Parabolic Dish Collectors for Concentrated Solar Power: A Comprehensive Review on Their Subsystems and Overall Integration
Abstract
1. Introduction
- (a)
- System complexity and lack of economic modularity: Each parabolic dish is an independent unit with its own collector, receiver, and power block (usually Stirling or micro-gas turbine). This prevents economies of scale from being achieved, unlike concentrated parabolic trough or central tower systems, where many heliostats feed a single receiver or power block. A direct consequence is the higher LCoE of electricity compared with other CSP technologies [16].
- (b)
- High manufacturing and high maintenance costs: PDCs require very high optical precision and a lightweight but rigid structure to maintain their shape under wind or thermal load. More efficient biaxial alignment and tracking are more expensive and mechanically more complex than the uniaxial tracking of cylindrical-parabolic collectors. This requires careful maintenance, high tightness, and expensive components as seals and high-temperature-resistant materials that play a key role [2,16].
- (c)
- Difficulties for integrating thermal storage: The simplest PDC configurations directly convert solar radiation into mechanical or electrical energy in each unit, without passing through a common working fluid (such as thermal oil, molten salts, steam, etc.). The incorporation of an effective thermal storage is still under evaluation. Indeed, this could be a competitive advantage of the PDCs over photovoltaics [16].
- (d)
- Limited maturity and industrial backing: Concentrated Trough and Tower technologies received considerable institutional and commercial support since the 2000s. In contrast, dish-Stirling systems were only developed in pilot or demonstration projects, many of which did not prosper due to bankruptcy or lack of investment. Well-known examples are the solar projects Sandia [17], Maricopa [18], Calico [19], and Imperial Valle [20] (this one eventually replaced by the Mount Signal Solar project, with photovoltaic panels).
2. Main Elements of a PDC-Based Plant
2.1. Solar Collector
Methodologies
2.2. Solar Receiver and Heat Transfer Fluids
2.2.1. Tubular Receivers
2.2.2. Heat Pipe Receivers
2.2.3. Impinging Receivers
2.2.4. Volumetric Receivers

2.2.5. Absorbing Gas Receivers
2.2.6. Methodologies
2.3. Thermodynamic Cycles and Working Fluids
2.3.1. Stirling Power Cycles
2.3.2. Brayton Cycles–Micro-Gas Turbines (MGTs)
2.3.3. Methodologies
2.4. Other Elements
2.5. Component Integration and System Optimization
3. PDC-Related Projects
3.1. OMSoP Project
3.2. SolGATS Project
3.3. SOLMIDEFF Project
3.4. NextMGT Project and European MGT Forum
3.5. SOLARGRID Project
4. Future Prospects
4.1. Solar Receivers and Solar Collectors
4.2. PDC Scenarios for High Temperature Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Nomenclature | |
| CFD | Computational Fluid Dynamics |
| CHP | Combined Heat and Power |
| CSP | Concentrated Solar Power |
| CSR | circumsolar ratio |
| CTS | Central Tower System |
| CST | Concentrated Solar Thermal |
| DNI | Direct Normal Irradiance |
| DSDC | Discretized solar dish collector |
| HTF | Heat Transfer Fluid |
| LCA | Life Cycle Assessment |
| LCoE | Levelized Cost of Electricity |
| MCRT | Monte-Carlo Ray Tracer |
| MGT | Micro-Gas Turbine |
| MOOP | Multi-Objective Optimization Problem |
| ORC | Organic Rankine Cycle |
| PF | Pareto Front |
| PCM | Phase-Change Materials |
| PDC | Parabolic Dish Collector |
| STCPCR | Solar Thermochemical Coupling Phase Change Reactor |
| TCES | Thermo-Chemical Energy Storage |
| THEK | thermo-helio-electricity-kW |
| TES | Thermal Energy Storage |
| TRL | Technology Readiness Level |
| Symbols | |
| Dd | PDC Aperture diameter |
| fd | Focal length |
| Ib | Photon intensity |
| Greek symbols | |
| Collector rim angle | |
| Radiant flux | |
| Optical error (slope, align, track, etc.) | |
References
- Woerlen, I. Ericsson Solar Engine. 2023. Available online: http://hotairengines.org/solar-engine/ericsson-1868/study (accessed on 21 September 2025).
- Coventry, J.; Andraka, C. Dish systems for CSP. Sol. Energy 2017, 152, 140–170. [Google Scholar] [CrossRef]
- Lilliestam, J.; Labordena, M.; Patt, A.; Pfenninger, S. Empirically observed learning rates for concentrating solar power and their responses to regime change. Nat. Energy 2017, 2, 17094. [Google Scholar] [CrossRef]
- Lilliestam, J.; Ollier, L.; Labordena, M.; Pfenninger, S.; Thonig, R. The near- to mid-term outlook for concentrating solar power: Mostly cloudy, chance of sun. Energy Sources Part B Econ. Plan. Policy 2021, 16, 23–41. [Google Scholar] [CrossRef]
- Wang, K.; Sanders, S.R.; Dubey, S.; Choo, F.H.; Duan, F. Stirling cycle engines for recovering low and moderate temperature heat: A review. Renew. Sustain. Energy Rev. 2016, 62, 89–108. [Google Scholar] [CrossRef]
- Hafez, A.Z.; Soliman, A.; El-Metwally, K.A.; Ismail, I.M. Design analysis factors and specifications of solar dish technologies for different systems and applications. Renew. Sust. Energy Rev. 2017, 67, 1019–1036. [Google Scholar] [CrossRef]
- Zayed, M.E.; Zhao, J.; Elsheikh, A.H.; Li, W.; Sadek, S.; Aboelmaaref, M.M. A comprehensive review on Dish/Stirling concentrated solar power systems: Design, optical and geometrical analyses, thermal performance assessment, and applications. J. Clean. Prod. 2021, 283, 124664. [Google Scholar] [CrossRef]
- Malik, M.Z.; Shaikh, P.H.; Zhang, S.; Lashari, A.A.; Leghari, Z.H.; Baloch, M.H.; Memon, Z.A.; Caiming, C. A review on design parameters and specifications of parabolic solar dish Stirling systems and their applications. Energy Rep. 2022, 8, 4128–4154. [Google Scholar] [CrossRef]
- Ferruzzi, G.; Delcea, C.; Barberi, A.; Dio, V.D.; Somma, M.D.; Catrini, P.; Guarino, S.; Rossi, F.; Parisi, M.L.; Sinicropi, A.; et al. Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives. Energies 2023, 16, 8082. [Google Scholar] [CrossRef]
- García-Ferrero, J.; Merchán, R.P.; Santos, M.J.; Medina, A.; Calvo Hernández, A. Brayton technology for concentrated solar power plants: Comparative analysis of central tower plants and parabolic dish farms. Energy Conv. Manag. 2022, 271, 116312. [Google Scholar] [CrossRef]
- Semprini, S.; Sánchez, D.; De Pascale, A. Performance analysis of a micro gas turbine and solar dish integrated system under different solar-only and hybrid operating conditions. Sol. Energy 2016, 132, 279–293. [Google Scholar] [CrossRef]
- Barreto, G.; Canhoto, P. Modeling of a Stirling engine with parabolic dish for thermal to electric conversion of solar energy. Energy Conv. Manag. 2017, 132, 119–135. [Google Scholar] [CrossRef]
- Gavagnin, G. Techno-Economic Optimization of a Solar Thermal Power Generator Based on Parabolic Dish and Micro Gas Turbine. Ph.D. Thesis, University of Sevilla, Seville, Spain, 2019. Available online: https://portalcientifico.uned.es/documentos/6381690818a84b178fea9324 (accessed on 9 December 2025).
