Wave Energy Conversion Technology Based on Liquid Metal Magnetohydrodynamic Generators and Its Research Progress
Abstract
1. Introduction
2. MHD Wave Energy Converter
- Simple structure and reliable operation.
- High efficiency within a wide range of operating conditions.
- Good response characteristics to low sea states.
- Modular design and array layout.
- Rapid and easy deployment.
- Low cost of manufacturing, operation, and maintenance.
3. Research Development of MHD Wave Energy Conversion
3.1. Performance Analysis
3.2. Control of MHD WECs
3.3. Prototype Development and Experiments/Tests
3.3.1. SARA
3.3.2. IEECAS
3.3.3. Others
3.4. New MHD WEC Concepts
4. Some Technical Challenges
4.1. High-Performance LMMHD Generator
4.2. Efficient Low-Voltage and High-Current Power Conversion
4.3. Issues with Materials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IRENA. Renewable Capacity Statistics 2025; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2025. [Google Scholar]
- Chavarría-Domínguez, B.; De León-Aldaco, S.E.; Ponce-Silva, M.; Velázquez-Limón, N.; Aguilar-Jiménez, J.A.; Chavarría-Domínguez, F.; Rodríguez-García, E.R.; Adamas-Pérez, H.; Lozoya-Ponce, R.E.; Flores-Rodriguez, E. Performance Analysis of a Parabolic Trough Collector with Photovoltaic-thermal Generation: Case Study and Parametric Study. Energies 2025, 18, 356. [Google Scholar] [CrossRef]
- Najafi Roudbaria, F.; Ehsania, H.; Amirib, S.R.; Samadanic, A.; Shabanid, S.; Khodadade, A. Advances in Photovoltaic Thermal Systems: A Comprehensive Review of CPVT and PVT Technologies. Sol. Energy Mater. Sol. Cells 2024, 276, 113070. [Google Scholar] [CrossRef]
- Chao, M.Y.; Yu, J.Q.; Cao, W.Q.; Wang, M.; Zhou, M. An improHybrid Neural Network Algorithm for Predicting Photovoltaic Output Power: Considering the Seasonal Output Characteristics of Solar Energy. J. Renew. Sustain. Energy 2025, 17, 026101. [Google Scholar] [CrossRef]
- Charlangsut, N.; Rugthaicharoencheep, N. Enhancing Voltage and Power Stability in Distribution System with Photovoltaic from the Benefits of Battery Energy Storage. Energies 2025, 18, 577. [Google Scholar] [CrossRef]
- Liu, Z.; Xuan, L.F.; Gong, D.H.; Xie, X.L.; Liang, Z.W.; Zhou, D.G. A WGAN-GP Approach for Data Imputation in Photovoltaic Power Prediction. Energies 2025, 18, 1024. [Google Scholar] [CrossRef]
- Gai, Z.R.; Zhao, K.; Yang, T.L.; Rao, Q.; Pan, Y.; Jin, H.G. An Investigation into Parabolic Trough Solar Thermal Power Generation System with Double-Stage Concentrated Heat Collection. J. Xi’an Jiaotong Univ. 2025, 59, 32–40. [Google Scholar]
- Li, F.C.; Tian, X.; Dang, N.; Liu, F.; Yang, X.N.; Liu, L.T. Research on Configuration Characteristics of Combined Photovoltaic and Tower Solar Thermal Power Plant. Acta Energiae Solaris Sin. 2025, 46, 547–563. [Google Scholar]
- Chen, X.Y.; Wang, L.; Li, X.J.; Ji, J.Z.; Lin, X.P.; Zhang, H.L.; Liu, F.; Chen, H.S. Techno-economic Performance of the Solar Tower Power Plants Integrating with 650 °C High-temperature Molten Salt Thermal Energy Storage. Energy 2025, 324, 136073. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Xie, H.P.; Chen, X.R.; Cao, Q.; Bie, Z.H. A Zero-carbon Integrated Energy System Energized by CSP+PV: A Real Case of Isolated Grid. Sol. Energy 2025, 292, 113440. [Google Scholar] [CrossRef]
