing the performance of both spherical gold nanoparticles and gold nano-flowers. The use of star-shaped particles as nano-labels has demonstrated a five-fold improvement in sensitivity, underscoring the potential of integrating diverse nanostructures into LFIA for significantly improving analyte detection. Moreover, the robustness and feasibility of gold nano-stars employed as labels in LFIA was assessed in detecting aflatoxin B1 in a wheat matrix. Improved sensitivity with gold nano-stars holds promise for applications in food safety monitoring, public health diagnostics and rapid point-of-care diagnostics. This work opens the pathway for further development of LFIA utilizing novel nanostructures to achieve unparallel precision in diagnostics and sensing. Full article
Show Figures

Figure 1

20 pages, 17214 KiB  
Article
Histological Features Detected for Separation of the Edible Leaves of Allium ursinum L. from the Poisonous Leaves of Convallaria majalis L. and Colchicum autumnale L.
by Márta M-Hamvas, Angéla Tótik, Csongor Freytag, Attila Gáspár, Amina Nouar, Tamás Garda and Csaba Máthé
Plants 2025, 14(15), 2377; https://doi.org/10.3390/plants14152377 - 1 Aug 2025
Viewed by 111
Abstract
Allium ursinum (wild garlic) has long been collected and consumed as food and medicine in the north temperate zone, where its popularity is growing. Colchicum autumnale and Convallaria majalis contain toxic alkaloids. Their habitats overlap, and without flowers, their vegetative organs are similar. [...] Read more.
Allium ursinum (wild garlic) has long been collected and consumed as food and medicine in the north temperate zone, where its popularity is growing. Colchicum autumnale and Convallaria majalis contain toxic alkaloids. Their habitats overlap, and without flowers, their vegetative organs are similar. Confusing the leaves of Colchicum or Convallaria with the leaves of wild garlic has repeatedly led to serious human and animal poisonings. Our goal was to find a histological characteristic that makes the separation of these leaves clear. We compared the anatomy of foliage leaves of these three species grown in the same garden (Debrecen, Hungary, Central Europe). We used a bright-field microscope to characterize the transversal sections of leaves. Cell types of epidermises were compared based on peels and different impressions. We established some significant differences in the histology of leaves. The adaxial peels of Allium consist of only “long” cells without stomata, but the abaxial ones show “long”, “short” and “T” cells with wavy cell walls as a peculiarity, and stomata. Convallaria and Colchicum leaves are amphystomatic, but in the case of Allium, they are hypostomatic. These traits were confirmed with herbarium specimens. Our results help to clearly identify these species even in mixed, dried plant material and may be used for diagnostic purposes. Full article
Show Figures

Graphical abstract

34 pages, 8425 KiB  
Review
Recent Advances in Non-Enzymatic Glucose Sensors Based on Nanomaterials
by Dongfang Yang, Yongjin Chen, Songtao Che and Kai Wang
Coatings 2025, 15(8), 892; https://doi.org/10.3390/coatings15080892 (registering DOI) - 1 Aug 2025
Viewed by 274
Abstract
The detection of glucose concentration has a wide range of applications and plays a significant role in the fields of the food industry, medical health, and illness diagnostics. The utilization of sensor technology for glucose concentration detection is an effective approach. Glucose sensors [...] Read more.
The detection of glucose concentration has a wide range of applications and plays a significant role in the fields of the food industry, medical health, and illness diagnostics. The utilization of sensor technology for glucose concentration detection is an effective approach. Glucose sensors utilizing nanomaterials, with high sensitivity, strong resistance to interference, and compact size, exhibit tremendous potential in glucose concentration detection. Traditional enzyme-based sensors exhibit superior selectivity and high sensitivity; however, they are deficient in terms of interference resistance capabilities. With the development of nanotechnology, the performance of glucose sensors has been significantly improved. This review discusses the research progress in non-enzymatic electrochemical glucose nanosensors, including noble metal-based glucose sensors and non-noble transition metal compound-based glucose sensors, as well as the applications of multimetallic materials in nanosensors. Additionally, the application of nanosensors based on fluorescence and colorimetric principles in the detection of glucose concentration is introduced in this review. Finally, a perspective on the challenges and prospects of nanosensors in the field of glucose detection is presented. Full article
Show Figures

