Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (645)

Search Parameters:
Keywords = food and feed contamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1083 KiB  
Article
Assessment of 137Cs and 40K Transfer Factors in Croatian Agricultural Systems and Implications for Food Safety
by Tomislav Bituh, Branko Petrinec, Dragutin Hasenay and Sanja Stipičević
Environments 2025, 12(8), 269; https://doi.org/10.3390/environments12080269 - 2 Aug 2025
Viewed by 214
Abstract
Croatian agricultural legislation acknowledges the significance of radionuclides as pollutants in agricultural lands; however, it lacks specific thresholds or reference values for contamination levels, in contrast to other contaminants. This absence highlights the necessity for a comprehensive assessment of radionuclides across various agricultural [...] Read more.
Croatian agricultural legislation acknowledges the significance of radionuclides as pollutants in agricultural lands; however, it lacks specific thresholds or reference values for contamination levels, in contrast to other contaminants. This absence highlights the necessity for a comprehensive assessment of radionuclides across various agricultural systems in Croatia. This study investigates the transfer of radionuclides 137Cs and 40K from soil to agricultural crops throughout Croatia and estimates the consequent annual ingestion dose for the population. The samples collected comprised food crops and animal feed, with corresponding soil samples analyzed to calculate transfer factors. Activity concentrations of 137Cs exhibited regional and crop-type variability, reflecting the uneven distribution of fallout and differing soil properties. Transfer factors were found to range from 0.003 to 0.06 for 137Cs and from 0.15 to 3.1 for 40K, with the highest uptake occurring in kidney beans. The total estimated annual effective ingestion dose was calculated to be a maximum of 0.748 mSv/year for children aged 2–7, predominantly attributable to 40K. Given the homeostatic regulation of potassium in the human body, the dose associated with 137Cs poses a more significant radiological concern. These findings underscore the need for radionuclide-specific agricultural legislation in Croatia and offer a baseline for recommending reference values and informing future regulations regarding agricultural soil contamination. Full article
Show Figures

Figure 1

20 pages, 998 KiB  
Article
Colony Nutrition Enhances Bee Resilience to Fungicides, While the Benefit of Propolis Supplementation Depends on Stress Conditions
by Yara Martins Molina Ferraz, Aline Yukari Kato, Tainá Angelica de Lima Freitas, Cássia Regina de Avelar Gomes, Thais Regina Ramos Alves, Matheus Franco Trivellato, Samir Moura Kadri, Ricardo de Oliveira Orsi, David De Jong, Jaqueline Dalbello Biller and Daniel Nicodemo
Agriculture 2025, 15(15), 1665; https://doi.org/10.3390/agriculture15151665 - 1 Aug 2025
Viewed by 215
Abstract
Enhanced colony nutrition can support brood development, resulting in better physiological conditions and increased resilience in adult honey bees, particularly under stress. This study investigated the effects of colony nutrition and adult dietary supplementation with green propolis on bee health under fungicide exposure. [...] Read more.
Enhanced colony nutrition can support brood development, resulting in better physiological conditions and increased resilience in adult honey bees, particularly under stress. This study investigated the effects of colony nutrition and adult dietary supplementation with green propolis on bee health under fungicide exposure. Colonies were managed under food restriction or nutritional supplementation for 22 weeks. Newly emerged bees from each colony were then caged and fed protein diets consisting of honey-pollen patties contaminated or not with fungicide, and sucrose sugar syrup with or without aqueous green propolis extract. Bees from supplemented colonies showed greater body weight, higher hemolymph protein levels, and higher consumption of protein food after seven days in cages. Fungicide exposure reduced hemolymph protein levels, altered the expression of detoxification and immune-related genes, and significantly decreased bee survival. Interestingly, propolis supplementation alone changed gene expression patterns and slightly reduced longevity compared to bees not exposed to propolis or fungicide. However, under fungicide stress, bees that ingested propolis survived longer, indicating a protective effect. While colony nutritional supplementation clearly promotes honey bee resilience against fungicide exposure, feeding propolis also showed promising effects, though further studies are needed to determine an optimal dietary concentration. Full article
(This article belongs to the Special Issue Honey Bees and Wild Pollinators in Agricultural Ecosystems)
Show Figures

