Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (165)

Search Parameters:
Keywords = fluid power drives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5360 KB  
Article
Hydraulic Instability Characteristics of Pumped-Storage Units During the Transition from Hot Standby to Power Generation
by Longxiang Chen, Jianguang Li, Lei Deng, Enguo Xie, Xiaotong Yan, Guowen Hao, Huixiang Chen, Hengyu Xue, Ziwei Zhong and Kan Kan
Water 2026, 18(1), 61; https://doi.org/10.3390/w18010061 - 24 Dec 2025
Viewed by 317
Abstract
Against the backdrop of the carbon peaking and neutrality (“dual-carbon”) goals and evolving new-type power system dispatch, the share of pumped-storage hydropower (PSH) in power systems continues to increase, imposing stricter requirements on units for higher cycling frequency, greater operational flexibility, and rapid, [...] Read more.
Against the backdrop of the carbon peaking and neutrality (“dual-carbon”) goals and evolving new-type power system dispatch, the share of pumped-storage hydropower (PSH) in power systems continues to increase, imposing stricter requirements on units for higher cycling frequency, greater operational flexibility, and rapid, stable startup and shutdown. Focusing on the entire hot-standby-to-generation transition of a PSH plant, a full-flow-path three-dimensional transient numerical model encompassing kilometer-scale headrace/tailrace systems, meter-scale runner and casing passages, and millimeter-scale inter-component clearances is developed. Three-dimensional unsteady computational fluid dynamics are determined, while the surge tank free surface and gaseous phase are captured using a volume-of-fluid (VOF) two-phase formula. Grid independence is demonstrated, and time-resolved validation is performed against the experimental model–test operating data. Internal instability structures are diagnosed via pressure fluctuation spectral analysis and characteristic mode identification, complemented by entropy production analysis to quantify dissipative losses. The results indicate that hydraulic instabilities concentrate in the acceleration phase at small guide vane openings, where misalignment between inflow incidence and blade setting induces separation and vortical structures. Concurrently, an intensified adverse pressure gradient in the draft tube generates an axial recirculation core and a vortex rope, driving upstream propagation of low-frequency pressure pulsations. These findings deepen our mechanistic understanding of hydraulic transients during the hot-standby-to-generation transition of PSH units and provide a theoretical basis for improving transitional stability and optimizing control strategies. Full article
Show Figures

Figure 1

37 pages, 46714 KB  
Review
Parabolic Dish Collectors for Concentrated Solar Power: A Comprehensive Review on Their Subsystems and Overall Integration
by Judit García-Ferrero, Rosa Pilar Merchán Corral, Jesús Alberto Moctezuma-Hernández, David Pérez-Gallego, Simin Anvari, Julian González-Ayala, Antonio Calvo-Hernández, José Miguel Mateos Roco, María Jesús Santos and Alejandro Medina
Energies 2025, 18(24), 6596; https://doi.org/10.3390/en18246596 - 17 Dec 2025
Viewed by 859
Abstract
Parabolic dish collectors (PDCs) focus solar radiation onto a small area, minimizing the heat-loss area of the solar receiver and improving the heating of the working fluid. This fluid usually drives a Stirling-like or micro-gas turbine (Brayton-like) power generator. PDCs, initially intended for [...] Read more.
Parabolic dish collectors (PDCs) focus solar radiation onto a small area, minimizing the heat-loss area of the solar receiver and improving the heating of the working fluid. This fluid usually drives a Stirling-like or micro-gas turbine (Brayton-like) power generator. PDCs, initially intended for small-capacity applications, are well-suited for electricity and heat generation in remote rural areas, working alone and/or as parabolic dish arrays. PDCs have received considerable attention among solar thermal collectors due to their high concentration ratios and the high temperatures they achieve. However, nowadays, they are the least developed and least commissioned among concentrated solar power configurations, lacking a well-established technology. This review aims to compile the evolution of research on PDCs over recent years from a global perspective and is mainly focused on the subsystems constituting a PDC plant, their integration, and overall system optimisation, thereby addressing a gap in the current literature. Methodological tools used in the field are comprehensively revised, and recent related projects are summarized. Some innovative and promising applications are also highlighted. Full article
(This article belongs to the Special Issue Solar Energy Conversion and Storage Technologies)
Show Figures

