Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (664)

Search Parameters:
Keywords = food carcinogens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 306 KiB  
Article
Health Problems, Unhealthy Behaviors and Occupational Carcinogens Exposures Among Night Shift Brazilian Workers: Results from National Health Survey, 2019
by Fernanda de Albuquerque Melo Nogueira, Giseli Nogueira Damacena, Ubirani Barros Otero, Débora Cristina de Almeida Mariano Bernardino, Christiane Soares Pereira Madeira, Marcia Sarpa and Celia Landmann Szwarcwald
Int. J. Environ. Res. Public Health 2025, 22(8), 1215; https://doi.org/10.3390/ijerph22081215 - 1 Aug 2025
Viewed by 164
Abstract
Introduction: Night shift work (NSW) has been increasingly addressed in the scientific literature, as it is considered a probable carcinogen. In this study, we investigated the association of NSW with health problems, unhealthy behaviors, and occupational carcinogens. Methods: Cross-sectional study with a sample [...] Read more.
Introduction: Night shift work (NSW) has been increasingly addressed in the scientific literature, as it is considered a probable carcinogen. In this study, we investigated the association of NSW with health problems, unhealthy behaviors, and occupational carcinogens. Methods: Cross-sectional study with a sample of 47,953 workers from the 2019 National Health Survey. NSW prevalence was estimated according to sociodemographic characteristics. To investigate the associations of NSW with all study variables, gender stratified logistic regression models were used. The odds-ratio and 95% confidence intervals were estimated. Results: Among men, there was a significant association of NSW with sleep disorders (OR = 1.39; 95% CI: 1.17–1.65), tiredness (OR = 1.68; 95% CI: 1.41–2.00), obesity (OR = 1.41; 95% CI: 1.20–1.66), unhealthy food consumption (OR = 1.28; 95% CI: 1.12–1.46), handling of radioactive material (OR = 2.45; 95% CI: 1.61–3.72), and biological material (OR = 3.18; 95% CI: 3.15–4.80). Among females, NSW was associated with the same variables except obesity, but depressive feelings (OR = 1.35 95% CI: 1.09–1.67), frequent alcohol intake (OR = 1.48; 95% CI: 1.23–1.78), handling of chemical substances (OR = 1.54; OR = 1.54; 95% CI: 1.20–1.97), and passive smoking at work (OR = 1.45; 95% CI: 1.12–1.86) were highly significant. Conclusion: Night shift workers are more vulnerable to occupational carcinogen exposure, experience greater impacts on their well-being, and are more likely to engage in unhealthy behaviors. These findings should be considered in managing and organizing night work in the workplace. Actions to promote healthy work environments should be encouraged to protect workers’ health. Full article
23 pages, 511 KiB  
Article
Dietary Acrylamide Exposure and Its Correlation with Nutrition and Exercise Behaviours Among Turkish Adolescents
by Mehtap Metin Karaaslan and Burhan Basaran
Nutrients 2025, 17(15), 2534; https://doi.org/10.3390/nu17152534 - 1 Aug 2025
Viewed by 282
Abstract
Background/Objectives: Acrylamide is a probably carcinogenic to humans that naturally forms during the thermal processing of foods. An individual’s lifestyle—especially dietary habits and physical activity—may influence the severity of acrylamide’s adverse health effects. This study aimed to examine the relationship between adolescents’ dietary [...] Read more.
Background/Objectives: Acrylamide is a probably carcinogenic to humans that naturally forms during the thermal processing of foods. An individual’s lifestyle—especially dietary habits and physical activity—may influence the severity of acrylamide’s adverse health effects. This study aimed to examine the relationship between adolescents’ dietary and exercise behaviors and their dietary acrylamide exposure and associated health risks. Methods: This descriptive and cross-sectional study was conducted with 370 high school students in Türkiye. Data were collected using the Nutrition Exercise Behavior Scale (NEBS) and a retrospective 24-h dietary recall questionnaire. Acrylamide exposure was calculated based on food intake to estimate carcinogenic (CR) and non-corcinogenic (target hazard quotient: THQ) health risks and analyzed in relation to NEBS scores. Results: Findings indicated that while adolescents are beginning to adopt healthy eating and exercise habits, these behaviors are not yet consistent. Emotional eating and unhealthy food choices still occur. Higher acrylamide exposure and risk values were observed in boys and underweight individuals. This can be explained mainly by the fact that boys consume more of certain foods—especially bread, which contains relatively higher levels of acrylamide—than girls do, and that underweight individuals have lower body weights despite consuming similar amounts of food as other groups. Bread products emerged as the primary source of daily acrylamide intake. Positive correlations were found between NEBS total and subscale scores and acrylamide exposure and health risk values. Conclusions: The study demonstrates a significant association between adolescents’ health behaviors and acrylamide exposure. These results underscore potential public health concerns regarding acrylamide intake during adolescence and emphasize the need for targeted nutritional interventions to reduce risk and promote sustainable healthy behaviors. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