- Gavagnin, G.; Rech, S.; Sánchez, D.; Lazzaretto, A. Optimum design and performance of a solar dish microturbine using tailored component characteristics. Appl. Energy 2018, 231, 660–676. [Google Scholar] [CrossRef]
- Giostri, A.; Binotti, M.; Sterpos, C.; Lozza, G. Small scale solar tower coupled with micro gas turbine. Renew. Energy 2020, 147, 570–583. [Google Scholar] [CrossRef]
- Taylor, M.; Ralon, P.; Anuta, H.; Al-Zoghoul, S. Renewable Power Generation Costs in 2019; Techreport 978-92-9260-244-4; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2021; Available online: https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019 (accessed on 9 December 2025).
- Stine, W.B.; Diver, R.B. A Compendium of Solar Dish/Stirling Technology. Sandia National Laboratories Report, SAND 94-3026. 1994. Available online: https://www.osti.gov/servlets/purl/10130410 (accessed on 22 November 2025).
- Maricopa Solar Project CSP. Available online: https://solarpaces.nrel.gov/project/maricopa-solar-project (accessed on 22 November 2025).
- Calico Solar Project (Dish Stirling, Cancelled). Available online: https://www.blm.gov/press-release/calico-solar-project (accessed on 22 November 2025).
- Imperial Valley Solar. Available online: https://www.gem.wiki/Mount_solar_farm_(United_States) (accessed on 22 November 2025).
- García-Ferrero, J.; Heras, I.; Santos, M.J.; Merchán, R.P.; Medina, A.; González, A.; Calvo Hernández, A. Thermodynamic and Cost Analysis of a Solar Dish Power Plant in Spain Hybridized with a Micro-Gas Turbine. Energies 2020, 13, 1578. [Google Scholar] [CrossRef]
- Lo Brano, V.; Guarino, S.; Buscemi, A.; Bonomolo, M. Development of Neural Network Prediction Models for the Energy Producibility of a Parabolic Dish: A Comparison with the Analytical Approach. Energies 2022, 15, 9298. [Google Scholar] [CrossRef]
- International Energy Agency. Technology Roadmap: Concentrating Solar Power. Available online: https://iea.blob.core.windows.net/assets/b8852b00-b453-4d3b-a887-63a799b76eee/TechnologyRoadmap-ConcentratingSolarPowerFoldout.pdf (accessed on 22 November 2025).
- Awan, A.B.; Zubair, M.; Memon, Z.A.; Ghalleb, N.; Tlili, I. Comparative analysis of dish Stirling engine and photovoltaic technologies: Energy and economic perspective. Sustain. Energy Technol. Assess. 2021, 44, 101028. [Google Scholar] [CrossRef]
- Rodat, S.; Thonig, R. Status of Concentrated Solar Power Plants Installed Worldwide: Past and Present Data. Clean Technol. 2024, 6, 365–378. [Google Scholar] [CrossRef]
- Vishnu, S.K.; Senthil, R. Review of key factors for optimizing the thermal performance of parabolic dish solar collectors. Renew. Sustain. Energy Rev. 2026, 226, 116348. [Google Scholar] [CrossRef]
- Allouhi, H.; Allouhi, A.; Buker, M.S.; Zafar, S.; Jamil, A. Recent advances, challenges, and prospects in solar dish collectors: Designs, applications, and optimization frameworks. Sol. Energy Mater. Sol. Cells 2022, 241, 111743. [Google Scholar] [CrossRef]
- Gu, L.; Zheng, R.; Shen, R.; An, Q.; Luo, Y.; Zhao, J. A comprehensive review of solar dish system: Components, performance, and economy. Renew. Sustain. Energy Rev. 2025, 220, 115882. [Google Scholar] [CrossRef]
- Poullikkas, A.; Kourtis, G.; Hadjipaschalis, I. Parametric analysis for the installation of solar dish technologies in Mediterranean regions. Renew. Sust. Energy Rev. 2010, 14, 2772–2783. [Google Scholar] [CrossRef]
- Yan, J.; Peng, Y.; Cheng, Z. Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system. Renew. Energy 2018, 129, 431–445. [Google Scholar] [CrossRef]
- Giostri, A.; Macchi, E. An advanced solution to boost sun-to-electricity efficiency of parabolic dish. Sol. Energy 2016, 139, 337–354. [Google Scholar] [CrossRef]
- Stine, W.; Harrigan, R. Solar Energy Fundamentals and Design; Wiley-Interscience: Hoboken, NJ, USA, 1985; ISBN -13 9780471887188. [Google Scholar]
- Osorio, T.; Horta, P.; Larcher, M.; Pujol-Nadal, R.; Hertel, J.; van Rooyen, D.W.; Heimsath, A.; Schneider, S.; Benitez, D.; Frein, A.; et al. Ray-tracing software comparison for linear focusing solar collectors. AIP Conf. Proc. 2016, 1734, 020017. [Google Scholar] [CrossRef]
- Wendelin, T. SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2003. Available online: https://research-hub.nrel.gov/en/publications/soltrace-a-new-optical-modeling-tool-for-concentrating-solar-opti/ (accessed on 9 December 2025).