Figure 1

35 pages, 1516 KB  
Review
Organic Rankine Cycle System Review: Thermodynamic Configurations, Working Fluids, and Future Challenges in Low-Temperature Power Generation
by Felix Donate Sánchez, Javier Barba Salvador and Carmen Mata Montes
Energies 2025, 18(24), 6561; https://doi.org/10.3390/en18246561 - 15 Dec 2025
Viewed by 840
Abstract
In the context of the zero-carbon transition, this article provides a comprehensive review of Organic Rankine Cycle (ORC) technologies for low-grade heat recovery and conversion to power. It surveys a wide range of renewable and waste heat sources—including geothermal, solar thermal, biomass, internal [...] Read more.
In the context of the zero-carbon transition, this article provides a comprehensive review of Organic Rankine Cycle (ORC) technologies for low-grade heat recovery and conversion to power. It surveys a wide range of renewable and waste heat sources—including geothermal, solar thermal, biomass, internal combustion engine exhaust, and industrial process heat—and discusses the integration of ORC systems to enhance energy recovery and thermal efficiency. The analysis examines various configurations, from basic and regenerative cycles to advanced transcritical and supercritical designs, cascaded systems, and multi-source integration, evaluating their thermodynamic performance for different heat source profiles. A critical focus is placed on working fluid selection, where the landscape is being reshaped by stringent regulatory frameworks such as the EU F-Gas regulation, driving a shift towards low-GWP hydrofluoroolefins, natural refrigerants, and tailored zeotropic mixtures. The review benchmarks ORC against competing technologies such as the Kalina cycle, Stirling engines, and thermoelectric generators, highlighting relative performance characteristics. Furthermore, it identifies key trends, including the move beyond single-source applications toward integrated hybrid systems and the use of multi-objective optimization to balance thermodynamic, economic, and environmental criteria, despite persistent challenges related to computational cost and real-time control. Key findings confirm that ORC systems significantly improve low-grade heat utilization and overall thermal efficiency, positioning them as vital components for integrated zero-carbon power plants. The study concludes that synergistically optimizing ORC design, refrigerant choice in line with regulations, and system integration strategies is crucial for maximizing energy recovery and supporting the broader zero-carbon energy transition. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

22 pages, 4923 KB  
Article
Hydrodynamics of Toroidal Vortices in Torque-Flow Pumps
by Ivan Pavlenko, Vladyslav Kondus and Roman Puzik
Appl. Sci. 2025, 15(20), 11299; https://doi.org/10.3390/app152011299 - 21 Oct 2025
Viewed by 715
Abstract
This study investigates the role of toroidal vortex formation in torque-flow pumps and its influence on pump performance. A mathematical model of viscous fluid motion in toroidal coordinates was developed to describe the two-stage energy transfer mechanism, in which the impeller drives the [...] Read more.
This study investigates the role of toroidal vortex formation in torque-flow pumps and its influence on pump performance. A mathematical model of viscous fluid motion in toroidal coordinates was developed to describe the two-stage energy transfer mechanism, in which the impeller drives the toroidal vortex and the vortex subsequently imparts momentum to the main throughflow. The model identifies vortex deformation as a primary source of hydraulic losses. The theoretical framework was validated by computational fluid dynamics (CFD) simulations of a torque-flow pump. Analysis of the axial, circumferential, and vertical velocity components revealed a closed three-dimensional toroidal circulation loop within the free chamber, confirming the predictions of the mathematical model. A parametric study was conducted to assess the influence of impeller extension into the free chamber (Δb2) on pump performance. Three characteristic regimes were identified. At Δb2 ≈ 6 mm, the shaft power decreased to 120.3 kW (an 8.1% decrease compared to the baseline), with efficiency improving to 39.2%. At Δb2 ≈ 10 mm, the pump achieved its best balance of parameters: efficiency increased from 34.0% to 42.8% (+8.7 percentage points), while head rose from 32.8 m to 38.5 m (+17.4%), with moderate power demand (122.3 kW). At Δb2 ≈ 70 mm, the head reached 45.6 m (+39%), but power consumption rose to 146.9 kW (+12%), and the design shifted toward centrifugal-type operation, reducing reliability for abrasive fluids. Overall, the results provide both a validated mathematical description of toroidal vortex dynamics and practical guidelines for optimizing torque-flow pump design, with Δb2 ≈ 10 mm identified as the most rational configuration. Full article
Show Figures

