Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (452)

Search Parameters:
Keywords = focused transducer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 474 KiB  
Review
A Review on the Technologies and Efficiency of Harvesting Energy from Pavements
by Shijing Chen, Luxi Wei, Chan Huang and Yinghong Qin
Energies 2025, 18(15), 3959; https://doi.org/10.3390/en18153959 - 24 Jul 2025
Viewed by 372
Abstract
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) [...] Read more.
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) systems, vibration-based harvesting, thermoelectric generators (TEGs)—focusing on their principles, efficiencies, and urban applications. ASCs achieve up to 30% efficiency with a 150–300 W/m2 output, reducing pavement temperatures by 0.5–3.2 °C, while PV pavements yield 42–49% efficiency, generating 245 kWh/m2 and lowering temperatures by an average of 6.4 °C. Piezoelectric transducers produce 50.41 mW under traffic loads, and TEGs deliver 0.3–5.0 W with a 23 °C gradient. Applications include powering sensors, streetlights, and de-icing systems, with ASCs extending pavement life by 3 years. Hybrid systems, like PV/T, achieve 37.31% efficiency, enhancing UHI mitigation and emissions reduction. Economically, ASCs offer a 5-year payback period with a USD 3000 net present value, though PV and piezoelectric systems face cost and durability challenges. Environmental benefits include 30–40% heat retention for winter use and 17% increased PV self-use with EV integration. Despite significant potential, high costs and scalability issues hinder adoption. Future research should optimize designs, develop adaptive materials, and validate systems under real-world conditions to advance sustainable urban infrastructure. Full article
Show Figures

Figure 1

16 pages, 1350 KiB  
Review
Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications
by Jinwook Kim, Jinwoo Kim and Juwon Kang
Actuators 2025, 14(7), 355; https://doi.org/10.3390/act14070355 - 19 Jul 2025
Viewed by 236
Abstract
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural [...] Read more.
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural constraints that tie resonance frequency to overall transducer length and mass. However, technical demands in biomedical, industrial, and underwater technologies have driven the development of broadband Langevin transducers capable of operating over wider frequency ranges. Lower frequencies are desirable for deep penetration and cavitation effects, while higher frequencies offer improved resolution and directivity. Recent design innovations have focused on modifications to the three key components of the transducer: the head mass, piezoelectric drive stack, and tail mass. Techniques such as integrating flexural or edge-resonance modes, adopting piezocomposite stacks, and tailoring structural geometry have shown promising improvements in bandwidth and transmitting efficiency. This review examines broadband Langevin transducer designs over the past three decades, offering detailed insights into design strategies for future development of high-power broadband ultrasonic transducers. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

19 pages, 401 KiB  
Review
The Role of Protein Kinases in the Suppressive Phenotype of Myeloid-Derived Suppressor Cells
by Aikyn Kali, Nurshat Abdolla, Yuliya V. Perfilyeva, Yekaterina O. Ostapchuk and Raikhan Tleulieva
Int. J. Mol. Sci. 2025, 26(14), 6936; https://doi.org/10.3390/ijms26146936 - 19 Jul 2025
Viewed by 349
Abstract
Inflammation is a self-defense mechanism that controls the homeostasis of an organism, and its alteration by persistent noxious stimuli could lead to an imbalance in the regulation of inflammatory responses mediated by innate and adaptive immunity. During chronic inflammation, sustained exposure of myeloid [...] Read more.
Inflammation is a self-defense mechanism that controls the homeostasis of an organism, and its alteration by persistent noxious stimuli could lead to an imbalance in the regulation of inflammatory responses mediated by innate and adaptive immunity. During chronic inflammation, sustained exposure of myeloid cells to the various inflammatory signals derived from inflamed tissue could lead to the generation of myeloid cells with an immunosuppressive state, called myeloid-derived suppressor cells (MDSCs), which can exert protective or deleterious functions depending on the nature of signals and the specific inflammatory conditions created by different pathophysiological contexts. Initially identified in various tumor models and cancer patient samples, these cells have long been recognized as negative regulators of anti-tumor immunity. Consequently, researchers have focused on elucidating the molecular mechanisms underlying their potent immunosuppressive activity. As a key component of the signal transducing processes, protein kinases play a central role in regulating the signal transduction mechanisms of many cellular activities, including differentiation and immunosuppression. Over the past decade, at least a dozen kinases, including mechanistic target of rapamycin (mTOR), phosphoinositide 3-kinases (PI3Ks), TAM (Tyro3, Axl, Mer) family of receptor tyrosine kinases (TAM RTKs), mitogen-activated protein kinases (MAPKs), and others, have emerged as key contributors to the generation and differentiation of MDSCs. Here, we discuss the recent findings on these kinases that directly contribute to the immunosuppressive functions of MDSCs. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

