Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = flywheel energy storage system (FESS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4267 KiB  
Article
High-Speed Kinetic Energy Storage System Development and ANSYS Analysis of Hybrid Multi-Layered Rotor Structure
by Cenk Yangoz and Koray Erhan
Appl. Sci. 2025, 15(10), 5759; https://doi.org/10.3390/app15105759 - 21 May 2025
Cited by 1 | Viewed by 512
Abstract
Flywheel energy storage systems (FESSs) can reach much higher speeds with the development of technology. This is possible with the development of composite materials. In this context, a study is being carried out to increase the performance of the FESS, which is especially [...] Read more.
Flywheel energy storage systems (FESSs) can reach much higher speeds with the development of technology. This is possible with the development of composite materials. In this context, a study is being carried out to increase the performance of the FESS, which is especially used in leading fields, such as electric power grids, the military, aviation, space and automotive. In this study, a flywheel design and analysis with a hybrid (multi-layered) rotor structure are carried out for situations, where the cost and weight are desired to be kept low despite high-speed requirements. The performance values of solid steel, solid titanium, and solid carbon composite flywheels are compared with flywheels made of different thicknesses of carbon composite on steel and different thicknesses of carbon composite materials on titanium. This study reveals that wrapping carbon composite material around metal in varying thicknesses led to an increase of approximately 10–46% in the maximum rotational velocity of the flywheel. Consequently, despite a 33–42% reduction in system mass and constant system volume, the stored energy was enhanced by 10–23%. It was determined that the energy density of the carbon-layered FESS increased by 100% for the steel core and by 65% for the titanium core. Full article
Show Figures

Figure 1

18 pages, 5087 KiB  
Article
Load-Current-Compensation-Based Robust DC-Link Voltage Control for Flywheel Energy Storage Systems
by Hongjin Hu, Wentao Liang, Guang-Zhong Cao, Jingbo Wei and Kun Liu
Actuators 2025, 14(2), 83; https://doi.org/10.3390/act14020083 - 9 Feb 2025
Viewed by 1038
Abstract
DC-link voltage control needs to be achieved for flywheel energy storage systems (FESSs) during discharge. However, load disturbances and model nonlinearity affect the voltage control performance. Therefore, this paper proposes a load-current-compensation-based robust DC-link voltage control method for FESSs. In the proposed method, [...] Read more.
DC-link voltage control needs to be achieved for flywheel energy storage systems (FESSs) during discharge. However, load disturbances and model nonlinearity affect the voltage control performance. Therefore, this paper proposes a load-current-compensation-based robust DC-link voltage control method for FESSs. In the proposed method, the model is linearized via load current feedforward compensation and dq-axis current-to-DC-current conversion. The uncertainty of the linear model is analyzed and an H robust control method is applied to overcome the uncertainty. Furthermore, experiments involving the proposed method are conducted on a 1.2 kWh magnetic suspended FESS prototype. Compared with the general proportional integral control method, the proposed method can increase the voltage response speed by 37.1% and reduce the voltage fluctuations by 29.5%. The effectiveness of the proposed method is verified experimentally. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

18 pages, 9706 KiB  
Article
Dynamics Study of Hybrid Support Flywheel Energy Storage System with Damping Ring Device
by Mingming Hu, Kun Liu, Jingbo Wei, Eryong Hou, Duhe Liu and Xi Zhao
Actuators 2024, 13(12), 532; https://doi.org/10.3390/act13120532 - 23 Dec 2024
Viewed by 1143
Abstract
The flywheel energy storage system (FESS) of a mechanical bearing is utilized in electric vehicles, railways, power grid frequency modulation, due to its high instantaneous power and fast response. However, the lifetime of FESS is limited because of significant frictional losses in mechanical [...] Read more.
The flywheel energy storage system (FESS) of a mechanical bearing is utilized in electric vehicles, railways, power grid frequency modulation, due to its high instantaneous power and fast response. However, the lifetime of FESS is limited because of significant frictional losses in mechanical bearings and challenges associated with passing the critical speed. To suppress the unbalanced response of FESS at critical speed, a damping ring (DR) device is designed for a hybrid supported FESS with mechanical bearing and axial active magnetic bearing (AMB). Initially, the dynamic model of the FESS with DR is established using Lagrange’s equation. Moreover, the dynamic parameters of the DR are obtained by experimental measurements using the method of free vibration attenuation. Finally, the influence of the DR device on the critical speed and unbalanced response of FESS is analyzed. The results show that the designed DR device can effectively reduce the critical speed of FESS, and increase the first and second mode damping ratio. The critical speed is reduced from 13,860 rpm to 5280 rpm. Compared with FESS of the mechanical bearing, the unbalanced response amplitude of the FESS with DR is reduced by more than 87.8%, offering promising technical support for the design of active and passive control systems in FESS. Full article
(This article belongs to the Special Issue Actuator Technology for Active Noise and Vibration Control)
Show Figures