Figure 1

21 pages, 3962 KB  
Article
Improving Thermal Performance of Solar Heating Systems
by Sebastian Pater and Krzysztof Kupiec
Appl. Sci. 2025, 15(20), 11118; https://doi.org/10.3390/app152011118 - 16 Oct 2025
Viewed by 898
Abstract
The solar energy reaching the immediate surroundings of a single-family house throughout the year is sufficient to repeatedly and fully cover its heating needs during the heating season in a temperate climate. Nevertheless, modern technology is not yet able to fully solve the [...] Read more.
The solar energy reaching the immediate surroundings of a single-family house throughout the year is sufficient to repeatedly and fully cover its heating needs during the heating season in a temperate climate. Nevertheless, modern technology is not yet able to fully solve the problem of thermal self-sufficiency in single-family houses. It is therefore advisable to seek solutions that improve the thermal efficiency of domestic solar installations. Efficient use of solar radiation heat accumulated during the summer months for heating requires the use of high-volume storage tanks. Another option is to discharge excess heat outside the system during the summer. This publication focuses on the latter solution. A model of the solar heating system for a residential building and pool with a storage tank powered by solar energy has been developed. Simulation calculations were performed, showing that the removal of excess heat is a beneficial solution, especially when this energy can be used to heat water in the pool. The calculations concerned the heating of a single-family house in a temperate climate. Lowering the temperature of the water in the storage tank reduces heat losses from the tank to the environment (ground), while supplying the solar collectors with lower-temperature fluid increases the driving force of the heat transfer process. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

27 pages, 12457 KB  
Article
Research on Dual-Motor Redundant Compensation for Unstable Fluid Load of Control Valves
by Zhisheng Li, Yudong Xie, Jiazhen Han and Yong Wang
Actuators 2025, 14(9), 452; https://doi.org/10.3390/act14090452 - 15 Sep 2025
Viewed by 721
Abstract
Control valves are widely applied in nuclear power, offshore oil/gas extraction, and chemical engineering, but suffer from issues like pressure oscillation, flow control accuracy degradation, and motor overload due to unstable fluid loads (e.g., nuclear reactions in power plants and complex marine climates). [...] Read more.
Control valves are widely applied in nuclear power, offshore oil/gas extraction, and chemical engineering, but suffer from issues like pressure oscillation, flow control accuracy degradation, and motor overload due to unstable fluid loads (e.g., nuclear reactions in power plants and complex marine climates). This paper proposes a dual-motor redundant compensation method to address these challenges. The core lies in a control strategy where a single main motor drives the valve under normal conditions, while a redundant motor intervenes when load torque exceeds a preset threshold—calculated via the valve core’s fluid load model. By introducing excess load torque as positive feedback to the current loop, the method coordinates torque output between the two motors. AMESim and Matlab/Simulink joint simulations compare single-motor non-compensation, single-motor compensation, and dual-motor schemes. Results show that under inlet pressure step changes, the dual-motor compensation scheme shortens the stabilization time of the valve’s controlled variable by 40%, reduces overshoot by 65%, and decreases motor torque fluctuation by 50%. This redundant design enhances fault tolerance, providing a novel approach for reliability enhancement of deep-sea oil/gas control valves. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