- Pharr, M.; Jakob, W.; Humphreys, G. (Eds.) Physically Based Rendering, 3rd ed.; Morgan Kaufmann: Boston, MA, USA, 2017; pp. 507–568. [CrossRef]
- Buie, D.; Monger, A.; Dey, C. Sunshape distributions for terrestrial solar simulations. Sol. Energy 2003, 74, 113–122. [Google Scholar] [CrossRef]
- COMSOL Multiphysics®, COMSOL Website. Available online: https://www.comsol.com/ray-optics-module (accessed on 24 September 2025).
- Lambda Research Corporation. TracePro Software. Available online: https://lambdares.com/tracepro (accessed on 24 September 2025).
- National Renewable Energy Laboratory (NREL). SolarPILOT. Available online: https://www.nrel.gov/csp/solarpilot.html (accessed on 24 September 2025).
- Buscemi, A.; Guarino, S.; Ciulla, G.; Lo Brano, V. A methodology for optimisation of solar dish-Stirling systems size, based on the local frequency distribution of direct normal irradiance. Appl. Energy 2021, 303, 117681. [Google Scholar] [CrossRef]
- Gu, L.; Li, Y.; Zhong, S.; Shen, R.; Zheng, R.; Yang, D.; Zhao, J.; Li, H. Theoretical and experimental study on the heat collection of solar dish system based on adjustable receiver. Energy Convers. Manag. 2023, 291, 117250. [Google Scholar] [CrossRef]
- Wang, W.; Malmquist, A.; Laumert, B. Comparison of potential control strategies for an impinging receiver based dish-Brayton system when the solar irradiation exceeds its design value. Energy Convers. Manag. 2018, 169, 1–12. [Google Scholar] [CrossRef]
- Sedighi, M.; Padilla, R.V.; Taylor, R.; Lake, M.; Izadgoshasb, I.; Rose, A. High-temperature, point-focus, pressurised gas-phase solar receivers: A comprehensive review. Energy Convers. Manag. 2019, 185, 678–717. [Google Scholar] [CrossRef]
- Ho, C.; Iverson, B. Review of high-temperature central receiver designs for concentrating solar power. Renew. Sustain. Energy Rev. 2014, 29, 835–846. [Google Scholar] [CrossRef]
- Merchán, R.P.; Santos, M.J.; Medina, A.; Calvo Hernández, A. High temperature central tower plants for concentrated solar power: 2021 overview. Renew. Sustain. Energy Rev. 2022, 155, 111828. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, M.; Sánchez-González, A.; Santana, D. Feasibility study of a new concept of solar external receiver: Variable velocity receiver. Appl. Therm. Eng. 2018, 128, 335–344. [Google Scholar] [CrossRef]
- Aichmayer, L.; Garrido, J.; Laumert, B. Thermo-mechanical solar receiver design and validation for a microgas-turbine based solar dish system. Energy 2020, 196, 116929. [Google Scholar] [CrossRef]
- Bellos, E.; Bousi, E.; Tzivanidis, C.; Pavlovic, S. Optical and thermal analysis of different cavity receiver designs for solar dish concentrators. Energy Convers. Manag. X 2019, 2, 100013. [Google Scholar] [CrossRef]
- Ambrosetti, G.; Good, P. A novel approach to high temperature solar receivers with an absorbing gas as heat transfer fluid and reduced radiative losses. Sol. Energy 2019, 183, 521–531. [Google Scholar] [CrossRef]
- Vengadesan, E.; Gurusamy, P.; Senthil, R. Thermal performance analysis of flat surface solar receiver with square tubular fins for a parabolic dish collector. Renew. Energy 2023, 216, 119048. [Google Scholar] [CrossRef]
- Kasaeian, A.; Kouravand, A.; Rad, M.A.V.; Maniee, S.; Porufayaz, F. Cavity receivers in solar dish collectors: A geometric overview. Renew. Energy 2021, 169, 53–79. [Google Scholar] [CrossRef]
- Craig, K.J.; Slootweg, M.; Roux, W.G.L.; Wolff, T.M.; Meyer, J.P. Using CFD and ray tracing to estimate the heat losses of a tubular cavity dish receiver for different inclination angles. Sol. Energy 2020, 211, 1137–1158. [Google Scholar] [CrossRef]
- Loni, R.; Asli-Areh, E.; Ghobadian, B.; Kasaeian, A.B.; Gorjian, S.; Najafi, G.; Bellos, E. Research and review study of solar dish concentrators with different nanofluids and different shapes of cavity receiver: Experimental tests. Renew. Energy 2020, 145, 783–804. [Google Scholar] [CrossRef]
- Mukherjee, S.; Wciślik, S.; Chandra-Mishra, P.; Chaudhuri, P. Nanofluids: Critical issues, economics and sustainability perspectives. Particuology 2024, 87, 147–172. [Google Scholar] [CrossRef]
- Said, Z.; Iqbal, M.; Mehmood, A.; Tuan-Le, T.; Muhammad-Ali, H.; Nam-Cao, D.; Phong-Nguyen, P.Q.; Khoa-Pham, N.D. Nanofluids-based solar collectors as sustainable energy technology towards net-zero goal: Recent advances, environmental impact, challenges, and perspectives. Chem. Eng. Process.-Process Intensif. 2023, 191, 109477. [Google Scholar] [CrossRef]
- SoLar Hybrid Power and Cogeneration Plants (SolHyCo); Technical Report 13318; European Commission: Brussels, Belgium, 2011. Available online: https://cordis.europa.eu/project/id/19830/en (accessed on 9 December 2025).