Figure 1

15 pages, 8380 KiB  
Article
Design and Analysis of a Low Torque Ripple Permanent Magnet Synchronous Machine for Flywheel Energy Storage Systems
by Yubo Sun, Zhenghui Zhao and Qian Zhang
Energies 2024, 17(24), 6337; https://doi.org/10.3390/en17246337 - 16 Dec 2024
Cited by 2 | Viewed by 998
Abstract
Flywheel energy storage systems (FESS) are technologies that use a rotating flywheel to store and release energy. Permanent magnet synchronous machines (PMSMs) are commonly used in FESS due to their high torque and power densities. One of the critical requirements for PMSMs in [...] Read more.
Flywheel energy storage systems (FESS) are technologies that use a rotating flywheel to store and release energy. Permanent magnet synchronous machines (PMSMs) are commonly used in FESS due to their high torque and power densities. One of the critical requirements for PMSMs in FESS is low torque ripple. Therefore, a PMSM with eccentric permanent magnets is proposed and analyzed in this article to reduce torque ripple. Cogging torque, a significant contributor to torque ripple, is investigated by a combination of finite element analysis and the analytical method. An integer-slot distribution winding structure is adopted to reduce vibration and noise. Moreover, the effects of eccentric permanent magnets and harmonic injection on the cogging torque are analyzed and compared. In addition, the electromagnetic performance is analyzed, and the torque ripple is found to be 3.1%. Finally, a prototype is built and tested, yielding a torque ripple of 3.9%, to verify the theoretical analysis. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

20 pages, 4322 KiB  
Article
Research on Energy Management Technology of Photovoltaic-FESS-EV Load Microgrid System
by Yahong Xing, Wenping Qin, Haixiao Zhu, Kai Liu and Chengpeng Zhou
World Electr. Veh. J. 2024, 15(11), 508; https://doi.org/10.3390/wevj15110508 - 6 Nov 2024
Cited by 2 | Viewed by 952
Abstract
This study focuses on the development and implementation of coordinated control and energy management strategies for a photovoltaic–flywheel energy storage system (PV-FESS)-electric vehicle (EV) load microgrid with direct current (DC). A comprehensive PV-FESS microgrid system is constructed, comprising PV power generation, a flywheel [...] Read more.
This study focuses on the development and implementation of coordinated control and energy management strategies for a photovoltaic–flywheel energy storage system (PV-FESS)-electric vehicle (EV) load microgrid with direct current (DC). A comprehensive PV-FESS microgrid system is constructed, comprising PV power generation, a flywheel energy storage array, and electric vehicle loads. The research delves into the control strategies for each subsystem within the microgrid, investigating both steady-state operations and transitions between different states. A novel energy management strategy, centered on event-driven mode switching, is proposed to ensure the coordinated control and stable operation of the entire system. Based on the simulation results, the PV system cannot cope with the load demand power when it is increased to a maximum of 2800 W, the effectiveness of the individual control strategies, the coordinated control of the subsystems, and the overall energy management approach are confirmed. The main contribution of this research is the development of a coordinated control mechanism that integrates PV generation with FESS and EV loads, ensuring synchronized operation and enhanced stability of the microgrid. This work provides significant insights into optimizing energy distribution and minimizing losses within microgrid systems, thereby advancing the field of energy management in DC microgrids. Full article
Show Figures