31 pages, 9878 KiB  
Article
Shallow Sliding Failure of Slope Induced by Rainfall in Highly Expansive Soils Based on Model Test
by Shuangping Li, Bin Zhang, Shanxiong Chen, Zuqiang Liu, Junxing Zheng, Min Zhao and Lin Gao
Water 2025, 17(14), 2144; https://doi.org/10.3390/w17142144 - 18 Jul 2025
Viewed by 240
Abstract
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes [...] Read more.
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes of highly expansive soils induced by rainfall, using model tests to explore deformation and mechanical behavior under cyclic wetting and drying conditions, focusing on the interaction between soil properties and environmental factors. Model tests were conducted in a wedge-shaped box filled with Nanyang expansive clay from Henan, China, which is classified as high-plasticity clay (CH) according to the Unified Soil Classification System (USCS). The soil was compacted in four layers to maintain a 1:2 slope ratio (i.e., 1 vertical to 2 horizontal), which reflects typical expansive soil slope configurations observed in the field. Monitoring devices, including moisture sensors, pressure transducers, and displacement sensors, recorded changes in soil moisture, stress, and deformation. A static treatment phase allowed natural crack development to simulate real-world conditions. Key findings revealed that shear failure propagated along pre-existing cracks and weak structural discontinuities, supporting the progressive failure theory in shallow sliding. Cracks significantly influenced water infiltration, creating localized stress concentrations and deformation. Atmospheric conditions and wet-dry cycles were crucial, as increased moisture content reduced soil suction and weakened the slope’s strength. These results enhance understanding of expansive soil slope failure mechanisms and provide a theoretical foundation for developing improved stabilization techniques. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

31 pages, 3093 KiB  
Review
A Comprehensive Review of IoT Standards: The Role of IEEE 1451 in Smart Cities and Smart Buildings
by José Rita, José Salvado, Helbert da Rocha and António Espírito-Santo
Smart Cities 2025, 8(4), 108; https://doi.org/10.3390/smartcities8040108 - 30 Jun 2025
Viewed by 828
Abstract
The increasing demand for IoT solutions in smart cities, coupled with the increasing use of sensors and actuators and automation in these environments, has highlighted the need for efficient communication between Internet of Things (IoT) devices. The success of such systems relies on [...] Read more.
The increasing demand for IoT solutions in smart cities, coupled with the increasing use of sensors and actuators and automation in these environments, has highlighted the need for efficient communication between Internet of Things (IoT) devices. The success of such systems relies on interactions between devices that are governed by communication protocols which define how information is exchanged. However, the heterogeneity of sensor networks (wired and wireless) often leads to incompatibility issues, hindering the seamless integration of diverse devices. To address these challenges, standardisation is essential to promote scalability and interoperability across IoT systems. The IEEE 1451 standard provides a solution by defining a common interface that enables plug-and-play integration and enhances flexibility across diverse IoT devices. This standard enables seamless communication between devices from different manufacturers, irrespective of their characteristics, and ensures compatibility via the Transducer Electronic Data Sheet (TEDS) and the Network Capable Application Processor (NCAP). By reducing system costs and promoting adaptability, the standard mitigates the complexities posed by heterogeneity in IoT systems, fostering scalable, interoperable, and cost-effective solutions for IoT systems. The IEEE 1451 standard addresses key barriers to system integration, enabling the full potential of IoT technologies. This paper aims to provide a comprehensive review of the challenges transducer networks face around IoT applications, focused on the context of smart cities. This review underscores the significance and potential of the IEEE 1451 standard in establishing a framework that enables the harmonisation of IoT applications. The primary contribution of this work lies in emphasising the importance of adopting the standards for the development of harmonised and flexible systems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