- Chu, S.; Bai, F.; Zhang, X.; Yang, B.; Cui, Z.; Nie, F. Experimental study and thermal analysis of a tubular pressurized air receiver. Renew. Energy 2018, 125, 413–424. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, K.; Wu, H.; Wang, D.; Du, J.; Olabi, A. Experimental investigation on the energy and exergy performance of a coiled tube solar receiver. Appl. Energy 2015, 156, 519–527. [Google Scholar] [CrossRef]
- Bienert, W.B. The heat pipe and its application to solar receivers. Electr. Power Syst. Res. 1980, 3, 111–123. [Google Scholar] [CrossRef]
- Liao, Z.; Faghri, A. Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower. Appl. Therm. Eng. 2016, 102, 952–960. [Google Scholar] [CrossRef]
- Ma, T.; Ren, T.; Chen, H.; Zhu, Y.; Li, S.; Ji, G. Thermal performance of a solar high temperature thermochemical reactor powered by a solar simulator. Appl. Therm. Eng. 2019, 146, 881–888. [Google Scholar] [CrossRef]
- Wang, W.; Laumert, B. An axial type impinging receiver. Energy 2018, 162, 318–334. [Google Scholar] [CrossRef]
- Martínez-Manuel, L.; Wang, W.; Laumert, B.; Peña-Cruz, M.I. Numerical analysis on the optical geometrical optimization for an axial type impinging solar receiver. Energy 2021, 216, 119293. [Google Scholar] [CrossRef]
- Aichmayer, L.; Garrido, J.; Laumert, B. Scaling effects of a novel solar receiver for a micro gas-turbine based solar dish system. Sol. Energy 2018, 162, 248–264. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, K.; Jiang, Z.; Zhua, B.; Wu, H. Modeling of heat transfer for energy efficiency prediction of solar receivers. Energy 2020, 190, 116372. [Google Scholar] [CrossRef]
- Quero, M.; Korzynietz, R.; Ebert, M.; Jiménez, A.A.; del Río, A.; Brioso, J. Solugas-operation experience of the first solar hybrid gas turbine system at MW scale. Energy Proc. 2014, 49, 1820–1830. [Google Scholar] [CrossRef]
- del Río, A.; Korzynietz, R.; Brioso, J.; Gallas, M.; Ordoñez, I.; Quero, M.; Díaz, C. Soltrec-Pressurized volumetric solar air receiver technology. Energy Procedia 2015, 69, 360–368. [Google Scholar] [CrossRef]
- Aichmayer, L.; Garrido, J.; Wang, W.; Laumert, B. Experimental evaluation of a novel solar receiver for a micro gas turbine based solar dish system in the KTH high-flux solar simulator. Energy 2018, 159, 184–195. [Google Scholar] [CrossRef]
- Lanchi, M.; Montecchi, M.; Crescenzi, T.; Mele, D.; Miliozzi, A.; Russo, V.; Mazzei, D.; Misceo, M.; Falchetta, M.; Mancini, R. Investigation into the coupling of Micro Gas Turbines with CSP technology: OMSoP project. Energy Procedia 2015, 69, 1317–1326. [Google Scholar] [CrossRef]
- Barreto, G.; Canhoto, P.; Collares-Pereira, M. Three-dimensional CFD modelling and thermal performance analysis of porous volumetric receivers coupled to solar concentration systems. Appl. Energy 2019, 252, 113433. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, K.; Li, G.; Wu, H.; Jiang, Z.; Lin, F.; Li, Y. Experimental study of the energy and exergy performance for a pressurized volumetric solar receiver. Appl. Therm. Eng. 2016, 104, 212–221. [Google Scholar] [CrossRef]
- García-Ferrero, J.; Merchán, R.P.; Santos, M.J.; Medina, A.; Calvo Hernández, A.; Canhoto, P.; Giostri, A. Modeling a solar pressurized volumetric receiver integrated in a parabolic dish: Off-design heat transfers, temperatures, and efficiencies. Energy Convers. Manag. 2023, 293, 117436. [Google Scholar] [CrossRef]
- Ávila-Marín, A.; de Lara, M.; Fernández-Reche, J. Experimental results of gradual porosity volumetric air receivers with wire meshes. Renew. Energy 2018, 122, 339–353. [Google Scholar] [CrossRef]
- Zaversky, F.; Rández, X.; Baigorri, J.; Sánchez, M. The volumetric effect indicator—A new dimensionless characteristic number for the optimum design and operation of volumetric solar receivers. Sol. Energy 2023, 259, 119–129. [Google Scholar] [CrossRef]
- Ávila, A.; Férnandez-Reche, J.; Martínez-Tarifa, A. Modelling strategies for porous structures as solar receivers in central receiver systems: A review. Renew. Sustain. Energy Rev. 2019, 111, 15–33. [Google Scholar] [CrossRef]
- Zavattoni, S.A.; Montorfano, D.; Good, P.; Geissbühler, L.; Rutz, D.; Ambrosetti, G.; Barbato, M.C. Synhelion absorbing gas solar receiver—Design advancement. AIP Conf. Proc. 2023, 2815, 100016. [Google Scholar] [CrossRef]
- ANSYS FLUENT Inc. Available online: https://www.ansys.com/products/fluids/ansys-fluent (accessed on 24 September 2025).
- Dassault Systèmes SolidWorks Corporation. Solidworks Flow Simulation. Available online: https://www.solidworks.com/product/solidworks-flow-simulation (accessed on 24 September 2025).