Graphical abstract

22 pages, 1009 KiB  
Review
Mycotoxin-Caused Intestinal Toxicity: Underlying Molecular Mechanisms and Further Directions
by Tian Li, Weidong Qiao, Jiehong Zhou, Zhihui Hao, Gea Oliveri Conti, Tony Velkov, Shusheng Tang, Jianzhong Shen and Chongshan Dai
Toxics 2025, 13(8), 625; https://doi.org/10.3390/toxics13080625 - 26 Jul 2025
Viewed by 450
Abstract
Mycotoxins represent a group of highly toxic secondary metabolites produced by diverse fungal pathogens. Mycotoxin contaminations frequently occur in foods and feed and pose significant risks to human and animal health due to their carcinogenic, mutagenic, and immunosuppressive properties. Notably, deoxynivalenol, zearalenone, fumonisins [...] Read more.
Mycotoxins represent a group of highly toxic secondary metabolites produced by diverse fungal pathogens. Mycotoxin contaminations frequently occur in foods and feed and pose significant risks to human and animal health due to their carcinogenic, mutagenic, and immunosuppressive properties. Notably, deoxynivalenol, zearalenone, fumonisins (mainly including fumonisins B1, B2, and FB3), aflatoxin B1 (AFB1), and T-2/HT-2 toxins are the major mycotoxin contaminants in foods and feed. Undoubtedly, exposure to these mycotoxins can disrupt gut health, particularly damaging the intestinal epithelium in humans and animals. In this review, we summarized the detrimental effects caused by these mycotoxins on the intestinal health of humans and animals. The fundamental molecular mechanisms, which cover the induction of inflammatory reaction and immune dysfunction, the breakdown of the intestinal barrier, the triggering of oxidative stress, and the intestinal microbiota imbalance, were explored. These signaling pathways, such as MAPK, Akt/mTOR, TNF, TGF-β, Wnt/β-catenin, PKA, NF-kB, NLRP3, AHR, TLR2, TLR4, IRE1/XBP1, Nrf2, and MLCK pathways, are implicated. The abnormal expression of micro-RNA also plays a critical role. Finally, we anticipate that this review can offer new perspectives and theoretical foundations for controlling intestinal health issues caused by mycotoxin contamination and promote the development of prevention and control products. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

20 pages, 3154 KiB  
Article
The Effect of Astaxanthin on Ochratoxin A-Induced Intestinal Injury in Chickens Through RIPK1/RIPK3/MLKL Pathway
by Ruiwen Fan, Wenqi Tian, Bo Jin, Yuhang Sun, Miao Long, Shuhua Yang and Peng Li
Antioxidants 2025, 14(8), 915; https://doi.org/10.3390/antiox14080915 - 25 Jul 2025
Viewed by 358
Abstract
Ochratoxin A (OTA), as a mycotoxin, can contaminate a variety of feeds and foods. Existing studies have shown that the main toxicity of OTA to organisms is nephrotoxicity, but the toxic mechanism to other organs is still worthy of further study. Whether OTA [...] Read more.
Ochratoxin A (OTA), as a mycotoxin, can contaminate a variety of feeds and foods. Existing studies have shown that the main toxicity of OTA to organisms is nephrotoxicity, but the toxic mechanism to other organs is still worthy of further study. Whether OTA causes intestinal damage through the necroptosis pathway mediated by RIPK1/RIPK3/MLKL remains to be elucidated. Astaxanthin (AST), a feed additive with strong antioxidant properties, was used as an antidote to evaluate the alleviation effect on OTA-induced intestinal injury and the underlying mechanism in this research. Chickens are the most sensitive animals to OTA except pigs. Therefore, 70 white-feathered chickens (n = 15) and Chicken Small Intestinal Epithelial Cells (CSIECs) were used as experimental subjects. Experimental models were established by single or combined exposure of OTA (1.0 mg/kg on chickens for 21 d; 2 μM on CSIEC for 24 h) and AST (100 mg/kg on chickens for 21 d; 40 μM on CSIEC for 24 h). In this study, AST significantly ameliorated OTA-induced intestinal damage by restoring the expression of tight junction proteins (Occludin-1, Claudin-1, and ZO-1), attenuating severe histopathological alterations, mitigating the inflammatory response (elevated pro-inflammatory cytokines and reduced anti-inflammatory mediators), and suppressing necroptosis through downregulation of RIPK1, RIPK3 and MLKL expression. Combined evidence from animal experiments and cell culture experiments demonstrated that AST alleviated the necroptosis and inflammation caused by OTA in CSIECs and the intestine of chickens through the RIPK1/RIPK3/MLKL signaling pathway, thereby reducing the damage caused by OTA. Full article
Show Figures