20 pages, 1266 KiB  
Systematic Review
A Systematic Review on Contamination of Marine Species by Chromium and Zinc: Effects on Animal Health and Risk to Consumer Health
by Alexandre Mendes Ramos-Filho, Paloma de Almeida Rodrigues, Adriano Teixeira de Oliveira and Carlos Adam Conte-Junior
J. Xenobiot. 2025, 15(4), 121; https://doi.org/10.3390/jox15040121 - 1 Aug 2025
Viewed by 199
Abstract
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of [...] Read more.
Potentially toxic elements, such as chromium (Cr) and zinc (Zn), play essential roles in humans and animals. However, the harmful effects of excessive exposure to these elements through food remain unknown. In this sense, this study aimed to evaluate the anthropogenic contamination of chromium and zinc in aquatic biota and seafood consumers. Based on the PRISMA protocol, 67 articles were selected for this systematic review. The main results point to a wide distribution of these elements, which have familiar emission sources in the aquatic environment, especially in highly industrialized regions. Significant concentrations of both have been reported in different fish species, which sometimes represent a non-carcinogenic risk to consumer health and a carcinogenic risk related to Cr exposure. New studies should be encouraged to fill gaps, such as the characterization of the toxicity of these essential elements through fish consumption, determination of limit concentrations updated by international regulatory institutions, especially for zinc, studies on the influence of abiotic factors on the toxicity and bioavailability of elements in the environment, and those that evaluate the bioaccessibility of these elements in a simulated digestion system when in high concentrations. Full article
Show Figures

Figure 1

22 pages, 1009 KiB  
Review
Mycotoxin-Caused Intestinal Toxicity: Underlying Molecular Mechanisms and Further Directions
by Tian Li, Weidong Qiao, Jiehong Zhou, Zhihui Hao, Gea Oliveri Conti, Tony Velkov, Shusheng Tang, Jianzhong Shen and Chongshan Dai
Toxics 2025, 13(8), 625; https://doi.org/10.3390/toxics13080625 - 26 Jul 2025
Viewed by 450
Abstract
Mycotoxins represent a group of highly toxic secondary metabolites produced by diverse fungal pathogens. Mycotoxin contaminations frequently occur in foods and feed and pose significant risks to human and animal health due to their carcinogenic, mutagenic, and immunosuppressive properties. Notably, deoxynivalenol, zearalenone, fumonisins [...] Read more.
Mycotoxins represent a group of highly toxic secondary metabolites produced by diverse fungal pathogens. Mycotoxin contaminations frequently occur in foods and feed and pose significant risks to human and animal health due to their carcinogenic, mutagenic, and immunosuppressive properties. Notably, deoxynivalenol, zearalenone, fumonisins (mainly including fumonisins B1, B2, and FB3), aflatoxin B1 (AFB1), and T-2/HT-2 toxins are the major mycotoxin contaminants in foods and feed. Undoubtedly, exposure to these mycotoxins can disrupt gut health, particularly damaging the intestinal epithelium in humans and animals. In this review, we summarized the detrimental effects caused by these mycotoxins on the intestinal health of humans and animals. The fundamental molecular mechanisms, which cover the induction of inflammatory reaction and immune dysfunction, the breakdown of the intestinal barrier, the triggering of oxidative stress, and the intestinal microbiota imbalance, were explored. These signaling pathways, such as MAPK, Akt/mTOR, TNF, TGF-β, Wnt/β-catenin, PKA, NF-kB, NLRP3, AHR, TLR2, TLR4, IRE1/XBP1, Nrf2, and MLCK pathways, are implicated. The abnormal expression of micro-RNA also plays a critical role. Finally, we anticipate that this review can offer new perspectives and theoretical foundations for controlling intestinal health issues caused by mycotoxin contamination and promote the development of prevention and control products. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