Figure 1

27 pages, 5894 KiB  
Article
A Comprehensive Assessment of Storage Elements in Hybrid Energy Systems to Optimize Energy Reserves
by Muhammad Sarmad Raza, Muhammad Irfan Abid, Muhammad Akmal, Hafiz Mudassir Munir, Zunaib Maqsood Haider, Muhammad Omer Khan, Basem Alamri and Mohammed Alqarni
Sustainability 2024, 16(20), 8730; https://doi.org/10.3390/su16208730 - 10 Oct 2024
Cited by 4 | Viewed by 2856
Abstract
As the world’s demand for sustainable and reliable energy source intensifies, the need for efficient energy storage systems has become increasingly critical to ensuring a reliable energy supply, especially given the intermittent nature of renewable sources. There exist several energy storage methods, and [...] Read more.
As the world’s demand for sustainable and reliable energy source intensifies, the need for efficient energy storage systems has become increasingly critical to ensuring a reliable energy supply, especially given the intermittent nature of renewable sources. There exist several energy storage methods, and this paper reviews and addresses their growing requirements. In this paper, the energy storage options are subdivided according to their primary discipline, including electrical, mechanical, thermal, and chemical. Different possible options for energy storage under each discipline have been assessed and analyzed, and based on these options, a handsome discussion has been made analyzing these technologies in the hybrid mode for efficient and reliable operation, their advantages, and their limitations. Moreover, combinations of each storage element, hybrid energy storage systems (HESSs), are systems that combine the characteristics of different storage elements for fulfilling the gap between energy supply and demand. HESSs for different storage systems such as pumped hydro storage (PHS), battery bank (BB), compressed air energy storage (CAES), flywheel energy storage system (FESS), supercapacitor, superconducting magnetic coil, and hydrogen storage are reviewed to view the possibilities for hybrid storage that may help to make more stable energy systems in the future. This review of combinations of different storage elements is made based on the previous literature. Moreover, it is assessed that sodium-sulfur batteries, lithium-ion batteries, and advanced batteries are the most helpful element in HESSs, as they can be hybridized with different storage elements to fulfill electricity needs. The results also show that HESSs outperformed other storage systems and, hence, hybridizing the characteristics of different storage elements can be employed for optimizing the performance of energy storage systems. Full article
Show Figures

Figure 1

16 pages, 12121 KiB  
Article
Hardware-in-the-Loop Simulation of Flywheel Energy Storage Systems for Power Control in Wind Farms
by Li Yang and Qiaoni Zhao
Electronics 2024, 13(18), 3610; https://doi.org/10.3390/electronics13183610 - 11 Sep 2024
Cited by 1 | Viewed by 1078
Abstract
Flywheel energy storage systems (FESSs) are widely used for power regulation in wind farms as they can balance the wind farms’ output power and improve the wind power grid connection rate. Due to the complex environment of wind farms, it is costly and [...] Read more.
Flywheel energy storage systems (FESSs) are widely used for power regulation in wind farms as they can balance the wind farms’ output power and improve the wind power grid connection rate. Due to the complex environment of wind farms, it is costly and time-consuming to repeatedly debug the system on-site. To save research costs and shorten research cycles, a hardware-in-the-loop (HIL) testing system was built to provide a convenient testing environment for the research of FESSs on wind farms. The focus of this study is the construction of mathematical models in the HIL testing system. Firstly, a mathematical model of the FESS main circuit is established using a hierarchical method. Secondly, the principle of the permanent magnet synchronous motor (PMSM) is analyzed, and a nonlinear dq mathematical model of the PMSM is established by referring to the relationship among d-axis inductance, q-axis inductance, and permanent magnet flux change with respect to the motor’s current. Then, the power grid and wind farm test models are established. Finally, the established mathematical models are applied to the HIL testing system. The experimental results indicated that the HIL testing system can provide a convenient testing environment for the optimization of FESS control algorithms. Full article
Show Figures

Figure 1

27 pages, 10888 KiB  
Article
Control Strategy of Flywheel Energy Storage System for Improved Model Reference Adaptive System Based on Tent-Sparrow Search Algorithm
by Gengling Song, Zhenkui Wu, Xuechen Zheng, Jihong Zhang, Peihong Yang and Zilei Zhang
Electronics 2024, 13(14), 2699; https://doi.org/10.3390/electronics13142699 - 10 Jul 2024
Cited by 3 | Viewed by 1175
Abstract
This study addresses speed sensor aging and electrical parameter variations caused by prolonged operation and environmental factors in flywheel energy storage systems (FESSs). A model reference adaptive system (MRAS) flywheel speed observer with parameter identification capabilities is proposed to replace traditional speed sensors. [...] Read more.
This study addresses speed sensor aging and electrical parameter variations caused by prolonged operation and environmental factors in flywheel energy storage systems (FESSs). A model reference adaptive system (MRAS) flywheel speed observer with parameter identification capabilities is proposed to replace traditional speed sensors. The proposed method uses reference and adjustable models to identify the stator resistance and permanent magnet flux (PM Flux) to mitigate the adverse effects of electrical parameter changes on control performance. The Tent chaotic mapping-improved Sparrow Search Algorithm (SSA) optimizes the Proportional-Integral (PI) controller parameters for the dual closed-loop and MRAS speed adaptation laws of the flywheel motor. Moreover, a self-switching parameter identification (SSPI) scheme, which constructs a cost function based on the current, parameter identification, and speed errors, is proposed to prevent inaccuracies in parameter identification. The MRAS observer selects the appropriate PI adaptive mechanism based on the error values, thereby enhancing identification accuracy. Simulink simulations show significant improvements in the rapidity and accuracy of the Tent-SSA optimized MRAS flywheel speed observer, enhancing the stability and robustness of the flywheel rotor. Experimental validation on a constructed FESS platform confirms the feasibility of this method. Full article
Show Figures