23 pages, 2410 KiB  
Article
A Semi-Automatic Framework for Practical Transcription of Foreign Person Names in Lithuanian
by Gailius Raškinis, Darius Amilevičius, Danguolė Kalinauskaitė, Artūras Mickus, Daiva Vitkutė-Adžgauskienė, Antanas Čenys and Tomas Krilavičius
Mathematics 2025, 13(13), 2107; https://doi.org/10.3390/math13132107 - 27 Jun 2025
Viewed by 312
Abstract
We present a semi-automatic framework for transcribing foreign personal names into Lithuanian, aimed at reducing pronunciation errors in text-to-speech systems. Focusing on noisy, web-crawled data, the pipeline combines rule-based filtering, morphological normalization, and manual stress annotation—the only non-automated step—to generate training data for [...] Read more.
We present a semi-automatic framework for transcribing foreign personal names into Lithuanian, aimed at reducing pronunciation errors in text-to-speech systems. Focusing on noisy, web-crawled data, the pipeline combines rule-based filtering, morphological normalization, and manual stress annotation—the only non-automated step—to generate training data for character-level transcription models. We evaluate three approaches: a weighted finite-state transducer (WFST), an LSTM-based sequence-to-sequence model with attention, and a Transformer model optimized for character transduction. Results show that word-pair models outperform single-word models, with the Transformer achieving the best performance (19.04% WER) on a cleaned and augmented dataset. Data augmentation via word order reversal proved effective, while combining single-word and word-pair training offered limited gains. Despite filtering, residual noise persists, with 54% of outputs showing some error, though only 11% were perceptually significant. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

36 pages, 1531 KiB  
Review
Orchestration of Gut–Liver-Associated Transcription Factors in MAFLD: From Cross-Organ Interactions to Therapeutic Innovation
by Ao Liu, Mengting Huang, Yuwen Xi, Xiaoling Deng and Keshu Xu
Biomedicines 2025, 13(6), 1422; https://doi.org/10.3390/biomedicines13061422 - 10 Jun 2025
Viewed by 1071
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a global health burden, however, therapeutic advancements remain hindered by incomplete insights on mechanisms and suboptimal clinical interventions. This review focused on the transcription factors (TFs) associated with the gut–liver axis, emphasizing their roles as molecular [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a global health burden, however, therapeutic advancements remain hindered by incomplete insights on mechanisms and suboptimal clinical interventions. This review focused on the transcription factors (TFs) associated with the gut–liver axis, emphasizing their roles as molecular interpreters of systemic crosstalk in MAFLD. We delineate how TF networks integrate metabolic, immune, and gut microbial signals to manage hepatic steatosis, inflammation, and fibrosis. For instance, metabolic TFs such as peroxisome proliferator-activated receptor α (PPARα) and farnesoid X receptor (FXR) are responsible for regulating lipid oxidation and bile acid homeostasis, while immune-related TFs like signal transducer and activator of transcription 3 (STAT3) modulate inflammatory cascades involving immune cells. Emerging evidence highlights microbiota-responsive TFs, like hypoxia-inducible factor 2α (HIF2α) and aryl hydrocarbon receptor (AHR), linking microbial metabolite signaling to hepatic metabolic reprogramming. Critically, TF-centric therapeutic strategies, including selective TF-agonists, small molecules targeted to degrade TF, and microbiota modulation, hold considerable promise for treating MAFLD. By synthesizing these insights, this review underscores the necessity to dissect TF-mediated interorgan communication and proposes a roadmap for translating mechanism discoveries into precision therapies. Future research should prioritize the use of multi-omics approaches to map TF interactions and validate their clinical relevance to MAFLD. Full article
(This article belongs to the Special Issue New Insights Into Non-Alcoholic Fatty Liver Diseases)
Show Figures

Figure 1

24 pages, 994 KiB  
Review
Acoustic Energy Harvested Wireless Sensing for Aquaculture Monitoring
by Zhencan Yang, Longgang Ma, Ruihua Zhang, Jiawei Zhang, Feng Liu and Xinqing Xiao
Inventions 2025, 10(3), 41; https://doi.org/10.3390/inventions10030041 - 5 Jun 2025
Viewed by 785
Abstract
As society develops, the aquaculture industry faces challenges such as environmental changes and water contamination. Water quality monitoring and preventive measures have become essential to prevent property losses. Traditional water quality monitoring methods rely on manual sampling and laboratory analysis, which are inefficient [...] Read more.
As society develops, the aquaculture industry faces challenges such as environmental changes and water contamination. Water quality monitoring and preventive measures have become essential to prevent property losses. Traditional water quality monitoring methods rely on manual sampling and laboratory analysis, which are inefficient and costly. Additionally, the operational lifespan of conventional water quality sensors is limited by battery capacity, making long-term and continuous monitoring difficult to ensure. This review focuses on water quality sensor systems and provides a comprehensive analysis of self-powered schemes utilizing acoustic energy harvesting technology. It comprehensively discusses the overall architecture of self-powered sensors, energy harvesting principles, piezoelectric transducer mechanisms, and wireless transmission technologies. It also covers acoustic energy enhancement devices and the types and development status of piezoelectric materials used for acoustic energy harvesting. Furthermore, the review systematically summarizes and analyses the current applications of these sensors in aquaculture monitoring and evaluates their advantages, disadvantages, and prospects. Full article
Show Figures