22 pages, 867 KiB  
Article
Occurrence of Potentially Toxic Metals Detected in Milk and Dairy Products in Türkiye: An Assessment in Terms of Human Exposure and Health Risks
by Burhan Basaran
Foods 2025, 14(15), 2561; https://doi.org/10.3390/foods14152561 - 22 Jul 2025
Viewed by 504
Abstract
This study investigated ten potential toxic metals (PTMs) in six milk and dairy product types and evaluated food safety (TDI, RDA), human exposure (EDI), non-carcinogenic risk (THQ, HI), and contamination levels (CF, PLI). Based on total PTM load, products ranked as: children’s milk [...] Read more.
This study investigated ten potential toxic metals (PTMs) in six milk and dairy product types and evaluated food safety (TDI, RDA), human exposure (EDI), non-carcinogenic risk (THQ, HI), and contamination levels (CF, PLI). Based on total PTM load, products ranked as: children’s milk > yogurt > protein milk > milk > ayran > kefir. Aluminum (Al) showed the highest average concentration in all products except ayran, where manganese (Mn) was dominant. Cadmium (Cd), mercury (Hg), and lead (Pb) were consistently at the lowest levels. Except for chromium (Cr) exposure from children’s milk, all average and maximum EDI values stayed below TDI and RDA thresholds. Children’s milk had the highest non-carcinogenic risk, while yogurt, kefir, milk, and ayran may also pose potential risks when maximum HI values are considered. Although CF values varied across products, PLI results showed all products had high levels of PTM contamination. Given the widespread consumption of dairy across all age groups, especially by sensitive populations like children, monitoring and controlling PTM levels is crucial alongside ensuring nutritional quality. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

17 pages, 3477 KiB  
Article
Development of Polydopamine–Chitosan-Modified Electrochemical Immunosensor for Sensitive Detection of 7,12-Dimethylbenzo[a]anthracene in Seawater
by Huili Hao, Chengjun Qiu, Wei Qu, Yuan Zhuang, Zizi Zhao, Haozheng Liu, Wenhao Wang, Jiahua Su and Wei Tao
Chemosensors 2025, 13(7), 263; https://doi.org/10.3390/chemosensors13070263 - 20 Jul 2025
Viewed by 342
Abstract
7,12-Dimethylbenzo[a]anthracene (DMBA-7,12), a highly toxic and environmentally persistent polycyclic aromatic hydrocarbon (PAH), poses significant threats to marine biodiversity and human health due to its bioaccumulation through the food chain. Conventional chromatographic methods, while achieving comparable detection limits, are hindered by the need for [...] Read more.
7,12-Dimethylbenzo[a]anthracene (DMBA-7,12), a highly toxic and environmentally persistent polycyclic aromatic hydrocarbon (PAH), poses significant threats to marine biodiversity and human health due to its bioaccumulation through the food chain. Conventional chromatographic methods, while achieving comparable detection limits, are hindered by the need for expensive instrumentation and prolonged analysis times, rendering them unsuitable for rapid on-site monitoring of DMBA-7,12 in marine environments. Therefore, the development of novel, efficient detection techniques is imperative. In this study, we have successfully developed an electrochemical immunosensor based on a polydopamine (PDA)–chitosan (CTs) composite interface to overcome existing technical limitations. PDA provides a robust scaffold for antibody immobilization due to its strong adhesive properties, while CTs enhances signal amplification and biocompatibility. The synergistic integration of these materials combines the high efficiency of electrochemical detection with the specificity of antigen–antibody recognition, enabling precise qualitative and quantitative analysis of the target analyte through monitoring changes in the electrochemical properties at the electrode surface. By systematically optimizing key experimental parameters, including buffer pH, probe concentration, and antibody loading, we have constructed the first electrochemical immunosensor for detecting DMBA-7,12 in seawater. The sensor achieved a detection limit as low as 0.42 ng/mL. In spiked seawater samples, the recovery rates ranged from 95.53% to 99.44%, with relative standard deviations (RSDs) ≤ 4.6%, demonstrating excellent accuracy and reliability. This innovative approach offers a cost-effective and efficient solution for the in situ rapid monitoring of trace carcinogens in marine environments, potentially advancing the field of marine pollutant detection technologies. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Graphical abstract