Graphical abstract

9 pages, 1131 KiB  
Article
The Impact of Low-Level Laser Irradiation on the Activity of Alpha-Amylase
by Mustafa Salih Al Musawi
Photonics 2025, 12(8), 774; https://doi.org/10.3390/photonics12080774 - 31 Jul 2025
Viewed by 180
Abstract
Background: Clinical diagnostics, food industries, and biotechnological processes typically use an enzyme called alpha-amylase to metabolize carbohydrates. Objective: The aim of this study is to investigate how low-level laser irradiation (LLLI) affects alpha-amylase activity towards determining the usability of LLLI in non-invasive [...] Read more.
Background: Clinical diagnostics, food industries, and biotechnological processes typically use an enzyme called alpha-amylase to metabolize carbohydrates. Objective: The aim of this study is to investigate how low-level laser irradiation (LLLI) affects alpha-amylase activity towards determining the usability of LLLI in non-invasive enzymatic modulation. Methods: Enzyme solutions were irradiated at 10, 20, 30, and 40 J/cm2 utilizing 589 nm and 532 nm diode-pumped solid-state lasers. The iodine–starch colorimetric method was used to quantify post-irradiation enzymatic activity, with inverse correlations found between absorbance and activity levels. Modulation was determined by the wavelength and dosage. Results: Enzymatic activity significantly improved when utilizing 589 nm irradiation at lower doses, maximizing at 120% at 20 J/cm2 (p < 0.01). Neutral or inhibitory effects were revealed when higher doses were applied. Enzymatic activity showed progressive inhibition when 532 nm irradiation was applied, declining to 75% at 40 J/cm2 (p < 0.01). Conclusions: These outcomes indicate that conformational flexibility and catalytic efficiency occur when applying lower-energy photons at 589 nm, whilst oxidative stress and impaired enzymatic function are induced by higher-energy photons at 532 nm. This is consistent with the biphasic dose–response characteristic of photobiomodulation. Full article
(This article belongs to the Special Issue Advanced Technologies in Biophotonics and Medical Physics)
Show Figures

Figure 1

14 pages, 2015 KiB  
Communication
Real-Time PCR-Based Detection of Hepatitis E Virus in Groundwater: Primer Performance and Method Validation
by Jin-Ho Kim, Siwon Lee and Eung-Roh Park
Int. J. Mol. Sci. 2025, 26(15), 7377; https://doi.org/10.3390/ijms26157377 - 30 Jul 2025
Viewed by 228
Abstract
Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis and is primarily transmitted via contaminated water and food. Groundwater may also serve as a potential vector for HEV transmission. This study aimed to optimize real-time polymerase chain reaction (rtPCR) for [...] Read more.
Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis and is primarily transmitted via contaminated water and food. Groundwater may also serve as a potential vector for HEV transmission. This study aimed to optimize real-time polymerase chain reaction (rtPCR) for the detection of HEV, employing both TaqMan probe- and SYBR Green-based methods. A total of 12 primer sets for the TaqMan probe-based method and 41 primer sets for the SYBR Green-based method were evaluated in order to identify the optimal combinations. Primer sets #4 (TaqMan probe-based) and #21 (SYBR Green-based) demonstrated the highest sensitivity and specificity, successfully detecting HEV in artificially spiked samples at 1 fg/μL. The TaqMan probe-based method facilitated rapid detection with minimized non-specific amplification, whereas the SYBR Green-based method allowed for broader primer exploration by leveraging melting curve analysis. Despite the absence of HEV detection in 123 groundwater samples, this study underscores the value of real-time PCR for environmental monitoring and paves the way for enhanced diagnostic tools for public health applications. Full article
(This article belongs to the Special Issue Microbial Infections and Novel Biological Molecules for Treatment)
Show Figures