- Schiel, W.; Keck, T. Parabolic dish concentrating solar power CSS systems. In Concentrating Solar Power Technology; Lovegrove, K., Stein, W., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2012; pp. 284–322. [Google Scholar] [CrossRef]
- Ni, M.; Shi, B.; Xiao, G.; Peng, H.; Sultan, U.; Wang, S.; Luo, Z.; Cen, K. Improved simple analytical model and experimental study of a 100 w β-type Stirling engine. Appl. Energy 2016, 169, 768–787. [Google Scholar] [CrossRef]
- Bataineh, K. Stirling engine configuration selection. Energies 2018, 11, 584. [Google Scholar] [CrossRef]
- Aksoy, F.; Cinar, C. Thermodynamic analysis of a beta-type stirling engine with rhombic drive mechanism. Energy Convers. Manag. 2013, 75, 319–324. [Google Scholar] [CrossRef]
- Bataineh, K. Mathematical formulation of alpha-type Stirling engine with ross yoke mechanism. Energy 2018, 164, 1178–1199. [Google Scholar] [CrossRef]
- Petit, B.; Sánchez-Carceller, E.; Montes-Sánchez, J.; González-Almenara, R.; Sánchez, D. Market Opportunities of Water Treatments powered by Solar Micro gas turbines: Chile and Ecuador Case Studies. Processes 2022, 10, 556. [Google Scholar] [CrossRef]
- Ciulla, G.; Guarino, S.; Lanchi, M.; D’Auria, M.; Lucia, M.D.; Salvestroni, M.; Dio, V.D. Hybridization solutions for solar dish systems installed in the mediterranean region. Renew. Energy 2023, 217, 119112. [Google Scholar] [CrossRef]
- Zhang, Q.; Banihabib, R.; Fadnes, F.S.; Sazon, T.A.S.; Ahmed, N.; Assadi, M. Techno-economic analysis of a biogas-fueled micro gas turbine cogeneration system with seasonal thermal energy storage. Energy Convers. Manag. 2023, 292, 117407. [Google Scholar] [CrossRef]
- Rovense, F.; Sebastián, A.; Abbas, R.; Romero, M.; González-Aguilar, J. Performance map analysis of a solar-driven and fully unfired closed-cycle micro gas turbine. Energy 2023, 263, 125778. [Google Scholar] [CrossRef]
- Mazzoni, A.; Cerri, G.; Chennaoui, L. A simulation tool for concentrated solar power based on micro gas turbine engines. Energy Convers. Manag. 2018, 174, 844–854. [Google Scholar] [CrossRef]
- Santos, M.J.; Miguel-Barbero, C.; Merchán, R.P.; Medina, A.; Hernández, A.C. Roads to improve the performance of hybrid thermosolar gas turbine power plants: Working fluids and multi-stage configurations. Energy Convers. Manag. 2018, 165, 578–592. [Google Scholar] [CrossRef]
- Merchán, R.P.; Santos, M.J.; Heras, I.; Gonzalez-Ayala, J.; Medina, A.; Hernández, A.C. On-design pre-optimization and off-design analysis of hybrid Brayton thermosolar tower power plants for different fluids and plant configurations. Renew. Sustain. Energy Rev. 2020, 119, 109590. [Google Scholar] [CrossRef]
- Valdés, M.; Abbas, R.; Rovira, A.; Martín-Aragón, J. Thermal efficiency of direct, inverse and sCO2 gas turbine cycles intended for small power plants. Energy 2016, 100, 66–72. [Google Scholar] [CrossRef]
- le Roux, W.; Bello-Ochende, T.; Meyer, J. Thermodynamic optimisation of the integrated design of a small-scale solar thermal Brayton cycle. Int. J. Energy Res. 2012, 36, 1088–1104. [Google Scholar] [CrossRef]
- Cameretti, M.C.; Cappiello, A.; Robbio, R.D.; Tuccillo, R. Solar-assisted micro gas turbine with humid air or steam-injected option. Energy 2023, 270, 126783. [Google Scholar] [CrossRef]
- Wu, X.; Hu, X.; Xiang, X.; Lin, S.; You, J.; Tian, F. An analysis approach for micro gas turbine engine’s performance by experiment and numerical simulation. Case Stud. Therm. Eng. 2023, 49, 103305. [Google Scholar] [CrossRef]
- Capstone C30, Capstone Turbine Corporation, Capstone C30 Turbine. Available online: https://www.pureworldenergy.com/media/filer_public/d8/d9/d8d9f29a-b680-4ccc-bf62-a8cf59f3a435/c30_hpng_331140a.pdf (accessed on 24 September 2025).
- Turbec T100. Available online: http://www.turbec.com/products/techspecific.htm (accessed on 24 September 2025).
- Cockcroft, C.C.; Le Roux, W.G. A comparative overview of various single-shaft and parallel-flow Brayton cycles developed from turbochargers. Energy Convers. Manag. 2025, 335, 119837. [Google Scholar] [CrossRef]
- Cockcroft, C.C.; Le Roux, W.G. Multi-dish configurations for single-shaft and parallel-flow solar-dish Brayton cycles. Energy Convers. Manag. 2025, 346, 120441. [Google Scholar] [CrossRef]
- Hashmi, M.B.; Mansouri, M.; Assadi, M. Dynamic performance and control strategies of micro gas turbines: State-of-the-art review, methods, and technologies. Energy Convers. Manag. X 2023, 18, 100376. [Google Scholar] [CrossRef]
- GasTurb GmbH. GasTurb Software. Available online: https://www.gasturb.com/ (accessed on 24 September 2025).
- Thermoflow. Thermoflex-Spotlight on Solar Thermal Modeling. 2012. Available online: https://www.thermoflow.com (accessed on 24 September 2025).
- Klein, S. TRNSYS A Transient System Simulation Program. Engineering Experiment Station Report 38-13. 2000. Available online: http://www.trnsys.com (accessed on 9 December 2025).
- Merchán, R.P.; Santos, M.J.; García-Ferrero, J.; Medina, A.; Calvo Hernández, A. Thermo-economic and sensitivity analysis of a central tower hybrid brayton solar power plant. Appl. Therm. Eng. 2021, 186, 116454. [Google Scholar] [CrossRef]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley and Sons, Inc.: New York, NY, USA, 2001; ISBN 978-0-471-87339-6. Available online: https://www.researchgate.net/publication/220045365_Multiobjective_Optimization_Using_Evolutionary_Algorithms_Wiley_New_York (accessed on 9 December 2025).
- Avval, H.; Ahmadi, P.; Ghaffarizadeh, A.; Saidi, M. Thermo-economic-environmental multiobjective optimization of a gas turbine power plant with preheater using evolutionary algorithm. Int. J. Energy Res. 2011, 35, 389–403. [Google Scholar] [CrossRef]
- Sánchez-Orgaz, S.; Pedemonte, M.; Ezzatti, P.; Curto-Risso, P.; Medina, A.; Calvo Hernández, A. Multi-objective optimization of a multi-step solar-driven Brayton cycle. Energy Convers. Manag. 2015, 99, 346–358. [Google Scholar] [CrossRef]
- Kee, Z.; Wang, Y.; Pye, J.; Rahbari, A. Small-scale concentrated solar power system with thermal energy storage: System-level modelling and techno-economic optimisation. Energy Convers. Manag. 2023, 294, 117551. [Google Scholar] [CrossRef]
- Renolphi, I.B.; Silva, W.N.; Lourenço, L.F.N.; Malta, B.O.Z.D.; Andrade, T.S.; Vieira, G.G.T. Optimizing Hybrid Renewable Power Plants: A Comparative Analysis of Wind-Solar Configurations for Northeast Brazil. Energies 2025, 18, 5329. [Google Scholar] [CrossRef]
- Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, ENEA. Centro Ricerche Cascaccia. Available online: https://www.casaccia.enea.it (accessed on 23 September 2025).