17 pages, 1408 KiB  
Article
Rapid Kinetic Fluorogenic Quantification of Malondialdehyde in Ground Beef
by Keshav Raj Bhandari, Max Wamsley, Bindu Nanduri, Willard E. Collier and Dongmao Zhang
Foods 2025, 14(14), 2525; https://doi.org/10.3390/foods14142525 - 18 Jul 2025
Viewed by 297
Abstract
Malondialdehyde (MDA), a mutagenic and carcinogenic compound, is widely studied in the meat industry and lipid peroxidation research due to its implications for food quality and safety. Current methods for quantifying MDA in solid tissues are labor-intensive, requiring multiple instruments and approximately two [...] Read more.
Malondialdehyde (MDA), a mutagenic and carcinogenic compound, is widely studied in the meat industry and lipid peroxidation research due to its implications for food quality and safety. Current methods for quantifying MDA in solid tissues are labor-intensive, requiring multiple instruments and approximately two hours to complete. This study presents an ultrafast kinetic fluorogenic method for quantifying MDA in ground beef, utilizing 2-thiobarbituric acid (TBA) as a fluorogenic probe. The total assay time is significantly shortened to 6 min from sample preparation to data acquisition. The assay’s robustness against matrix interference was validated using sample volume variation and standard addition calibration methods. Additionally, the effects of ambient exposure to air, washing, and cooking on MDA content in raw ground beef were quantified. While both ambient exposure to air and cooking increased MDA levels, washing raw ground beef and decanting cooked ground beef broth effectively reduced MDA levels in the ground beef. This simple and rapid assay can be adopted both in food research and industry. Moreover, insights from our study on the relationship between ground beef treatment and MDA concentration will help consumers make informed decisions about ground beef handling and consumption to lower their intake of MDA. Full article
(This article belongs to the Special Issue Spectroscopic Methods Applied in Food Quality Determination)
Show Figures

Figure 1

14 pages, 2816 KiB  
Article
A Colorimetric/Ratiometric Fluorescent Probe Based on Aggregation-Induced Emission Effect for Detecting Hypochlorous Acid in Real Samples and Bioimaging Applications
by Junliang Chen, Pingping Xiong, Huawei Niu, Weiwei Cao, Wenfen Zhang and Shusheng Zhang
Foods 2025, 14(14), 2491; https://doi.org/10.3390/foods14142491 - 16 Jul 2025
Viewed by 318
Abstract
Hypochlorous acid (HClO) serves as a biological mediator and is widely utilized as a disinfectant in food processing and water treatment. However, excessive HClO residues in food and environmental water raise concerns due to the potential formation of carcinogenic chlorinated byproducts and disinfection [...] Read more.
Hypochlorous acid (HClO) serves as a biological mediator and is widely utilized as a disinfectant in food processing and water treatment. However, excessive HClO residues in food and environmental water raise concerns due to the potential formation of carcinogenic chlorinated byproducts and disinfection byproducts (DBPs). Despite its importance, traditional methods for HClO detection often involve complex sample preparation, sophisticated instrumentation, and skilled operators. Herein, we report an aggregation-induced emission (AIE) small molecule fluorescent probe (NYV) that integrates colorimetric and ratiometric fluorescence responses for the detection of HClO. This probe exhibits high sensitivity, with a detection limit of 0.35 μM, a rapid response time of 1 min, and a wide linear range (0–142.5 μM), along with anti-interference capabilities, making it suitable for real-time monitoring. Furthermore, we have developed a portable solid-state sensor based on probe NYV for the rapid visual detection of HClO. The potential applications of this probe in real sample analysis and bioimaging experiments are demonstrated. Our findings contribute to the development of innovative fluorescent probes for HClO detection, with broad applications in food safety, environmental monitoring, and biomedical research on oxidative stress and ferroptosis. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