Figure 1

23 pages, 9576 KiB  
Article
Standalone and Hybridised Flywheels for Frequency Response Services: A Techno-Economic Feasibility Study
by Andrew J. Hutchinson and Daniel T. Gladwin
Energies 2024, 17(11), 2577; https://doi.org/10.3390/en17112577 - 26 May 2024
Cited by 3 | Viewed by 1423
Abstract
Frequency response services are one of the key components used by major electrical networks worldwide, acting to help control the frequency within set boundaries. Battery Energy Storage Systems (BESSs) are commonly deployed for this purpose; however, their potential is limited by susceptibility to [...] Read more.
Frequency response services are one of the key components used by major electrical networks worldwide, acting to help control the frequency within set boundaries. Battery Energy Storage Systems (BESSs) are commonly deployed for this purpose; however, their potential is limited by susceptibility to cycle-based degradation and widely reported safety incidents. Flywheel Energy Storage Systems (FESSs) do not share these weaknesses and hence could be a potential candidate for longer-term participation in frequency response markets. This study presents the most in-depth and wide-ranging techno-economic analysis of the feasibility of FESSs for frequency response to date. Standalone FESSs are shown to be economically viable across a range of different specifications, achieving a positive Net Present Value (NPV) under varying economic conditions. At a capital cost of 500 GBP/kW with a discount rate of 4%, a 5C FESS can achieve an NPV of GBP 38,586 as a standalone unit. The complex trade-offs when considering hybridising FESSs and BESSs for this application are also investigated in-depth for the first time, again showing positive changes to NPV under various scenarios. Conversely, under some conditions, hybridisation can have a significant negative impact, showcasing the optimisation needed when considering hybrid systems. The impact of introducing a hybrid BESS varies from a low of decreasing the NPV of the system by GBP 97,955 to a high of increasing the NPV by GBP 119,621 depending on the configuration chosen. This comprehensive work provides the foundations for future research into FESS deployment for frequency response services and shows for the first time the circumstances under which deployment for this application would be both technically and economically viable. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

32 pages, 14330 KiB  
Review
A Review of Flywheel Energy Storage System Technologies
by Kai Xu, Youguang Guo, Gang Lei and Jianguo Zhu
Energies 2023, 16(18), 6462; https://doi.org/10.3390/en16186462 - 7 Sep 2023
Cited by 49 | Viewed by 16308
Abstract
The operation of the electricity network has grown more complex due to the increased adoption of renewable energy resources, such as wind and solar power. Using energy storage technology can improve the stability and quality of the power grid. One such technology is [...] Read more.
The operation of the electricity network has grown more complex due to the increased adoption of renewable energy resources, such as wind and solar power. Using energy storage technology can improve the stability and quality of the power grid. One such technology is flywheel energy storage systems (FESSs). Compared with other energy storage systems, FESSs offer numerous advantages, including a long lifespan, exceptional efficiency, high power density, and minimal environmental impact. This article comprehensively reviews the key components of FESSs, including flywheel rotors, motor types, bearing support technologies, and power electronic converter technologies. It also presents the diverse applications of FESSs in different scenarios. The progress of state-of-the-art research is discussed, emphasizing the use of artificial intelligence methods such as machine learning, digital twins, and data-driven techniques for system simulation, fault prediction, and life-assessment research. The article also addresses the challenges related to current research and the application of FESSs. It concludes by summarizing future directions and trends in FESS research, offering valuable information for further advancement and improvement in this field. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