Figure 1

20 pages, 3596 KiB  
Article
Detection of Internal Defects in Concrete Using Delay Multiply and Sum-Enhanced Synthetic Aperture Focusing Technique
by Feng Li, Sheng-Kui Di, Jing Zhang, Dong Yang, Yao Pei and Xiao-Ying Wang
Buildings 2025, 15(11), 1887; https://doi.org/10.3390/buildings15111887 - 29 May 2025
Viewed by 352
Abstract
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm [...] Read more.
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm to address these limitations and improve both the resolution and signal-to-noise ratio. The proposed method sequentially transmits and receives ultrasonic waves through an array of transducers, and applies DMAS-based nonlinear beam-forming to enhance image sharpness and contrast. Its effectiveness was validated through finite element simulations and experimental tests using three precast concrete specimens with artificial defects (specimen size: 240 mm × 300 mm × 100 mm). Compared with the conventional SAFT, the proposed method improves image contrast by approximately 40%, with clearer defect boundaries and a vertical positioning error of less than ±5 mm. This demonstrates the method’s promising potential for practical applications in internal defect visualization of concrete structures. Full article
(This article belongs to the Special Issue UHPC Materials: Structural and Mechanical Analysis in Buildings)
Show Figures

Figure 1

17 pages, 6392 KiB  
Article
Energy Harvesting from AC Magnetic Field Using PZT Piezoelectric Cantilever Beams
by Mariusz Kucharek, Bogdan Dziadak, Jacek Starzyński and Leszek Książek
Energies 2025, 18(11), 2830; https://doi.org/10.3390/en18112830 - 29 May 2025
Viewed by 538
Abstract
This article investigates energy harvesting methods designed to capture energy from the alternating magnetic field surrounding a current-carrying conductor. The study focuses on the use of piezoelectric transducers in both monolithic and bimorph configurations. Experimental tests were conducted using vibrating beam structures composed [...] Read more.
This article investigates energy harvesting methods designed to capture energy from the alternating magnetic field surrounding a current-carrying conductor. The study focuses on the use of piezoelectric transducers in both monolithic and bimorph configurations. Experimental tests were conducted using vibrating beam structures composed of a single-layer piezoelectric material as well as bimorph piezoelectric composites, both utilizing lead zirconate titanate (PZT) as the active material. The results demonstrate a significant improvement in energy harvesting efficiency when using the bimorph configuration. Specifically, the bimorph-based system generated a peak voltage of 4.26 V and a current of 127.16 μA, resulting in an RMS power output of 272.48 μW. The operating principles, signal conditioning strategies, and structural differences in the evaluated designs are discussed in detail. The outcomes indicate the potential of such systems for powering autonomous sensors in low-power industrial monitoring applications. Full article
Show Figures

Figure 1

31 pages, 3496 KiB  
Review
A Review on Vibration Control Using Piezoelectric Shunt Circuits
by Khaled Al-Souqi, Khaled Kadri and Samir Emam
Appl. Sci. 2025, 15(11), 6035; https://doi.org/10.3390/app15116035 - 27 May 2025
Viewed by 875
Abstract
Vibration control is a critical aspect of engineering, particularly in structures and mechanical systems where excessive oscillations can lead to fatigue, noise, or failure. Vibration suppression is essential in aerospace, automotive, civil, and industrial applications to enhance performance and longevity of systems. Piezoelectric [...] Read more.
Vibration control is a critical aspect of engineering, particularly in structures and mechanical systems where excessive oscillations can lead to fatigue, noise, or failure. Vibration suppression is essential in aerospace, automotive, civil, and industrial applications to enhance performance and longevity of systems. Piezoelectric shunt circuits (PSCs) offer a passive or semi-active approach to damping vibrations by leveraging the electromechanical properties of piezoelectric materials. Traditional passive damping methods, such as viscoelastic materials, are effective but lack adaptability. Active control systems, while tunable, require external power and complex electronics, increasing cost and weight. Piezoelectric shunt circuits provide a middle ground, utilizing piezoelectric transducers bonded to a structure and connected to an electrical circuit to dissipate vibrational energy as heat or store it electrically. This review synthesizes the fundamental mechanisms, circuit designs, and practical applications of this technology. It also presents the modeling of lumped and distributed parameter systems coupled with PSCs. It complements the recent reviews and primarily focuses on the period from 2019 to date in addition to the earlier seminal works on the subject. It explores the principles, configurations, advantages, and limitations of piezoelectric shunt circuits for vibration control, alongside recent advancements and potential future developments. It sheds light on the research gaps in the literature that future work may tackle. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