17 pages, 983 KiB  
Article
Oak Acorns as Functional Foods: Antioxidant Potential and Safety Assessment
by Vesna Stankov Jovanović, Vladan Djurić, Violeta Mitić, Ana Barjaktarević, Snežana Cupara, Marija Ilić and Jelena Nikolić
Foods 2025, 14(14), 2486; https://doi.org/10.3390/foods14142486 - 16 Jul 2025
Viewed by 350
Abstract
With the growing interest in natural and health-supporting foods, oak acorns (Quercus robur) are gaining renewed attention for their nutritional and antioxidant potential. This study explored how different processing methods affect bioactive compounds in three acorn-based products: raw acorn flour, roasted [...] Read more.
With the growing interest in natural and health-supporting foods, oak acorns (Quercus robur) are gaining renewed attention for their nutritional and antioxidant potential. This study explored how different processing methods affect bioactive compounds in three acorn-based products: raw acorn flour, roasted “coffee,” and washed-and-roasted “super coffee.” Extracts were obtained using methanol, acetone, and hexane to evaluate total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity via ABTS, DPPH, CUPRAC, FRAP, and TRP assays. Methanol proved to be the most effective solvent, extracting up to 66.53 mg GAE/g dw of phenolics in raw flour and 76.50 mg GAE/g dw in roasted “coffee,” reflecting a 15% increase in TPC after thermal treatment. However, the same treatment resulted in a 17% decrease in flavonoid content, from 181.5 mg RE/g dw in raw flour to 150.67 mg RE/g dw in “super coffee.” Antioxidant activity followed a similar pattern, with methanol extracts showing the highest values, up to 584 mg TE/g dw in the CUPRAC assay and 126.7 mg TE/g dw in ABTS. Safety was also assessed through the quantification of 16 priority polycyclic aromatic hydrocarbons (PAHs). The total PAH levels in the roasted “coffee” and “super coffee” samples were 222 ng/g dw and 290 ng/g dw, respectively. Importantly, PAH4 compounds, used as key safety indicators in EU regulations, were present in low concentrations, primarily as benzo[a]anthracene (34.3–39.8 ng/g), and none exceeded the maximum limits established for cocoa-based products. Benzo[a]pyrene, a major carcinogen, was not detected. The results confirm that acorns of Quercus robur, especially in their native flour form, are rich in antioxidants, naturally gluten-free, and safe when thermally processed, making them a strong candidate for use in functional foods. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

27 pages, 2201 KiB  
Review
Toxicity, Mitigation, and Chemical Analysis of Aflatoxins and Other Toxic Metabolites Produced by Aspergillus: A Comprehensive Review
by Habtamu Fekadu Gemede
Toxins 2025, 17(7), 331; https://doi.org/10.3390/toxins17070331 - 30 Jun 2025
Viewed by 1488
Abstract
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose significant risks to food safety, public health, and global trade. These mycotoxins contaminate staple crops such as maize and peanuts, particularly in warm and humid regions, leading to economic [...] Read more.
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose significant risks to food safety, public health, and global trade. These mycotoxins contaminate staple crops such as maize and peanuts, particularly in warm and humid regions, leading to economic losses and severe health effects, including hepatocellular carcinoma, immune suppression, and growth impairment. In addition to aflatoxins, Aspergillus species produce other toxic metabolites such as ochratoxin A, sterigmatocystin, and cyclopiazonic acid, which are associated with nephrotoxic, carcinogenic, and neurotoxic effects, respectively. This review provides a comprehensive analysis of aflatoxin toxicity, mitigation strategies, and chemical detection methods. The toxicity of aflatoxins is discussed in relation to their biochemical mechanisms, carcinogenicity, and synergistic effects with other mycotoxins. Various mitigation approaches, including pre-harvest biocontrol, post-harvest storage management, and novel detoxification methods such as enzymatic degradation and nanotechnology-based interventions, are evaluated. Furthermore, advances in aflatoxin detection, including chromatographic, immunoassay, and biosensor-based methods, are explored to improve regulatory compliance and food safety monitoring. This review underscores the need for integrated management strategies and global collaboration to reduce aflatoxin contamination and its associated health and economic burdens. Future research directions should focus on genetic engineering for resistant crop varieties, climate adaptation strategies, and improved risk assessment models. Full article
Show Figures