16 pages, 3987 KiB  
Article
Simulation of Secondary Frequency Modulation Process of Wind Power with Auxiliary of Flywheel Energy Storage
by Run Qin, Juntao Chen, Zhong Li, Wei Teng and Yibing Liu
Sustainability 2023, 15(15), 11832; https://doi.org/10.3390/su151511832 - 1 Aug 2023
Cited by 5 | Viewed by 1717
Abstract
With the rapid increase in the proportion of wind power, the frequency stability problem of power system is becoming increasingly serious. Based on MATLAB/Simulink simulation, the role and effect of secondary frequency modulation assisted by Flywheel Energy Storage System (FESS) in regional power [...] Read more.
With the rapid increase in the proportion of wind power, the frequency stability problem of power system is becoming increasingly serious. Based on MATLAB/Simulink simulation, the role and effect of secondary frequency modulation assisted by Flywheel Energy Storage System (FESS) in regional power grid with certain wind power penetration rates are studied. First, the linear frequency control of the power system is used to establish the primary frequency modulation control model of FESS assisting wind power, and the frequency characteristics of FESS participating in primary frequency modulation are analyzed according to the transfer function. Then, in the case of step disturbance and continuous disturbance of load power, the frequency characteristics of a regional power grid are simulated and demonstrated through time domain simulation, and conclusions are drawn through comparison; a certain proportion of FESS can quickly respond to the frequency deviation signal. During secondary frequency modulation simulation, the maximum frequency deviation of the system is reduced by 57.1% and the frequency fluctuation range is reduced by 53.8%, effectively improving the frequency quality of the power grid. Full article
(This article belongs to the Special Issue Application of Power System in Sustainable Energy Perspective)
Show Figures

Figure 1

14 pages, 5911 KiB  
Article
Analysis of the Notch Filter Insertion Position for Natural Frequency Vibration Suppression in a Magnetic Suspended Flywheel Energy Storage System
by Hongjin Hu, Jingbo Wei, Haoze Wang, Peng Xiao, Yuan Zeng and Kun Liu
Actuators 2023, 12(1), 22; https://doi.org/10.3390/act12010022 - 4 Jan 2023
Cited by 7 | Viewed by 2628
Abstract
The composite material flywheel rotor of a flywheel energy storage system (FESS) has a low natural frequency. When the system suffers from noise interference, the magnetic bearing generates a force with the same frequency as the natural frequency and causes vibration to occur. [...] Read more.
The composite material flywheel rotor of a flywheel energy storage system (FESS) has a low natural frequency. When the system suffers from noise interference, the magnetic bearing generates a force with the same frequency as the natural frequency and causes vibration to occur. Thus, it is necessary to suppress the natural vibration of the magnetic suspended (MS) FESS. The LMS adaptive notch filter is generally adopted for vibration suppression. The vibration suppression performance of the system is different when the insertion position of the notch filter is different. This paper analyzes the influence of the notch filter in different insertion positions of the control system. Through the transfer function from noise to magnetic bearing force, theoretical analysis of the influence of different positions of the notch filter is performed. Corresponding experiments are performed in a 500 kW MS FESS prototype. The theoretical analysis is verified experimentally. Full article
(This article belongs to the Special Issue Advanced Theory and Application of Magnetic Actuators)
Show Figures

Figure 1

23 pages, 5795 KiB  
Article
Design and Sizing of Electric Bus Flash Charger Based on a Flywheel Energy Storage System: A Case Study
by Mohammad Shadnam Zarbil, Abolfazl Vahedi, Hossein Azizi Moghaddam and Pavel Aleksandrovich Khlyupin
Energies 2022, 15(21), 8032; https://doi.org/10.3390/en15218032 - 28 Oct 2022
Cited by 9 | Viewed by 2888
Abstract
At present, the trend of all sectors and industries, especially the oil and gas industry, is towards reducing carbon dioxide emissions. Along with the modernization of technological processes, special attention has been paid to the reduction in greenhouse gas emissions from vehicles that [...] Read more.
At present, the trend of all sectors and industries, especially the oil and gas industry, is towards reducing carbon dioxide emissions. Along with the modernization of technological processes, special attention has been paid to the reduction in greenhouse gas emissions from vehicles that run on gasoline and diesel. An effective solution in this field is the transition from vehicles with combustion engines to electric vehicles, similar to the use of the electric bus in public transportation. How to charge these electric buses is a challenge for researchers. By proposing a flash charging method for electric buses, the feasibility of using these buses is obtained. Due to the pulsating nature of the power demand in this charging method, the prevention of negative effects on the network by this type of load should be considered. These negative effects can include power quality problems, voltage drop, frequency instability, and overload of transmission lines and transformers. This paper presents a flywheel energy storage system (FESS)-based flash charging station for electric buses. The specifications of the components of this charging station are designed and sized for a case study for line 1 of Tehran Bus Rapid Transit (BRT). A charging strategy based on the proposed charging cycle is presented to minimize the high-power short-duration demand from the grid. The energy consumption of the electric bus based on the electricity consumption model is calculated. Based on theoretical calculations, for the case study, there is a need for installing 12 flash charging stations based on FESS in line 1 Tehran BRT. In this line, an electric bus with a battery capacity of 80 kWh is proposed. The power and energy capacity of these charging stations are sized to 600 kW and 3.334 kWh, respectively. Additionally, an economic comparison regarding the proposed charging station is conducted. The theoretical results of the design and sizing of the proposed charging station are validated based on simulation and experimental results for a small-scale laboratory setup. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