Figure 1

28 pages, 531 KiB  
Review
Multiple Mycotoxin Contamination in Livestock Feed: Implications for Animal Health, Productivity, and Food Safety
by Oluwakamisi F. Akinmoladun, Fabia N. Fon, Queenta Nji, Oluwaseun O. Adeniji, Emmanuel K. Tangni and Patrick B. Njobeh
Toxins 2025, 17(8), 365; https://doi.org/10.3390/toxins17080365 - 25 Jul 2025
Viewed by 466
Abstract
Mycotoxins are toxic secondary metabolites produced by various fungi that contaminate livestock feed, posing serious threats to animal health, productivity, and food safety. Although historical research has often examined individual mycotoxins in isolation, real-world conditions typically involve the simultaneous presence of multiple mycotoxins, [...] Read more.
Mycotoxins are toxic secondary metabolites produced by various fungi that contaminate livestock feed, posing serious threats to animal health, productivity, and food safety. Although historical research has often examined individual mycotoxins in isolation, real-world conditions typically involve the simultaneous presence of multiple mycotoxins, resulting in additive or synergistic toxic effects that are often more severe than those observed with single toxin exposures. This review comprehensively synthesizes recent findings on multi-mycotoxin contamination in livestock feed, highlighting their physiological effects, mechanisms of action, and implications for regulatory frameworks. Multi-mycotoxin interactions exacerbate oxidative stress, immune suppression, impaired reproduction, and organ damage across species, leading to reduced growth performance, decreased milk and egg production, compromised carcass and wool quality, and increased mortality rates. A major concern is that current international regulatory standards mainly address individual mycotoxins, overlooking the compounded risks of co-occurrence. Global surveillance studies consistently reveal high prevalence rates of mycotoxin mixtures in feedstuffs, especially combinations involving DON, ZEN, AFB1, FB1, and OTA. Understanding these interactions and their underlying cellular mechanisms is critical for improving risk assessment models, formulating integrated mitigation strategies, and safeguarding both livestock productivity and human food security. Full article
Show Figures

Figure 1

27 pages, 1706 KiB  
Review
Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review
by Munwar Ali, Chang Xu and Kun Li
Vet. Sci. 2025, 12(8), 688; https://doi.org/10.3390/vetsci12080688 - 23 Jul 2025
Viewed by 498
Abstract
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs [...] Read more.
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs enter animals’ bodies primarily through ingestion of contaminated feed and water, inhalation, and dermal exposure, subsequently accumulating in various organs, disrupting physiological functions. Notably, MNPs facilitate the horizontal transfer of antimicrobial resistance genes (ARGs), exacerbating the global challenge of antimicrobial resistance (AMR). In agricultural environments, sources such as organic fertilizers, wastewater irrigation systems, surface runoff, and littering contribute to soil contamination, adversely affecting plant growth and soil health, which in turn compromises feed quality and ultimately animals’ productivity. This review synthesizes current evidence demonstrating how MNP exposure impairs animal production, reproduction, and survival, and highlights the interconnected risks to food safety and ecosystem health. The findings call for the urgent need for comprehensive research under controlled conditions to underscore the fine details regarding mechanisms of MNP toxicity and to inform effective mitigation strategies. Addressing MNP pollution is crucial for safeguarding animal health, ensuring sustainable livestock production, and promoting environmental sustainability and integrity. Full article
Show Figures