26 pages, 1617 KiB  
Review
Non-Canonical Inter-Protein Interactions of Key Proteins Belonging to Cytokinin Signaling Pathways
by Ekaterina M. Savelieva, Dmitry V. Arkhipov, Anna V. Kozinova, Georgy A. Romanov and Sergey N. Lomin
Plants 2025, 14(10), 1485; https://doi.org/10.3390/plants14101485 - 15 May 2025
Viewed by 504
Abstract
The multistep phosphorelay (MSP) is a conserved signaling system that allows plants to sense and respond to a variety of cues under rapidly changing environmental conditions. The MSP system comprises three main protein types: sensor histidine kinases, phosphotransmitters, and response regulators. There are [...] Read more.
The multistep phosphorelay (MSP) is a conserved signaling system that allows plants to sense and respond to a variety of cues under rapidly changing environmental conditions. The MSP system comprises three main protein types: sensor histidine kinases, phosphotransmitters, and response regulators. There are numerous signaling pathways that use, in whole or in part, this set of proteins to transduce diverse signals. Among them, the cytokinin signal transduction system is the best-studied pathway, which utilizes the entire MSP cascade. Focusing on this system, we review here protein–protein interaction of MSP components that are not directly related to cytokinin signaling. These interactions are likely to play an essential role in hormonal crosstalk and may be promising targets for fine-tuning plant development. In addition, in light of recent advances in the study of cytokinin signaling, we discuss new insights into the putative molecular mechanisms that mediate the pleiotropic action of cytokinins and provide specificity for distinct MSP signals. A detailed network of known non-canonical protein–protein interactions related to cytokinin signaling was demonstrated. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

26 pages, 4583 KiB  
Article
Mathematical Modeling and Finite Element Simulation of the M8514-P2 Composite Piezoelectric Transducer for Energy Harvesting
by Demeke Girma Wakshume and Marek Łukasz Płaczek
Sensors 2025, 25(10), 3071; https://doi.org/10.3390/s25103071 - 13 May 2025
Viewed by 3411
Abstract
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small [...] Read more.
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small electronic devices, such as wireless sensors, where conventional power sources are inconvenient. The P2-type macro fiber composites (MFC-P2) are specifically designed for transverse energy harvesting applications. They offer high electric source capacitance and improved electric charge generation due to the strain developed perpendicularly to the voltage produced. The system is modeled analytically using Euler–Bernoulli beam theory and piezoelectric constitutive equations, capturing the electromechanical coupling in the d31 mode. Numerical simulations are conducted using COMSOL Multiphysics 6.29 to reduce the complexity of the mathematical model and analyze the effects of material properties, geometric configurations, and excitation conditions. The theoretical model is based on the transverse vibrations of a cantilevered beam using Euler–Bernoulli theory. The natural frequencies and mode shapes for the first four are determined. Depending on these, the resonance frequency, voltage, and power outputs are evaluated across a 12 kΩ resistive load. The results demonstrate that the energy harvester effectively operates near its fundamental resonant frequency of 10.78 Hz, achieving the highest output voltage of approximately 0.1952 V and a maximum power output of 0.0031 mW. The generated power is sufficient to drive ultra-low-power devices, validating the viability of MFC-based cantilever structures for autonomous energy harvesting systems. The application of piezoelectric phenomena and obtaining electrical energy from mechanical vibrations can be powerful solutions in such systems. The application of piezoelectric phenomena to convert mechanical vibrations into electrical energy presents a promising solution for self-powered mechatronic systems, enabling energy autonomy in embedded sensors, as well as being used for structural health monitoring applications. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