- Ragnolo, G.; Aichmayer, L.; Wang, W.; Strand, T.; Laumert, B. Techonoeconomic design of a micro gas-turbine for a solar dish system. Energy Procedia 2015, 69, 1133–1142. [Google Scholar] [CrossRef]
- SolGATS. Concentrated Solar Power Micro Gas Turbine With Thermal Energy Storage. Available online: https://solgats.wordpress.com/page/ (accessed on 23 September 2025).
- Iaria, D.; Zhou, X.; Zaili, J.A.; Zhang, Q.; Xiao, G.; Sayma, A. Development of a model for performance analysis of a honeycomb thermal energy storage for solar power microturbine applications. Energies 2019, 12, 3968. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, G.; Ghavami, M.; Al-Zaili, J.; Yang, T.; Sayma, A.; Ni, D. Thermodynamic modelling and real-time control strategies of solar micro gas turbine system with thermochemical energy storage. J. Clean. Prod. 2021, 304, 127010. [Google Scholar] [CrossRef]
- Xiao, G.; Yang, J.; Ni, D. Model predictive control of a solar power system with microturbine and thermochemical energy storage. Ind. Eng. Chem. Res. 2022, 61, 13532–13558. [Google Scholar] [CrossRef]
- de Sevilla, U. SOLMIDEFF (SOLar Micro Gas Turbine-Driven Desalination for Environmental oFF-Grid Applications). Available online: https://institucional.us.es/solmideff/index.html#about (accessed on 24 September 2025).
- European Union, NextMGT. Available online: https://cordis.europa.eu/project/id/861079 (accessed on 8 October 2025).
- Escamilla, A.; Sánchez, D.; García-Rodríguez, L. Assessment of power-to-power renewable energy storage based on the smart integration of hydrogen and micro gas turbine technologies. Int. J. Hydrogen Energy 2022, 47, 17505–17525. [Google Scholar] [CrossRef]
- European Forum. European MicroGas Turbine Forum. Available online: https://nextmgt.com/2023/09/15/4th-european-micro-gas-turbine-forum/ (accessed on 8 October 2025).
- SOLARGRID. Available online: https://www.solargrid-project.eu (accessed on 23 September 2025).
- Achkari, O.; El Fadar, A. Latest developments on TES and CSP technologies-Energy and environmental issues, applications and research trends. Appl. Therm. Eng. 2020, 167, 114806. [Google Scholar] [CrossRef]
- Rajan, A.; Reddy, K. Integrated optical and thermal model to investigate the performance of a solar parabolic dish collector coupled with a cavity receiver. Renew. Energy 2023, 219, 119376. [Google Scholar] [CrossRef]
- Subramani, J.; Nagarajan, P.; Subramaniyan, C.; Anbuselvan, N. Performance studies on solar parabolic dish collector using conical cavity receiver for community heating applications. Mater. Today Proc. 2021, 45, 1862–1866. [Google Scholar] [CrossRef]
- Navalho, J.E.; Pereira, J.C. A comprehensive and fully predictive discrete methodology for volumetric solar receivers: Application to a functional parabolic dish solar collector system. Appl. Energy 2020, 267, 114781. [Google Scholar] [CrossRef]
- Rostami, M.; Pirvaram, A.; Talebzadeh, N.; Brien, P.G.O. Numerical evaluation of one-dimensional transparent photonic crystal heat mirror coatings for parabolic dish concentrator receivers. Renew. Energy 2021, 171, 1202–1212. [Google Scholar] [CrossRef]
- Li, X.; Li, R.; Chang, H.; Zeng, L.; Xi, Z.; Li, Y. Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation. Energy 2022, 246, 123358. [Google Scholar] [CrossRef]
- Hassan, A.; Chen, Q.; Abbas, S.; Lu, W.; Luo, Y. An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator. Renew. Energy 2021, 179, 1849–1864. [Google Scholar] [CrossRef]
- Alnaqi, A.A.; Alsarraf, J.; Al-Rashed, A.A. Numerical investigation of hydrothermal efficiency of a parabolic dish solar collector filled with oil based hybrid nanofluid. J. Taiwan Inst. Chem. Eng. 2021, 124, 238–257. [Google Scholar] [CrossRef]
- Calbino da Silva, A.A.; Venturini, O.J.; de Oliveira, W.; Ramirez Camacho, R.G. A solar-wind hybrid system developed by integrating wind blades into a Dish-Stirling concentrator. Sustain. Energy Technol. Assess. 2022, 54, 102810. [Google Scholar] [CrossRef]
- Shboul, B.; AL-Arfi, I.; Michailos, S.; Ingham, D.; AL-Zoubi, O.H.; Ma, L.; Hughes, K.; Pourkashanian, M. Design and Techno-economic assessment of a new hybrid system of a solar dish Stirling engine instegrated with a horizontal axis wind turbine for microgrid power generation. Energy Convers. Manag. 2021, 245, 114587. [Google Scholar] [CrossRef]
- Allouhi, H.; Allouhi, A.; Almohammadi, K.M.; Hamrani, A.; Jami, A. Hybrid renewable energy system for sustainable residential buildings based on Solar Dish Stirling and wind Turbine with hydrogen production. Energy Convers. Manag. 2022, 270, 116261. [Google Scholar] [CrossRef]
- Al-Amayreh, M.I.; Alahmer, A.; Manasrah, A. A novel parabolic solar dish design for a hybrid solar lighting-thermal applications. Energy Rep. 2020, 6, 1136–1143. [Google Scholar] [CrossRef]
- Gavagnin, G.; Sánchez, D.; Martí nez, G.S.; Rodrà guez, J.M.; Muñoz, A. Cost analysis of solar thermal power generators based on parabolic dish and micro gas turbine: Manufacturing, transportation and installation. Appl. Energy 2017, 194, 108–122. [Google Scholar] [CrossRef]
- Moradi, M.; Mehrpooya, M. Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower. Energy 2017, 130, 530–543. [Google Scholar] [CrossRef]