24 pages, 4629 KB  
Review
Wave Energy Conversion Technology Based on Liquid Metal Magnetohydrodynamic Generators and Its Research Progress
by Lingzhi Zhao and Aiwu Peng
Energies 2025, 18(17), 4615; https://doi.org/10.3390/en18174615 - 30 Aug 2025
Viewed by 1406
Abstract
Wave energy is a highly concentrated energy resource with five times higher energy density than wind and at least ten times the power density of solar energy. It is expected to make a major contribution to addressing climate change and to help end [...] Read more.
Wave energy is a highly concentrated energy resource with five times higher energy density than wind and at least ten times the power density of solar energy. It is expected to make a major contribution to addressing climate change and to help end our dependency on fossil fuels. Many ingenious wave energy conversion methods have been put forward, and a large number of wave energy converters (WECs) have been developed. However, to date, wave energy conversion technology is still in the demonstration application stage. Key issues such as survivability, reliability, and efficient conversion still need to be solved. The major hurdle is the fact that ocean waves provide a slow-moving, high-magnitude force, whereas most electric generators operate at high rotary speed and low torque. Coupling the slow-moving, high-magnitude force of ocean waves normally requires conversion to a high-speed, low-magnitude force as an intermediate step before a rotary generator is applied. This, in general, tends to severely limit the overall efficiency and reliability of the converter and drives the capital cost of the converter well above an acceptable commercial target. Magnetohydrodynamic (MHD) wave energy conversion makes use of MHD generators in which a conducting fluid passes through a very strong magnetic field to produce an electric current. In contrast to alternatives, the relatively slow speed at which the fluid traverses the magnetic field makes it possible to directly couple to ocean waves with a high-magnitude, slowly moving force. The MHD generator provides an excellent match to the mechanical impedance of an ocean wave, and therefore, an MHD WEC has no rotating mechanical parts with high speeds, no complex control process, and has good response to low sea states and high efficiency under all working conditions. This review introduces the system composition, working process, and technical features of WECs based on MHD generators first. Then, the research development, key points, and issues of wave energy conversion technology based on MHD generators are presented in detail. Finally, the problems to be solved and the future research directions of wave energy conversion based on MHD generators are pointed out. Full article
(This article belongs to the Special Issue Advances in Ocean Energy Technologies and Applications)
Show Figures

Figure 1

29 pages, 2173 KB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Viewed by 1280
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

26 pages, 4865 KB  
Article
Field and Numerical Analysis of Downhole Mechanical Inflow Control Devices (ICD and AICD) for Mature Heavy Oil Fields
by Miguel Asuaje, Camilo Díaz, Nicolás Ratkovich, Andrés Pinilla and Ricardo Nieto
Processes 2025, 13(8), 2538; https://doi.org/10.3390/pr13082538 - 12 Aug 2025
Cited by 1 | Viewed by 1080
Abstract
The challenge of excess water production in mature heavy oil reservoirs presents significant environmental and economic concerns. This study evaluates the effectiveness of inflow control devices (ICDs) and autonomous inflow control devices (AICDs) for managing water production in heavy oil reservoirs with strong [...] Read more.
The challenge of excess water production in mature heavy oil reservoirs presents significant environmental and economic concerns. This study evaluates the effectiveness of inflow control devices (ICDs) and autonomous inflow control devices (AICDs) for managing water production in heavy oil reservoirs with strong aquifer drives. Our investigation comprises two field implementations and a computational fluid dynamics (CFD) study. In the first field implementation, both ICDs and AICDs achieved substantial water reduction (25% and 32%, respectively) compared to conventional slotted liner completions, with ICDs demonstrating superior oil production performance, extending well life by approximately 30% and doubling accumulated oil. The second field implementation featured rate-controlled production (RCP) devices, showing that two AICD wells together produced 60% more accumulated oil and 40% less water than a single conventional well, effectively relieving surface facility bottlenecks. Full 3D Navier–Stokes simulations for a third field implementation revealed that passive ICDs outperformed AICDs under specific draw-down and spacing conditions, challenging the industry preference for newer technologies. The study’s findings, which include quantifiable reductions in the carbon footprint associated with decreased power consumption, provide valuable insights for operators seeking to optimize water management while minimizing environmental impact, advancing the sustainable oil production practices aligned with UN Sustainable Development Goals 7 (Affordable and Clean Energy), 9 (Industry, Innovation and Infrastructure), and 13 (Climate Action). Full article
Show Figures