Figure 1

15 pages, 501 KiB  
Review
Pseudovirus as an Emerging Reference Material in Molecular Diagnostics: Advancement and Perspective
by Leiqi Zheng and Sihong Xu
Curr. Issues Mol. Biol. 2025, 47(8), 596; https://doi.org/10.3390/cimb47080596 - 29 Jul 2025
Viewed by 333
Abstract
In recent years, the persistent emergence of novel infectious pathogens (epitomized by the global coronavirus disease-2019 (COVID-2019) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has propelled nucleic acid testing (NAT) into an unprecedented phase of rapid development. As a key [...] Read more.
In recent years, the persistent emergence of novel infectious pathogens (epitomized by the global coronavirus disease-2019 (COVID-2019) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has propelled nucleic acid testing (NAT) into an unprecedented phase of rapid development. As a key technology in modern molecular diagnostics, NAT achieves precise pathogen identification through specific nucleic acid sequence recognition, establishing itself as an indispensable diagnostic tool across diverse scenarios, including public health surveillance, clinical decision-making, and food safety control. The reliability of NAT systems fundamentally depends on reference materials (RMs) that authentically mimic the biological characteristics of natural viruses. This critical requirement reveals significant limitations of current RMs in the NAT area: naked nucleic acids lack the structural authenticity of viral particles and exhibit restricted applicability due to stability deficiencies, while inactivated viruses have biosafety risks and inter-batch heterogeneity. Notably, pseudovirus has emerged as a novel RM that integrates non-replicative viral vectors with target nucleic acid sequences. Demonstrating superior performance in mimicking authentic viral structure, biosafety, and stability compared to conventional RMs, the pseudovirus has garnered substantial attention. In this comprehensive review, we critically summarize the engineering strategies of pseudovirus platforms and their emerging role in ensuring the reliability of NAT systems. We also discuss future prospects for standardized pseudovirus RMs, addressing key challenges in scalability, stability, and clinical validation, aiming to provide guidance for optimizing pseudovirus design and practical implementation, thereby facilitating the continuous improvement and innovation of NAT technologies. Full article
(This article belongs to the Special Issue Molecular Research on Virus-Related Infectious Disease)
Show Figures

Figure 1

14 pages, 619 KiB  
Article
Validation of Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS)-Related Pediatric Treatment Evaluation Checklist (PTEC)
by Andrey Vyshedskiy, Anna Conkey, Kelly DeWeese, Frank Benno Junghanns, James B. Adams and Richard E. Frye
Pediatr. Rep. 2025, 17(4), 81; https://doi.org/10.3390/pediatric17040081 - 28 Jul 2025
Viewed by 314
Abstract
Background/Objectives: The objective of this study was to validate a new parent-reported scale for tracking Pediatric Acute-onset Neuropsychiatric Syndrome (PANS). PANS is a condition characterized by a sudden and severe onset of neuropsychiatric symptoms. To meet diagnostic criteria, an individual must present with [...] Read more.
Background/Objectives: The objective of this study was to validate a new parent-reported scale for tracking Pediatric Acute-onset Neuropsychiatric Syndrome (PANS). PANS is a condition characterized by a sudden and severe onset of neuropsychiatric symptoms. To meet diagnostic criteria, an individual must present with either obsessive–compulsive disorder (OCD) or severely restricted food intake, accompanied by at least two additional cognitive, behavioral, or emotional symptoms. These may include anxiety, emotional instability, depression, irritability, aggression, oppositional behaviors, developmental or behavioral regression, a decline in academic skills such as handwriting or math, sensory abnormalities, frequent urination, and enuresis. The onset of symptoms is usually triggered by an infection or an abnormal immune/inflammatory response. Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS) is a subtype of PANS specifically linked to strep infections. Methods: We developed a 101-item PANS/PANDAS and Related Inflammatory Brain Disorders Treatment Evaluation Checklist (PTEC) designed to assess changes to a patient’s symptoms over time along 10 subscales: Behavior/Mood, OCD, Anxiety, Food intake, Tics, Cognitive/Developmental, Sensory, Other, Sleep, and Health. The psychometric quality of PTEC was tested with 225 participants. Results: The internal reliability of the PTEC was excellent (Cronbach’s alpha = 0.96). PTEC exhibited adequate test–retest reliability (r = 0.6) and excellent construct validity, supported by a strong correlation with the Health subscale of the Autism Treatment Evaluation Checklist (r = 0.8). Conclusions: We hope that PTEC will assist parents and clinicians in the monitoring and treatment of PANS. The PTEC questionnaire is freely available at neuroimmune.org/PTEC. Full article
Show Figures

Figure 1

17 pages, 2625 KiB  
Article
Monitoring and Diagnostics of Non-Thermal Plasmas in the Food Sector Using Optical Emission Spectroscopy
by Sanda Pleslić and Franko Katalenić
Appl. Sci. 2025, 15(15), 8325; https://doi.org/10.3390/app15158325 - 26 Jul 2025
Viewed by 116
Abstract
Non-thermal plasma technology is used in the food sector due to its many advantages such as low operating costs, fast and efficient processing at low temperatures, minimal environmental impact, and preservation of sensory and nutritional properties. In this article, the plasma was generated [...] Read more.
Non-thermal plasma technology is used in the food sector due to its many advantages such as low operating costs, fast and efficient processing at low temperatures, minimal environmental impact, and preservation of sensory and nutritional properties. In this article, the plasma was generated using a high-voltage electrical discharge (HVED) with argon at a voltage of 35 kV and a frequency of 60 Hz. Plasma monitoring and diagnostics were performed using optical emission spectroscopy (OES) to optimise the process parameters and for quality control. OES was used as a non-invasive sensor to collect useful information about the properties of the plasma and to identify excited species. The values obtained for electron temperature and electron density (up to 2.3 eV and up to 1023 m3) confirmed that the generated plasma is a non-thermal plasma. Therefore, the use of OES is recommended in the daily control of food processing, as this is necessary to confirm that the processes are non-thermal and suitable for the food sector. Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Figure 1