Graphical abstract

21 pages, 385 KiB  
Review
Emerging Mycotoxins in Aquaculture: Current Insights on Toxicity, Biocontrol Strategies, and Occurrence in Aquafeed and Fish
by Patrizio Lorusso, Giusy Rusco, Alessio Manfredi, Nicolaia Iaffaldano, Angela Di Pinto and Elisabetta Bonerba
Toxins 2025, 17(7), 356; https://doi.org/10.3390/toxins17070356 - 17 Jul 2025
Viewed by 372
Abstract
Mycotoxins are secondary metabolites produced by various fungal species that can contaminate food and feed, posing significant risks to human and animal health. In aquaculture, the replacement of fishmeal with alternative protein sources has increased the risk of mycotoxin contamination, becoming a major [...] Read more.
Mycotoxins are secondary metabolites produced by various fungal species that can contaminate food and feed, posing significant risks to human and animal health. In aquaculture, the replacement of fishmeal with alternative protein sources has increased the risk of mycotoxin contamination, becoming a major challenge in fish feed production. Current data highlights that fish are exposed not only to common mycotoxins but also to emerging ones, raising concerns about human exposure through fish consumption. In this review, we draw attention to the toxicity data of key emerging mycotoxins from Fusarium (enniatins, ENNs; beauvericin, BEA) and Alternaria (alternariol monomethyl ether, AME; alternariol, AOH), their occurrence in aquafeeds and in commercially relevant fish species in Europe, and potential biocontrol approaches to prevent/mitigate contaminations. From the present review, it emerged that these mycotoxins exhibit in vitro cytotoxic properties. Their prevalence and concentrations vary widely both among aquafeeds, depending on the sample’s origin, and among fish species. Biocontrol approaches using microorganisms or natural compounds show promise as sustainable solutions to limit contamination. However, further research is essential to address data gaps and to allow for a proper risk assessment and, if necessary, the implementation of effective management measures. Full article
(This article belongs to the Special Issue Risk Assessment of Mycotoxins: Challenges and Emerging Threats)
43 pages, 421 KiB  
Article
Authentication of Insect-Based Products in Food and Feed: A Benchmark Survey
by Aline Marien, Benjamin Dubois, Olivier Fumière, Abigaël Anselmo, Julien Maljean, Clémence Debailleul, Jean-François Morin and Frédéric Debode
Insects 2025, 16(7), 729; https://doi.org/10.3390/insects16070729 - 17 Jul 2025
Viewed by 664
Abstract
The consumption and farming of insects are gaining global attention as sustainable alternatives to conventional protein sources. Industrial processing of insects into powders or pastes complicates species identification, raising concerns about product authenticity, food safety, and potential fraud. In Western countries, particularly in [...] Read more.
The consumption and farming of insects are gaining global attention as sustainable alternatives to conventional protein sources. Industrial processing of insects into powders or pastes complicates species identification, raising concerns about product authenticity, food safety, and potential fraud. In Western countries, particularly in Europe, the sector is expanding under a stringent regulatory framework, especially regarding rearing substrates, which hinders economic development. This study aimed to assess the species authenticity of commercial insect-based food and feed products and detect the presence of animal-derived DNA from unauthorized substrates. A total of 119 samples (pure insect meals and processed products) were collected from various origins. Species-specific real-time PCR assays targeted Tenebrio molitor, Hermetia illucens, Alphitobius diaperinus, Acheta domesticus, Bombyx mori, and Gryllodes sigillatus, alongside assays for ruminant, porcine, and poultry DNA. High-throughput sequencing (HTS) using metabarcoding confirmed and broadened species detection. Most samples contained the declared species; however, cases of mislabeling, substitution, and cross-contamination were observed. A few insect meals contained animal DNA which could suggest potential use of prohibited substrates. These findings highlight the urgent need for standardized authentication methods and improved transparency to ensure regulatory compliance, consumer trust, and sustainable development of the insect-based sector. Full article
(This article belongs to the Special Issue Insects as the Nutrition Source in Animal Feed)
Show Figures