Figure 1

26 pages, 4805 KiB  
Article
Comparison of Heavy Metal Pollution, Health Risk, and Sources Between Surface and Deep Layers for an Agricultural Region Within the Pearl River Delta: Implications for Soil Environmental Research
by Zhenwei Bi, Yu Guo, Zhao Wang, Zhaoyu Zhu, Mingkun Li and Tingping Ouyang
Toxics 2025, 13(7), 548; https://doi.org/10.3390/toxics13070548 - 29 Jun 2025
Viewed by 315
Abstract
During the past decades, agricultural soil heavy metal pollution has been becoming increasingly severe due to urbanization and industrialization. However, the impact of externally input heavy metals on deep soils remains unclear because most previous relevant research only focused on surface soils. In [...] Read more.
During the past decades, agricultural soil heavy metal pollution has been becoming increasingly severe due to urbanization and industrialization. However, the impact of externally input heavy metals on deep soils remains unclear because most previous relevant research only focused on surface soils. In the present study, Concentrations of eight heavy metals (Cu, Zn, Ni, Pb, Cr, Cd, As, and Hg) were determined for 72 pairs of surface and deep soil samples collected from an agricultural region close to the Pearl River estuary. Subsequently, heavy metal pollution and potential health risks were assessed using the Geo-accumulation Index and Potential Ecological Risk Index, a dose response model and Monte Carlo simulation, respectively. Principal component analysis (PCA) and the positive matrix factorization (PMF) receptor model were combined to analyze heavy metal sources. The results indicated that average concentrations of all heavy metals exceeded their corresponding background values. Cd was identified as the main pollutant due to its extremely high values of Igeo and Er. Unacceptable potential heavy metal non-carcinogenic and carcinogenic risks indicated by respectively calculated HI and TCR, higher than thresholds 1.0 and 1.0 × 10−4, mainly arose from heavy metals As, Cd, Cr, and Ni through food ingestion and dermal absorption. Anthropogenic sources respectively contributed 19.7% and 38.9% for soil As and accounted for the main contributions to Cd, Cu, and Hg (Surface: 90.2%, 65.4%, 67.3%; Deep: 53.8%, 54.6%, 56.2%) within surface and deep layers. These results indicate that soil heavy metal contents with deep layers were also significantly influenced by anthropogenic input. Therefore, we suggest that both surface and deep soils should be investigated simultaneously to gain relatively accurate results for soil heavy metal pollution and source apportionments. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