41 pages, 1344 KiB  
Article
Strengthening Smart Specialisation Strategies (S3) Through Network Analysis: Policy Insights from a Decade of Innovation Projects in Aragón
by David Rodríguez Ochoa, Nieves Arranz and Marta Fernandez de Arroyabe
Economies 2025, 13(8), 218; https://doi.org/10.3390/economies13080218 - 26 Jul 2025
Viewed by 287
Abstract
This paper applies a multi-level social network analysis to examine Aragón’s innovation ecosystem, focusing on a decade of competitive public projects (2014–2023) aligned with the region’s Smart Specialisation Strategy (S3) 2021–2027. By mapping and weighting the participation of regional entities across regional, national, [...] Read more.
This paper applies a multi-level social network analysis to examine Aragón’s innovation ecosystem, focusing on a decade of competitive public projects (2014–2023) aligned with the region’s Smart Specialisation Strategy (S3) 2021–2027. By mapping and weighting the participation of regional entities across regional, national, and European calls, the study uncovers how all types of local actors organise themselves around key specialisation areas. Moreover, a comparative benchmark is introduced by analysing more than 33,000 Horizon 2020 and Horizon Europe initiatives without Aragonese partners, revealing how to fill structural gaps and enrich the regional ecosystem through international collaboration. Results show strong funding concentration in four fields—Energy, Health, Agri-Food, and Advanced Technologies—while other historically strategic areas like Hydrogen and Water remain underrepresented. Although leading institutions (UNIZAR, CIRCE, ITA, AITIIP) play central roles in connecting academia and industry, direct collaboration among them is limited, pointing to missed synergies. Expanding previous SNA-based assessments, this study introduces a diagnostic tool to guide policy, proposing targeted actions such as challenge-driven calls, dedicated support programs, and cross-border consortia with top EU partners. Applied to two contrasting specialisation areas, the method offers sector-specific recommendations, helping policymakers align Aragón’s innovation capabilities with EU priorities and strengthen its position in both established and emerging domains. Full article
Show Figures

Figure 1

11 pages, 223 KiB  
Review
Review of Foodborne Botulism in the UK: 2006–2024
by Corinne Francoise Laurence Amar, Burhan Ahmed, Jonathan Finch, Dunstan Rajendram, Vanessa K. Wong and Gauri Godbole
Foods 2025, 14(15), 2584; https://doi.org/10.3390/foods14152584 - 23 Jul 2025
Viewed by 443
Abstract
Food-borne botulism is a rare but serious disease caused by ingestion of botulinum neurotoxin pre-formed in food by Clostridium botulinum. Between 2006 and 2009, no foodborne botulism cases were reported in the UK. However, the period from 2010 to 2024 saw 13 cases, [...] Read more.
Food-borne botulism is a rare but serious disease caused by ingestion of botulinum neurotoxin pre-formed in food by Clostridium botulinum. Between 2006 and 2009, no foodborne botulism cases were reported in the UK. However, the period from 2010 to 2024 saw 13 cases, encompassing seven separate incidents and two outbreaks, with no reported fatalities. Cases were predominantly linked to imported, home-made, and artisanal foods, occasionally to commercial products. Diagnostic and public health challenges include delayed clinical diagnosis, delayed sample collection, inadequate specimen volumes, and the frequent unavailability of suspected food sources, hampering epidemiological investigations. The UK has an extremely low incidence of foodborne botulism with an estimated rate of 0.001 cases per 100,000 people per year, but despite this low occurrence, food botulism remains a public health emergency as it requires timely treatment and rapid reactive intervention to be undertaken by multiple regulatory agencies. Continuous professional training of medical staff, up-to-date clinical guidance, rapid diagnostic, and food investigations are essential for optimising patient outcomes and prevention. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Back to TopTop