Graphical abstract

27 pages, 768 KiB  
Review
Pre-Harvest Aflatoxin Contamination in Crops and Climate Change Factors: A European Overview
by Ainhoa Bereziartua, Anke Huss, Jannigje G. Kers, Lidwien A. M. Smit, Roel Vermeulen and Daniel Martins Figueiredo
Toxins 2025, 17(7), 344; https://doi.org/10.3390/toxins17070344 - 8 Jul 2025
Viewed by 659
Abstract
Aflatoxin (AF) contamination of crops during the pre-harvest period is a significant global concern for food and feed safety (FFS). In Europe, climate change presents a growing threat to agricultural products by increasing the risk of AF contamination. This umbrella review evaluates the [...] Read more.
Aflatoxin (AF) contamination of crops during the pre-harvest period is a significant global concern for food and feed safety (FFS). In Europe, climate change presents a growing threat to agricultural products by increasing the risk of AF contamination. This umbrella review evaluates the scope and quality of pre-harvest data on climate-related AF contamination in Europe, addressing key questions: What insights do researchers provide on the relationship between climate change and pre-harvest AF contamination, and what data are lacking? Which crops are the focus of current research, and where in Europe are these studies concentrated? How is the data presented, and is it standardized? We conducted an umbrella literature review, extracting relevant studies from PubMed and Scopus up to 14 October 2024. Our findings indicate that rising temperatures, droughts, and shifting rainfall patterns increasingly favor the growth of aflatoxigenic fungi and pre-harvest AF contamination in European crops, posing risks to FFS and agricultural stability. However, inconsistencies in data collection and reporting limit cross-regional comparisons and hinder the development of effective mitigation strategies. Standardizing methodologies and improving data accessibility will enhance predictive modeling, strengthen risk assessments, and support targeted adaptation efforts, providing actionable insights for policymakers and agricultural stakeholders. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

38 pages, 1314 KiB  
Review
Current Approaches to Aflatoxin B1 Control in Food and Feed Safety: Detection, Inhibition, and Mitigation
by Katarzyna Kępka-Borkowska, Katarzyna Chałaśkiewicz, Magdalena Ogłuszka, Mateusz Borkowski, Adam Lepczyński, Chandra Shekhar Pareek, Rafał Radosław Starzyński, Elżbieta Lichwiarska, Sharmin Sultana, Garima Kalra, Nihal Purohit, Barbara Gralak, Ewa Poławska and Mariusz Pierzchała
Int. J. Mol. Sci. 2025, 26(13), 6534; https://doi.org/10.3390/ijms26136534 - 7 Jul 2025
Viewed by 774
Abstract
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose a significant global health concern due to their frequent presence in crops, food, and feed—especially under climate change conditions. This review addresses the growing threat of aflatoxins by analyzing [...] Read more.
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose a significant global health concern due to their frequent presence in crops, food, and feed—especially under climate change conditions. This review addresses the growing threat of aflatoxins by analyzing recent advances in detection and mitigation. A comprehensive literature review was conducted, focusing on bioremediation, physical and chemical detoxification, and fungal growth inhibition strategies. The occurrence of aflatoxins in water systems was also examined, along with current detection techniques, removal processes, and regulatory frameworks. Emerging technologies such as molecular diagnostics, immunoassays, biosensors, and chromatographic methods are discussed for their potential to improve monitoring and control. Key findings highlight the increasing efficacy of integrative approaches combining biological and technological solutions and the potential of AI-based tools and portable devices for on-site detection. Intelligent packaging and transgenic crops are also explored for their role in minimizing contamination at the source. Overall, this review emphasizes the importance of continued interdisciplinary research and the development of sustainable, adaptive strategies to mitigate aflatoxin risks, thereby supporting food safety and public health in the face of environmental challenges. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

13 pages, 1534 KiB  
Article
Occurrence of Aspergillus spp. in Parrot Feeds on the Polish Market: The Potential Health Threat of Aspergillosis and Mycotoxicosis for Exotic Pet Birds, a Pilot Study
by Aleksandra Kornelia Maj, Piotr Górecki, Olga Szaluś-Jordanow and Dawid Jańczak
Vet. Sci. 2025, 12(6), 597; https://doi.org/10.3390/vetsci12060597 - 18 Jun 2025
Viewed by 765
Abstract
A lack of awareness among exotic bird owners regarding the quality of feed may contribute to adverse health outcomes, including toxicosis, systemic mycoses, and potentially neoplastic processes. Fungi of the Aspergillus genus are the most pathogenic to avian species, particularly due to their [...] Read more.
A lack of awareness among exotic bird owners regarding the quality of feed may contribute to adverse health outcomes, including toxicosis, systemic mycoses, and potentially neoplastic processes. Fungi of the Aspergillus genus are the most pathogenic to avian species, particularly due to their involvement in respiratory diseases such as aspergillosis, which affects the air sacs. This study aims to assess the presence of Aspergillus spp. in commercially available parrot feed (grain mixtures) available on the Polish pet market, considering different price categories. A total of 22 dry parrot food samples were analyzed using the PN-ISO 21527-2:2009 protocol. Aspergillus spp. colonies were isolated from 16 out of 22 samples (72.7%), indicating a high incidence of contamination. Although these results are preliminary, they highlight a microbiological risk associated with grain-based parrot feeds and underscore the need for stricter quality control and greater awareness among pet owners and manufacturers. Full article
(This article belongs to the Section Veterinary Food Safety and Zoonosis)
Show Figures