21 pages, 2602 KiB  
Article
A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System
by Hongjin Hu, Haoze Wang, Kun Liu, Jingbo Wei and Xiangjie Shen
Energies 2022, 15(11), 4065; https://doi.org/10.3390/en15114065 - 1 Jun 2022
Cited by 5 | Viewed by 4537
Abstract
A space vector pulse width modulation (SVPWM) algorithm is an important part of the permanent magnet synchronous machine (PMSM) drive to achieve direct current (DC) to alternating current (AC) conversion. The execution of the conventional SVPWM algorithm is a complex process which will [...] Read more.
A space vector pulse width modulation (SVPWM) algorithm is an important part of the permanent magnet synchronous machine (PMSM) drive to achieve direct current (DC) to alternating current (AC) conversion. The execution of the conventional SVPWM algorithm is a complex process which will limit the sampling frequency of the high-speed PMSM drive. Low sampling frequency will cause high current total harmonic distortion (THD) and eddy current loss. To increase the sampling frequency, this paper proposes a novel simplified SVPWM algorithm. The proposed SVPWM algorithm turns the vector composition problem of the conventional SVPWM algorithm into an optimization problem of the dwell time of the basic vector. The proposed SVPWM algorithm has an optimal vector dwell time (OVDT). The dwell time of the basic vector can be directly calculated by solving the optimization problem. The proposed SVPWM algorithm does not need sector identification compared to the conventional algorithm. The experiments of the proposed SVPWM algorithm are performed in a high-speed PMSM drive of a flywheel energy storage system (FESS). Compared to the conventional SVPWM algorithm, the execution time of the proposed SVPWM algorithm is reduced by 38%. By using the proposed SVPWM algorithm, the sampling frequency can be increased from 33 kHz to 40 kHz. With the higher sampling frequency, the current THD is reduced by 25.6%. The effectiveness of the proposed simplified SVPWM algorithm is verified experimentally. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

28 pages, 9829 KiB  
Article
Design of a Low-Loss, Low-Cost Rolling Element Bearing System for a 5 kWh/100 kW Flywheel Energy Storage System
by Peter Haidl and Armin Buchroithner
Energies 2021, 14(21), 7195; https://doi.org/10.3390/en14217195 - 2 Nov 2021
Cited by 8 | Viewed by 3190
Abstract
The bearings of a flywheel energy storage system (FESS) are critical machine elements, as they determine several important properties such as self-discharge, service life, maintenance intervals and most importantly cost. This paper describes the design of a low-cost, low-loss bearing system for a [...] Read more.
The bearings of a flywheel energy storage system (FESS) are critical machine elements, as they determine several important properties such as self-discharge, service life, maintenance intervals and most importantly cost. This paper describes the design of a low-cost, low-loss bearing system for a 5 kWh/100 kW FESS based on analytical, numerical and experimental methods. The special operating conditions of the FESS rotor (e.g., high rotational speeds, high rotor mass, vacuum) do not allow isolated consideration of the bearings alone, but require a systematic approach, taking into account aspects of rotor dynamics, thermal management, bearing loads and lubrication. The proposed design incorporates measures to mitigate both axial and radial bearing loads, by deploying resilient bearing seats and a lifting magnet for rotor weight compensation. As a consequence of minimized external loading, bearing kinematics also need to be considered during the design process. A generally valid, well-structured guideline for the design of such low-loss rolling bearing systems is presented and applied to the 5 kWh/100 kW FESS use case. Full article
(This article belongs to the Special Issue Flywheel Energy Storage Systems and Applications)
Show Figures

Figure 1

Back to TopTop