25 pages, 5937 KiB  
Article
Optimization of Spirulina platensis Incorporation in Coated Beef Meatballs: Impact on Quality Characteristics and Polycyclic Aromatic Hydrocarbon (PAH) Formation
by Yagmur Elikucuk and Gulen Yildiz Turp
Processes 2025, 13(7), 2031; https://doi.org/10.3390/pr13072031 - 26 Jun 2025
Viewed by 343
Abstract
This study aimed to improve the quality characteristics of coated beef meatballs with Spirulina platensis, optimize its usage level and storage, and reduce the levels of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in the product. Six groups of coated meatball samples were prepared [...] Read more.
This study aimed to improve the quality characteristics of coated beef meatballs with Spirulina platensis, optimize its usage level and storage, and reduce the levels of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in the product. Six groups of coated meatball samples were prepared with S. platensis powder at levels of 0.2–2.3% and 0% (control) and stored at −20 °C for 102 days. All ratios of S. platensis significantly increased the protein content and reduced the oxidation and all the PAH-compound and ΣPAH4 contents of the samples (p < 0.05). The sensory characteristics of the samples were improved by higher levels of S. platensis at later periods of storage. Using S. platensis resulted in significant decreases in the ΣPAH4 content of 16.21% and 39.53% in the samples with 1.25% and 2.3%, respectively (p < 0.05). The recommended solution that ensured the highest level of response optimization, with the highest “Desirability” among the top five solutions in terms of color (L*, a*, b*), overall acceptance, and flavor, was determined to be the solution with a S. platensis powder usage level of 1.25% and a storage period of 60 days. Consequently, S. platensis, which is considered to be a food of the future, improved the quality characteristics of coated meatballs and reduced their PAH level. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

16 pages, 499 KiB  
Article
Concentration and Potential Non-Carcinogenic and Carcinogenic Health Risk Assessment of Metals in Locally Grown Vegetables
by Muhammad Saleem, Yuqiang Wang, David Pierce, Donald A. Sens, Seema Somji and Scott H. Garrett
Foods 2025, 14(13), 2264; https://doi.org/10.3390/foods14132264 - 26 Jun 2025
Viewed by 487
Abstract
Heavy metal contamination in food has become a significant global food safety concern. This study assessed the concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mn, K, Mg, Na, Ni, Se, Pb, and Zn in 13 locally grown vegetables using microwave-assisted [...] Read more.
Heavy metal contamination in food has become a significant global food safety concern. This study assessed the concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mn, K, Mg, Na, Ni, Se, Pb, and Zn in 13 locally grown vegetables using microwave-assisted acid digestion and ICP-MS. The potential human health risks associated with their consumption were also evaluated. Vegetable samples were collected from the local farmer’s market in Grand Forks, North Dakota. The mean levels (μg/g) of Na, Mg, K, Ca, Fe, Se, Mn, Cu, Zn, Co, Hg, Cr, Ni, As, Cd, and Pb were 1001, 2935, 30474, 686.0, 52.90, 0.171, 37.63, 4.936, 21.33, 0.069, 0.0030, 0.049, 0.736, 0.083, 0.298, and 0.019, respectively, having the following decreasing trend: K > Mg > Na > Ca > Fe > Mn > Zn > Cu > Ni > Cd > Se > As > Co > Cr > Pb > Hg. The highest total metals level was found in spinach, with the following decreasing order: spinach > tomato > sugar beet > white eggplant > cucumber ~ kale > green chili > green bean > dill ~ potato > capsicum > onion > corn. Spinach exhibited the highest concentrations of Cd, Cr, Pb, and Hg, which suggests a higher risk of metal exposure from its consumption. Toxic metals except Cd were found to be lower than the maximum allowable concentrations set by international agencies among the analyzed vegetables, while Cd levels were higher than maximum allowable levels in most of the vegetables. Health risks associated with metal intake by vegetable consumption were evaluated in terms of estimated daily intake (EDI), non-carcinogenic risks were evaluated by the target hazard quotient (THQ) and Hazard Index (HI), and carcinogenic risks were evaluated by target cancer risk (TCR). The EDI values of all the metals were found to be below the maximum tolerable daily intake (MTDI). The highest EDI value for Mn, Zn, Hg, Cr, Cd, and Pb was noted in spinach. THQ values for Cd, Co, and As were higher than 1 in most of the vegetable species analyzed, indicating non-carcinogenic health effects to consumers. HI results also posed a non-carcinogenic health risk associated with the intake of these vegetables. Mean TCR values of Cr, Ni, As, and Cd indicated carcinogenic risk for consumers. This study showed that there are potential health risks with consumption of these vegetables. Lastly, regular monitoring of metal levels in vegetables is suggested/recommended to minimize health risks and support pollution control efforts. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