Figure 1

20 pages, 1159 KiB  
Article
Assessing Alternaria Species and Related Mycotoxin Contamination in Wheat in Algeria: A Food Safety Risk
by Meriem Barkahoum Daichi, Mario Masiello, Miriam Haidukowski, Annalisa De Girolamo, Antonio Moretti, Amor Bencheikh, Noureddine Rouag and Stefania Somma
Toxins 2025, 17(6), 309; https://doi.org/10.3390/toxins17060309 - 18 Jun 2025
Viewed by 993
Abstract
Alternaria species are important fungal pathogens occurring worldwide in wheat, causing both productive and qualitative losses, and posing a toxicological risk to human health due to the production of their mycotoxins in kernels. This study aimed to investigate the occurrence of Alternaria species [...] Read more.
Alternaria species are important fungal pathogens occurring worldwide in wheat, causing both productive and qualitative losses, and posing a toxicological risk to human health due to the production of their mycotoxins in kernels. This study aimed to investigate the occurrence of Alternaria species and their mycotoxins in 48 wheat grain samples collected from the northeast to the southeast of Algeria. Seventy-two representative Alternaria strains were molecularly analyzed using a multi-locus sequence approach and evaluated for their capability to produce mycotoxins under in vitro conditions. Alternaria alternata, representing 42% of the strains, was the dominant species, followed to a lesser extent by species included in the Infectoriae section (26%). In addition, three species not previously reported in Algerian wheat, A. eureka, A. consortialis and A. tellustris, were identified, accounting for 5% of the total strains. Mycotoxin analyses showed high contamination of grains with alternariol monomethyl ether, alternariol and tenuazonic acid, occurring in 75, 69 and 35% of the samples, respectively. Moreover, 41 out of 48 samples showed the co-occurrence of multiple Alternaria mycotoxins. This study provides, for the first, time a clear picture of the occurrence and the distribution of Alternaria species on wheat in Algeria. Finally, the extensive monitoring activities carried out revealed the great biodiversity of Alternaria species able to colonize wheat grains. Moreover, findings on mycotoxin contamination raise concerns about the significant mycotoxigenic risk in Algerian wheat, emphasizing the need for strict monitoring and regulatory measures on Alternaria mycotoxins in food and feed. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

17 pages, 1210 KiB  
Review
Analytical Methods for the Identification of Edible and Feed Insects: Focus on DNA-Based Techniques
by Kamila Zdeňková, Eliška Čermáková, Pavel Vejl, Agáta Čermáková and Jakub Vašek
Foods 2025, 14(11), 2002; https://doi.org/10.3390/foods14112002 - 5 Jun 2025
Cited by 1 | Viewed by 670
Abstract
The utilization of insects as a source of essential nutrients holds considerable promise, with the potential to serve as both feed and food. Consequently, there is a necessity to develop control systems, as the undeclared addition of insects to food products and/or non-compliance [...] Read more.
The utilization of insects as a source of essential nutrients holds considerable promise, with the potential to serve as both feed and food. Consequently, there is a necessity to develop control systems, as the undeclared addition of insects to food products and/or non-compliance with labelling regulations may pose health risks and result in financial losses for consumers. This review describes methods for identifying and detecting insect species by targeting biomolecules such as DNA, proteins, saccharides, and metabolites, with a particular focus on DNA-based approaches. This review provides a detailed overview of the application of polymerase chain reaction (PCR) and DNA sequencing methods that are suitable for the analysis of edible and forage insects. The main focus is on identifying species that are approved for use as novel foods or insect feeds within the European Union (e.g., house cricket (Acheta domesticus), common mealworm (Tenebrio molitor), migratory locust (Locusta migratoria), lesser mealworm (Alphitobius diaperinus), black soldier fly (Hermetia illucens), banded cricket (Gryllodes sigillatus), field cricket (Gryllus assimilis), silkworm (Bombyx mori)). However, insect species of global relevance are also discussed. The suitability of DNA analysis methods for accurate species identification, detection of (un)labeled contaminants, and monitoring of genetic diversity has been demonstrated. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