16 pages, 3576 KiB  
Article
Frequency-Dependent Acoustic Reflection for Soil Classification in a Controlled Aquatic Environment
by Moshe Greenberg, Uri Kushnir and Vladimir Frid
Appl. Sci. 2025, 15(9), 4870; https://doi.org/10.3390/app15094870 - 27 Apr 2025
Viewed by 724
Abstract
Seafloor soil classification is essential for marine engineering, environmental monitoring, and geological surveys. Traditional classification methods, such as physical sampling and acoustic backscatter analysis, have inherent limitations, including spatial constraints and inconsistencies in distinguishing sediments with similar acoustic properties. This study uses frequency-dependent [...] Read more.
Seafloor soil classification is essential for marine engineering, environmental monitoring, and geological surveys. Traditional classification methods, such as physical sampling and acoustic backscatter analysis, have inherent limitations, including spatial constraints and inconsistencies in distinguishing sediments with similar acoustic properties. This study uses frequency-dependent acoustic reflection coefficients to investigate a novel spectral-based approach to seabed soil classification. Experiments were conducted in a controlled aquatic environment to isolate the spectral characteristics of two soil types: poorly graded sand (SP) and poorly graded gravel (GP). The research employed calibrated transducers to measure reflection coefficients across the 100–400 kHz frequency range, allowing for a comparative spectral analysis between the two sediments. The results demonstrate that SP and GP exhibit distinct spectral fingerprints, with SP showing higher reflectance across all measured frequencies, while GP displays a more variable spectral response. These findings suggest that frequency-dependent reflectance provides a more sensitive and accurate classification criterion than conventional backscatter intensity analysis. By eliminating environmental variability and focusing on intrinsic soil properties, this study establishes a foundation for automated, non-invasive classification methods that could be integrated into machine learning frameworks for real-time seabed characterization. The proposed methodology enhances the precision of remote sensing techniques and presents significant advantages in offshore engineering, environmental monitoring, and hydrographic surveys. Future research should extend this approach to diverse sediment types and open marine environments to refine and validate its applicability in real-world scenarios. Full article
Show Figures

Figure 1

18 pages, 1783 KiB  
Article
Lactobacillus rhamnosus GG as Biosensor for Oral and Systemic Health Conditions: A Pilot Study
by Pooja Mali Rai, Andrei Cristian Ionescu, Alessio Soggiu, Antonella Panio, Sourav Panda, Paolo Savadori, Gianluca Martino Tartaglia, Massimo Del Fabbro and Funda Goker
Appl. Sci. 2025, 15(9), 4809; https://doi.org/10.3390/app15094809 - 26 Apr 2025
Viewed by 747
Abstract
Early disease detection using biosensors is a significant challenge in modern medicine. This study aimed to investigate Lactobacillus rhamnosus GG (LGG) as a bacterial biosensor for biomarkers indicative of oral and systemic health conditions. For this purpose, LGG was cultured and then exposed [...] Read more.
Early disease detection using biosensors is a significant challenge in modern medicine. This study aimed to investigate Lactobacillus rhamnosus GG (LGG) as a bacterial biosensor for biomarkers indicative of oral and systemic health conditions. For this purpose, LGG was cultured and then exposed to phosphate buffer, 10 wt.% sucrose solution, pH = 4.0, lactic acid, and filter-sterile saliva from five subjects. A total of 10 groups consisted of filter-sterile, freshly pooled saliva of subject 1 (SANT), subject 2 (SLAN), subject 3 (SLFU), subject 4 (SLPA), subject 5 (SLPO), phosphate buffer solution (pH = 7.4, BUF), and PBS with resin. Subsequently, the proteomic profiling of the samples was done by high-resolution mass spectrometry, focusing on the expression of bacterial proteins. The samples were evaluated for the biosensing capacity of LGG through its proteomic expression. Statistical comparisons were performed to outline proteomic changes, clustering upregulated and downregulated proteins relevant to stress response, metabolism, and environmental adaptation. The identification of key proteins associated with metabolic regulation, response to oxidative stress, and bacterial adaptation was possible using heatmaps and volcano plots. Each subject’s salivary composition also presented its unique, characteristic proteomic signature. Results showed a massive downregulation of proteins linked with stress under nutrient-rich conditions. In conclusion, the early detection of protein expression modifications related to environmental niche changes has shown that LGG can serve as a promising novel diagnostic tool, potentially overcoming many drawbacks of current physicochemical transducer-based biosensors. Full article
(This article belongs to the Special Issue The Oral Microbiome in Periodontal Health and Disease)
Show Figures

Figure 1

Back to TopTop