Figure 1

14 pages, 7337 KB  
Article
The Study and Determination of Rational Hydraulic Parameters of a Prototype Multi-Gear Pump
by Olga Zharkevich, Alexandra Berg, Olga Reshetnikova, Andrey Berg, Oxana Nurzhanova, Asset Altynbayev, Darkhan Zhunuspekov and Oleg Stukach
Fluids 2025, 10(8), 211; https://doi.org/10.3390/fluids10080211 - 11 Aug 2025
Viewed by 967
Abstract
This article presents a comprehensive experimental and theoretical study and substantiation of the hydraulic parameters of a prototype multi-gear pump. The proposed pump design, which features one drive gear and four driven gears, aims to address the common disadvantages of traditional gear pumps, [...] Read more.
This article presents a comprehensive experimental and theoretical study and substantiation of the hydraulic parameters of a prototype multi-gear pump. The proposed pump design, which features one drive gear and four driven gears, aims to address the common disadvantages of traditional gear pumps, including radial force imbalance, uneven flow, high acoustic noise, and increased fluid leakage. Tests of the prototype multi-stage pump were conducted on a specialized test stand in the “Hydraulics” workshop of “Hansa-Flex Hydraulik Almaty” LLP. Experimental analysis, supported by theoretical calculations, established the optimal operating speed range for the prototype to be between 900 and 1450 rpm, with the volumetric efficiency remaining stable between 70% and 88% when using VMGZ hydraulic oil (45 cSt). A significant deterioration in performance, including a sharp drop in volumetric efficiency to 30% and a decrease in the pressure generated, was observed at rotational speeds below 900 rpm due to an increase in internal leaks. In addition, this study examined the effect of kinematic viscosity, which revealed a 15–20% decrease in performance and power when using a fluid with lower viscosity (15 cSt) with a slight increase in noise level. This study also examines in detail the linear relationship between useful power and pressure in the system and analyzes noise characteristics under various operating conditions. Full article
(This article belongs to the Section Non-Newtonian and Complex Fluids)
Show Figures

Figure 1

28 pages, 10200 KB  
Article
Real-Time Temperature Estimation of the Machine Drive SiC Modules Consisting of Parallel Chips per Switch for Reliability Modelling and Lifetime Prediction
by Tamer Kamel, Olamide Olagunju and Temitope Johnson
Machines 2025, 13(8), 689; https://doi.org/10.3390/machines13080689 - 5 Aug 2025
Viewed by 1193
Abstract
This paper presents a new methodical procedure to monitor in real time the junction temperature of SiC Power MOSFET modules of parallel-connected chips utilized in machine drive systems to develop their reliability modelling and predict their lifetime. The paper implements the on-line measurements [...] Read more.
This paper presents a new methodical procedure to monitor in real time the junction temperature of SiC Power MOSFET modules of parallel-connected chips utilized in machine drive systems to develop their reliability modelling and predict their lifetime. The paper implements the on-line measurements of temperature-sensitive electrical parameters (TSEP) approach, particularly the quasi-threshold voltage and the on-state drain to source voltage, to estimate the junction temperature in real time. The proposed procedure firstly applied computational fluid dynamics analysis on the module under study to determine the chip which undergoes the maximum junction temperature during typical operation of the module. Then, a calibration phase, using double-pulse tests on the selected chip, is used to generate look-up tables to relate the TSEPs under study to the junction temperature. Next, the real-time estimation of junction temperature was accomplished during the on-line operation of the three-phase inverter, taking into account the induced distortion/noises due to operation of the parallel-connected chips in the module. After that, a comparison between the two TSEPs under study was provided to demonstrate their advantages/drawbacks. Finally, reliability modelling was developed to predict the lifetime of the studied module based on the estimated junction temperature under a predetermined mission profile. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

15 pages, 2188 KB  
Article
Research and Simulation Analysis on a Novel U-Tube Type Dual-Chamber Oscillating Water Column Wave Energy Conversion Device
by Shaohui Yang, Haijian Li, Yan Huang, Jianyu Fan, Zhichang Du, Yongqiang Tu, Chenglong Li and Beichen Lin
Energies 2025, 18(15), 4141; https://doi.org/10.3390/en18154141 - 5 Aug 2025
Viewed by 760
Abstract
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine [...] Read more.
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine environments, limiting their long-term viability and efficiency. To address these limitations, this paper proposes a novel U-tube type dual chamber OWC wave energy conversion device integrated within a marine vehicle. The research involves the design of a U-tube dual-chamber OWC device, which utilizes the pitch motion of a marine vehicle to drive the oscillation of water columns within the U-tube, generating reciprocating airflow that drives an air turbine. Numerical simulations using computational fluid dynamics (CFD) were conducted to analyze the effects of various structural dimensions, including device length, width, air chamber height, U-tube channel width, and bottom channel height, on the aerodynamic power output. The simulations considered real sea conditions, focusing on low-frequency waves prevalent in China’s sea areas. Simulation results reveal that increasing the device’s length and width substantially boosts aerodynamic power, while air chamber height and U-tube channel width have minor effects. These findings provide valuable insights into the optimal design of U-tube dual-chamber OWC devices for efficient wave energy conversion, laying the foundation for future physical prototype development and experimental validation. Full article
Show Figures