15 pages, 1757 KiB  
Review
Arsenic in Water and Food: Toxicity and Human Exposure
by Pierina Visciano
Foods 2025, 14(13), 2229; https://doi.org/10.3390/foods14132229 - 24 Jun 2025
Viewed by 494
Abstract
Arsenic is a human carcinogen present in drinking water and food, especially rice, rice products and seafood. It can be found in both organic and inorganic forms, the latter being the most toxic. In addition to the carcinogenic effect, exposure to inorganic arsenic [...] Read more.
Arsenic is a human carcinogen present in drinking water and food, especially rice, rice products and seafood. It can be found in both organic and inorganic forms, the latter being the most toxic. In addition to the carcinogenic effect, exposure to inorganic arsenic can cause numerous disorders in different organs/systems of the human body, such as the skin, cardiovascular, neurological, endocrine, immune, and reproductive systems. The risk assessment associated with dietary arsenic is mainly based on the margin of exposure, i.e., the ratio between the dose at which a small but measurable adverse effect may occur and the estimated daily intake of the target substance. It is mainly influenced by arsenic concentrations and consumption data of average or 95th percentile consumers. This review focuses on the toxicity of arsenic, its sources and routes of human exposure, with particular attention to the ingestion of contaminated water and food, considering the differences between age groups and dietary habits. Full article
(This article belongs to the Special Issue Advances in Food Toxin Analysis and Risk Assessment)
Show Figures

Figure 1

25 pages, 7095 KiB  
Article
Chemopreventive Effects of Bioactive Peptides Derived from Black Soldier Fly Larvae Protein Hydrolysates in a Rat Model of Early-Stage Colorectal Carcinogenesis
by Kwanchanok Praseatsook, Arpamas Vachiraarunwong, Kenji Sato, Sivamoke Dissook, Hideki Wanibuchi, Sirinya Taya, Rawiwan Wongpoomchai, Pornngarm Dejkriengkraikul, Min Gi and Supachai Yodkeeree
Int. J. Mol. Sci. 2025, 26(13), 5955; https://doi.org/10.3390/ijms26135955 - 20 Jun 2025
Viewed by 1500
Abstract
Bioactive peptides from black soldier fly larvae (BSFL) protein hydrolysates have gained attention for their health-promoting properties. Our previous study demonstrated the chemopreventive potential of BSFL hydrolysates prepared with Alcalase (ASBP-AH) in colon cancer cells; their in vivo efficacy has not been fully [...] Read more.
Bioactive peptides from black soldier fly larvae (BSFL) protein hydrolysates have gained attention for their health-promoting properties. Our previous study demonstrated the chemopreventive potential of BSFL hydrolysates prepared with Alcalase (ASBP-AH) in colon cancer cells; their in vivo efficacy has not been fully elucidated. This study evaluated the chemopreventive effects of ASBP-AH, processed by spray-drying (ASBP-AHS) or freeze-drying (ASBP-AHF), in a diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH)-induced rat model of early-stage colorectal carcinogenesis. Oral administration of ASBP-AHS or ASBP-AHF significantly reduced aberrant crypt foci (ACF) and downregulated PCNA, COX-2, and NF-κB expression, without affecting apoptosis. Furthermore, both treatments restored microbial species richness and shifted gut microbial diversity disrupted by carcinogen exposure. ASBP-AHS specifically enriched short-chain fatty acid (SCFA)-producing bacteria, while ASBP-AHF favored anti-inflammatory microbial signatures. Likewise, correlation analysis revealed positive associations between microbial changes and SCFA levels, particularly with ASBP-AHS. Peptidomic profiling identified identical peptides in both hydrolysates, including stable pyroglutamyl-containing sequences with potential anti-inflammatory and microbiota-modulating effects. These findings support the in vivo chemopreventive potential of ASBP-AH and its promise as a functional food ingredient for promoting gut health and reducing colorectal cancer risk. Full article
(This article belongs to the Special Issue Food-Derived Bioactive Peptides)
Show Figures

Figure 1

Back to TopTop