- Schmitz, M.; Wiik, N.; Ambrosetti, G.; Pedretti, A.; Paredes, S.; Ruch, P.; Michel, B.; Steinfeld, A. A 6-focus high-concentration photovoltaic-thermal dish system. Sol. Energy 2017, 155, 445–463. [Google Scholar] [CrossRef]
- Khan, M.I.; Reshaeel, M.; Asfand, F.; Al-Ghamdi, S.G.; Farooq, M.; Khan, M.; Tahir, F.; Bicer, Y.; Asif, M.; Rehan, M.; et al. Concentrated solar power (CSP) driven desalination systems: A techno-economic review. Renew. Sustain. Energy Rev. 2026, 226, 116311. [Google Scholar] [CrossRef]
- Tawfik, M.; El-Tohamy, M.; Metwally, A.A.; Khallaf, A.; Allah, W.A. Experimental and numerical investigation of thermal performance of a new design solar parabolic dish desalination system. Appl. Therm. Eng. 2022, 214, 118827. [Google Scholar] [CrossRef]
- Alhawsawi, A.; Zayed, M.E.; Moustafa, E.; Banoqitah, E.; Elsheikh, A.H. Hybridizing solar dish stirling power system with single-effect desalination for sustainable electricity and freshwater co-generation: Mathematical modeling and performance evaluation. Case Stud. Therm. Eng. 2023, 45, 102997. [Google Scholar] [CrossRef]
- Aboelmaaref, M.M.; Zayed, M.E.; Zhao, J.; Li, W.; Askalany, A.A.; Ahmed, M.S.; Ali, E.S. Hybrid solar desalination systems driven by parabolic trough and parabolic dish csp technologies: Technology categorization, thermodynamic performance and economical assessment. Energy Convers. Manag. 2020, 220, 113103. [Google Scholar] [CrossRef]
- Nazari, S.; Daghigh, R. Techno-enviro-exergo-economic and water hygiene assessment of non-cover box solar still employing parabolic dish concentrator and thermoelectric peltier effect. Process Saf. Environ. Prot. 2022, 162, 566–582. [Google Scholar] [CrossRef]
- García-Ferrero, J.; Santos, M.J.; Medina, A.; Calvo-Hernández, A. Promising research trends for solar parabolic dish collectors. Appl. Therm. Eng. 2025, 278, 126934. [Google Scholar] [CrossRef]
- Lentswe, K.; Mawire, A.; Owusu, P.; Shobo, A. A review of parabolic solar cookers with thermal energy storage. Heliyon 2021, 7, e08226. [Google Scholar] [CrossRef] [PubMed]
- Senthil, R. Enhancement of productivity of parabolic dish solar cooker using integrated phase change material. Mater. Today Proc. 2021, 34, 386–388. [Google Scholar] [CrossRef]
- Sathish, T.; Suresh, P.; Sharma, K.; Saravanan, R.; Saleel, C.A.; Shaik, S.; Khan, S.A.; Panchal, H. Zero emission/energy building heating through parabolic dish collector focused KNO3–NaNO3 and KNO3–NaNO3–NaNO2 PCM absorber: A case study. Case Stud. Therm. Eng. 2023, 44, 102854. [Google Scholar] [CrossRef]
- Pourmoghadam, P.; Mehrpooya, M. Dynamic modeling and analysis of transient behavior of an integrated parabolic solar dish collector and thermochemical energy storage power plant. J. Energy Storage 2021, 42, 103121. [Google Scholar] [CrossRef]
- Palladino, V.; Somma, M.D.; Cancro, C.; Gaggioli, W.; Lucia, M.D.; D’Auria, M.; Lanchi, M.; Bassetti, F.; Bevilacqua, C.; Cardamone, S. Innovative industrial solutions for improving the technical/economic competitiveness of concentrated solar power. Energies 2024, 17, 360. [Google Scholar] [CrossRef]
- Romero, M.; Steinfeld, A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 2012, 5, 9234–9245. [Google Scholar] [CrossRef]
- Detz, R.J.; Reek, J.N.H.; van der Zwaan, B.C.C. The future of solar fuels: When could they become competitive? Energy Environ. Sci. 2018, 11, 1653. [Google Scholar] [CrossRef]
- Schäppi, R.; Rutz, D.; Dähler, F.; Muroyama, A.; Haueter, P.; Liliestam, J.; Patt, A.; Furler, P.; Steinfeld, A. Drop-in fuels from sunlight and air. Nature 2021, 601, 63–80. [Google Scholar] [CrossRef]
- Mohite, S.J.; Reddy, K. Optical and thermal analysis of solar parabolic dish cavity receiver system for hydrogen production using deep learning. Energy Convers. Manag. 2023, 292, 117415. [Google Scholar] [CrossRef]
- Boretti, A. Technology readiness level of photo-electro-chemical hydrogen production by parabolic dish solar concentrator. Int. J. Hydrogen Energy 2023, 48, 35005–35010. [Google Scholar] [CrossRef]















| Software | License | Method | Sun Model | Real Materials | Surface Errors | Angular Variation of Optical Properties | Additional Capabilities |
|---|---|---|---|---|---|---|---|
| Tonatiuh | Open-source | MCRT | Ideal; Pillbox; Buie | Yes | Univariate or pillbox for and | No | Script files for designing and running simulations |
| SolTrace | Open-source | MCRT | Pillbox; Gaussian; User defined | Yes | Univariate or pillbox for and | Yes | Google sketch up possible coupling |
| OptiCAD | Commercial | CAD non-sequential | Ideal; Lambertian; User defined | Yes | User defined; Gaussian Lambertian; bivariate for and | Yes | Wavelenght dependency possibility |
| OTSun | In-house UIB | MCRT | Ideal; Buie; Diffuse; (isotropic sky) | Yes | Univariate for and | Yes | - |
| Raytrace3D | In-house ISE | quasi-MCRT | Pillbox; Ideal; Buie | Yes | Univariate or Bivariate or pillbox for and | Yes | - |
| STRAL | In-house DLR | Backwards ray-tracing from reflective surface | Pillbox; Gaussian; Ideal; User defined | Only reflectors | Bivariate or user defined for | No | Matlab LabVIEW, Excel coupling |
| SPRAY | In-house DLR | MCRT& backwards ray-tracing | Pillbox; Gaussian; Ideal; User defined | Yes | Bivariate or user x defined for | Just in refraction | Heliostat real surface data |