Figure 1

14 pages, 2295 KB  
Article
Design of Novel Hydraulic Drive Cleaning Equipment for Well Maintenance
by Zhongrui Ji, Qi Feng, Shupei Li, Zhaoxuan Li and Yi Pan
Processes 2025, 13(8), 2424; https://doi.org/10.3390/pr13082424 - 31 Jul 2025
Viewed by 655
Abstract
Deep drilling and horizontal wells, as important means of unconventional oil and gas development, face problems with the high energy consumption but low removal efficiency of traditional well washing equipment, the uneven cleaning of horizontal well intervals, and an insufficient degree of automation. [...] Read more.
Deep drilling and horizontal wells, as important means of unconventional oil and gas development, face problems with the high energy consumption but low removal efficiency of traditional well washing equipment, the uneven cleaning of horizontal well intervals, and an insufficient degree of automation. This paper proposes a novel hydraulic drive well washing device which consists of two main units. The wellbore cleaning unit comprises a hydraulic drive cutting–flushing module, a well cleaning mode-switching module, and a filter storage module. The unit uses hydraulic and mechanical forces to perform combined cleaning to prevent mud and sand from settling. By controlling the flow direction of the well washing fluid, it can directly switch between normal and reverse washing modes in the downhole area, and at the same time, it can control the working state of corresponding modules. The assembly control unit includes the chain lifting module and the arm assembly module, which can lift and move the device through the chain structure, allow for the rapid assembly of equipment through the use of a mechanical arm, and protect the reliability of equipment through the use of a centering structure. The device converts some of the hydraulic power into mechanical force, effectively improving cleaning and plugging removal efficiency, prolonging the downhole continuous working time of equipment, reducing manual operation requirements, and comprehensively improving cleaning efficiency and energy utilization efficiency. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

33 pages, 4686 KB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 779
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

22 pages, 6442 KB  
Article
Study on Heat Transfer of Fluid in a Porous Media by VOF Method with Fractal Reconstruction
by Shuai Liu, Qingyong Zhu and Wenjun Xu
Energies 2025, 18(15), 3935; https://doi.org/10.3390/en18153935 - 23 Jul 2025
Viewed by 664
Abstract
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a [...] Read more.
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a lack of effective methods to accurately track fractal evaporation surfaces, which are ubiquitous in natural and engineering porous media (e.g., geological formations, industrial heat exchangers). This research is significant because understanding heat transfer in these complex porous media is essential for optimizing energy systems, enhancing thermal management in industrial processes, and improving the efficiency of phase-change-based technologies. For this scientific issue, a general model is designed. There is a significant temperature difference on the left and right sides of the model, which drives the internal fluid movement through the temperature difference. The upper end of the model is designed as a complex evaporation surface, and there is flowing steam above it, thus forming a coupled flow field. The VOF fractal reconstruction method is adopted to approximate the shape of the complex evaporation surface, which is a major highlight of this study. Different from previous research, this method can more accurately reflect the flow and phase change on the upper surface of the porous medium. Through numerical simulation, the influence of the evaporation coefficient on the flow and heat transfer rate can be determined. Key findings from numerical simulations reveal the following: (1) Heat transfer rates decrease with increasing fractal dimension (surface complexity) and evaporation coefficient; (2) As the thermal Rayleigh number increases, the influence of the Marangoni number on heat transfer diminishes; (3) The coupling of buoyancy and Marangoni effects in porous media with complex evaporation surfaces significantly alters flow and heat transfer patterns compared to smooth-surfaced porous media. This study provides a robust numerical framework for analyzing non-Newtonian fluid convection in complex porous media, offering insights into optimizing thermal systems involving phase changes and irregular surfaces. The findings contribute to advancing heat transfer theory and have practical implications for industries such as energy storage, chemical engineering, and environmental remediation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

Back to TopTop