32 pages, 2113 KiB  
Review
Agricultural Waste: Challenges and Solutions, a Review
by Maximilian Lackner and Maghsoud Besharati
Waste 2025, 3(2), 18; https://doi.org/10.3390/waste3020018 - 3 Jun 2025
Cited by 2 | Viewed by 2622
Abstract
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such [...] Read more.
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such as those from sugarcane, rice, and wheat, contribute to pollution when improperly disposed of through burning or burying, contaminating soil, water, and air. However, these residues also represent untapped resources for bioenergy production, composting, mulching, and the creation of value-added products like biochar, bioplastics, single-cell protein and biobased building blocks. The paper highlights various solutions, including integrating agricultural waste into livestock feed formulations to reduce competition for human food crops, producing biofuels like ethanol and biodiesel from lignocellulosic materials, and adopting circular economy practices to upcycle waste into high-value products. Technologies such as anaerobic digestion for biogas production and gasification for synthesis gas offer renewable energy alternatives and ample feedstocks for gas fermentation while addressing waste management issues. Composting and vermicomposting enhance soil fertility, while mulching improves moisture retention and reduces erosion. Moreover, the review emphasizes the importance of policy frameworks, public-private partnerships, and farmer education in promoting effective waste management practices. By implementing these strategies, agricultural waste can be transformed into a resource, contributing to food security, environmental conservation, and economic growth. Full article
Show Figures

Figure 1

17 pages, 3432 KiB  
Article
IgA Dysfunction Induced by Early-Lifetime Low-Dose Antibiotics Exposure Aggravates Diet–Induced Metabolic Syndrome
by Xue Han, Yue Qin, Jielong Guo, Weidong Huang, Yilin You, Jicheng Zhan and Yue Yin
Antibiotics 2025, 14(6), 574; https://doi.org/10.3390/antibiotics14060574 - 3 Jun 2025
Viewed by 524
Abstract
Background: Low-dose antibiotic contamination in animal feed is a persistent global food safety challenge. Transient early-life exposure to low-dose penicillin (LDP) is known to induce metabolic syndrome (MetS) in adult mice, but the underlying mechanisms are unclear. Introduction: This study investigated the role [...] Read more.
Background: Low-dose antibiotic contamination in animal feed is a persistent global food safety challenge. Transient early-life exposure to low-dose penicillin (LDP) is known to induce metabolic syndrome (MetS) in adult mice, but the underlying mechanisms are unclear. Introduction: This study investigated the role of gut microbiota (GM) and intestinal immunity in mediating the long-term metabolic effects of early-life LDP exposure. Methods: Mice were exposed to LDP transiently during early life. GM composition was analyzed. Intestinal IgA responses were quantified. Bacterial encroachment, systemic and adipose tissue inflammation, and diet-induced MetS were assessed. Germ-free (GF) mice received GM transplants from LDP-exposed or control mice to test causality and persistence. Results: Early-life LDP exposure significantly disrupted GM composition, particularly in the ileum, in 30-day-old mice. These GM alterations caused persistent suppression of intestinal IgA responses, evidenced by reduced IgA-producing cells and sIgA levels. This suppression was constrained to early-life exposure: transferring LDP-modified GM to GF mice produced only a transient reduction in fecal sIgA. The LDP-induced sIgA reduction decreased IgA binding of bacteria, leading to increased bacterial encroachment and systemic and adipose tissue inflammation. These pathological changes exacerbated diet-induced MetS. Discussion: Our findings demonstrate that early-life LDP exposure induces persistent intestinal IgA deficiency through lasting GM alterations initiated in early development. This deficiency drives bacterial encroachment, inflammation, and ultimately exacerbates MetS. Conclusions: The exacerbation of diet-induced metabolic syndrome by early-life LDP exposure occurs through an intestinal sIgA-dependent pathway triggered by persistent GM disruption. This highlights a critical mechanism linking early-life antibiotic exposure, gut immune dysfunction, and long-term metabolic health, with significant implications for food safety. Full article
(This article belongs to the Special Issue Antibiotic-Associated Dysbiosis and Management)
Show Figures

Figure 1

Back to TopTop