| References | Name | Location | Facet Geometry and Material | Dish Shape and Dimensions | Tracking System | Heat Transfer Fluid and Optical Efficiency |
|---|---|---|---|---|---|---|
| J. Coventry et al. [2] | THEK 2 | Marseilles, France | Triangular, Glass bounded to fiberglass | Hexagonal, 50 m2 | Two-axis | Thermal oil, Not mentioned |
| J. Coventry et al. [2], Yan et al. [30] | Raytheon | Georgia, United States | Spherical, heat sagged mirror segments | Circular, 6.7 m diameter | Azimuth-elevation | Not mentioned, up to 92% |
| J. Coventry et al. [2] | Omnium-G | Colorado, United States | Trapezoidal, polished aluminium gores | Circular, 5 m diameter (approx.) | Not mentioned | Steam/air, not mentioned |
| J. Coventry et al. [2] | PDC-1 | California, United States | Trapezoidal, sandwich configuration: fiberglass, balsa and polyester | Circular, not mentioned | Azimuth-elevation | Toluene (ORC), not mentioned |
| J. Coventry et al. [2] | Vanguard | California, United States | Squared, thin glass mirrors | Hexagonal, not mentioned | Azimuth (rotation)-elevation (exocentric axis) | Hydrogen (Stirling), not mentioned |
| J. Coventry et al. [2], Poullikas et al. [29] | SG3 BigDish | Canberra, Australia | Trapezoidal, sandwich construction (glass, corrugated steel, polyurethane) | Hexagonal, 400 m2 | Azimuth (carousel-style) | Steam, Not mentioned |
| J. Coventry et al. [2] | SunDish | Arizona, United States | Hexagonal, flat mirror tiles (last version) | Circular, 3.2 m diameter | Azimuth-elevation | Hydrogen (Stirling), improved changing the facets |
| J. Coventry et al. [2] | SunCatcher | Albuquerque, United States | Trapezoidal-shaped stamped steel mirror and glass | Circular, Not mentioned | Azimuth-elevation | Hydrogen (Stirling), not mentioned |
| References | Type | Configuration | Heat Transfer Fluid | Thermal Efficiency | CSP System | PCU | Highlights |
|---|---|---|---|---|---|---|---|
| [12,29,44,45,46] | External | Cylindrical arrangement of pipes | Liquid | 65.18 to 74.08% | CTS, PDC | Stirling (for PDC) | Re-radiation and convection reduce efficiency |
| [44,48,51,53,56,57,58] | Cavity | Tubular | Liquid (water, thermal oils, nanofluids) or gas-phase (air, helium) | 58.75–72.83% for liquid 53.16 to 70% for gas phase | CTS, PDC | Stirling (for PDC) MGT (for CTS) | Suitable for TES (liquid), strong pressure drops and low heat transfer |
| [59,60,61] | Cavity | Heat pipe | Liquid to vapor (sodium, molten salts) or gas (air, helium) | 88.5–91.5% for liquid up to 90% for gas phase | CTS, PDC | Stirling and MGT | Large heat transfer rates, phase change isothermal process |
| [42,62,63] | Cavity | Impinging | Fluid (air) | 81.5–88% | PDC | Brayton (MGT) | Withstands high temperature reduced complexity and cost |
| [14,29,64,65,72,73] | Cavity | Volumetric | Gas (air) | 74 to 89% | CTS, PDC | Rankine, Brayton | High temperature (up to 1500 °C), HTF can directly be the working fluid |
| [49,76] | Cavity | Absorbing gas | Gas (CO2, water vapor) | 78 to 90% | CTS | Not mentioned | Simpler architecture |
| Stirling | Brayton-MGT | |
|---|---|---|
| References | [5,12,79,80,81,82,84,85] | [11,15,31,87,89,90,91,92] |
| Configurations | Kinetic | Open cycle |
| Thermoacoustic | Closed cycle | |
| Free Piston | Hybrid cycle (solar and | |
| Liquid Piston | combustion chamber) | |
| Working Fluids | Air, helium, hydrogen | Air, supercritical CO2 (sCO2) |
| Efficiency | Up to 40% (thermal to mechanical) | 27 to 37% at on-desing point |
| Regeneration | Yes | Yes |
| Advantages | High efficiency, long-term and silent operation | High temperatures (up to 1000 °C), low maintenance |
| Drawbacks | Mechanical complexity, moderate temperatures, limited hybridization options | Limited power output for PDC (up to 50 kWe), pressure drops |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ferrero, J.; Merchán Corral, R.P.; Moctezuma-Hernández, J.A.; Pérez-Gallego, D.; Anvari, S.; González-Ayala, J.; Calvo-Hernández, A.; Mateos Roco, J.M.; Santos, M.J.; Medina, A. Parabolic Dish Collectors for Concentrated Solar Power: A Comprehensive Review on Their Subsystems and Overall Integration. Energies 2025, 18, 6596. https://doi.org/10.3390/en18246596
García-Ferrero J, Merchán Corral RP, Moctezuma-Hernández JA, Pérez-Gallego D, Anvari S, González-Ayala J, Calvo-Hernández A, Mateos Roco JM, Santos MJ, Medina A. Parabolic Dish Collectors for Concentrated Solar Power: A Comprehensive Review on Their Subsystems and Overall Integration. Energies. 2025; 18(24):6596. https://doi.org/10.3390/en18246596
Chicago/Turabian StyleGarcía-Ferrero, Judit, Rosa Pilar Merchán Corral, Jesús Alberto Moctezuma-Hernández, David Pérez-Gallego, Simin Anvari, Julian González-Ayala, Antonio Calvo-Hernández, José Miguel Mateos Roco, María Jesús Santos, and Alejandro Medina. 2025. "Parabolic Dish Collectors for Concentrated Solar Power: A Comprehensive Review on Their Subsystems and Overall Integration" Energies 18, no. 24: 6596. https://doi.org/10.3390/en18246596
APA StyleGarcía-Ferrero, J., Merchán Corral, R. P., Moctezuma-Hernández, J. A., Pérez-Gallego, D., Anvari, S., González-Ayala, J., Calvo-Hernández, A., Mateos Roco, J. M., Santos, M. J., & Medina, A. (2025). Parabolic Dish Collectors for Concentrated Solar Power: A Comprehensive Review on Their Subsystems and Overall Integration. Energies, 18(24), 6596. https://doi.org/10.3390/en18246596