- Liu, X.Y.; Huang, Y.S.; Shi, X.L.; Bai, W.Z.; Huang, S.; Li, P.; Xu, M.N.; Li, Y.P. Offshore Wind Power-seawater Electrolysis-salt Cavern Hydrogen Storage Coupling System: Potential and Challenges. Energies 2025, 18, 169. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Navarrete, M.; Cano, D. Advances, Progress, and Future Directions of Renewable Wind Energy in Brazil (2000–2025–2050). Appl. Sci. 2025, 15, 5646. [Google Scholar] [CrossRef]
- Wang, Y.C.; Song, D.R.; Wang, L.; Huang, C.E.; Huang, Q.; Yang, J.; Evgeny, S. Review of Design Schemes and AI Optimization Algorithms for High-efficiency Offshore Wind Farm Collection Systems. Energies 2025, 18, 594. [Google Scholar] [CrossRef]
- Ma, C.L. Medium and Long-term Development Prospects of the Marine Energy Industry. In Proceedings of the China Marine Energy Industry Development Exchange Seminar, Qingdao, China, 20 December 2024. [Google Scholar]
- Sebastian, B.; Karmakar, D.; Rao, M.N. Dynamic Analysis of a Semi-submersible Offshore Floating Wind Turbine Combined with Wave Energy Converters. Ships Offshore Struct. 2025. [Google Scholar] [CrossRef]
- Majidi, A.G.; Ramos, V.; Rosa-Santos, P.; Akpinar, A.; das Neves, L.; Taveira-Pinto, F. Development of a Multi-criteria Decision-making Tool for Combined Offshore Wind and Wave Energy Site Selection. Appl. Energy 2025, 384, 125422. [Google Scholar] [CrossRef]
- Wang, B.H.; Sun, Z.W.; Zhao, Y.Y.; Li, Z.Y.; Zhang, B.H.; Xu, J.K.; Qian, P.; Zhang, D.H. The Energy Conversion and Coupling Technologies of Hybrid Wind-wave Power Generation Systems: A Technological Review. Energies 2024, 17, 1853. [Google Scholar] [CrossRef]
- Majidi, A.G.; Ramos, V.; Calheiros-Cabral, T.; Santos, P.R.; das Neves, L.; Taveira-Pinto, F. Integrated Assessment of Offshore Wind and Wave Power Resources in Mainland Portugal. Energy 2024, 308, 132944. [Google Scholar] [CrossRef]
- Nie, R.; Si, J.K.; Wang, P.X.; Li, Z.W.; Liang, J.; Gan, C. Optimization Design of a Novel Permanent Magnet Linear-rotary Generator for Offshore Wind-wave Combined Energy Conversion based on Multi-attribute Decision Making. IEEE Trans. Energy Convers. 2024, 39, 1583–1600. [Google Scholar] [CrossRef]
- Nie, R.; Si, J.K.; Jia, Y.F.; Wang, P.X.; Xu, S.; Liang, J.; Gan, C. Comprehensive Comparison of Mover-PM and Stator-PM Linear-Rotary Generators for Wind-wave Combined Energy Conversion System. IEEE Trans. Ind. Appl. 2024, 60, 6170–6185. [Google Scholar] [CrossRef]
- Giannini, G.; Rosa-Santos, P.; Ramos, V.; Taveira-Pinto, F. On the Development of an Offshore Version of the CECO Wave Energy Converter. Energies 2020, 13, 1036. [Google Scholar] [CrossRef]
- Finnegan, W.; Rosa-Santos, P.; Taveira-Pinto, F.; Goggins, J. Development of a Numerical Model of the CECO Wave Energy Converter Using Computational Fluid Dynamics. Ocean Eng. 2021, 219, 108416. [Google Scholar] [CrossRef]
- Pennock, S.; Vanegas-Cantarero, M.M.; Bloise-Thomaz, T.; Jeffrey, H.; Dickson, M.J. Life Cycle Assessment of a Point-absorber Wave Energy Array. Renew. Energy 2022, 190, 1078–1088. [Google Scholar] [CrossRef]
- Ghafari, H.R.; Ghassemi, H.; He, G.H. Numerical Study of the Wavestar Wave Energy Converter with Multi-point-absorber around DeepCwind Semisubmersible Floating Platform. Ocean Eng. 2021, 232, 109177. [Google Scholar] [CrossRef]
- Lavidas, G.; Polinder, H. Wave Energy in the Netherlands: Past, Present and Future Perspectives. In Proceedings of the 13th European Wave and Tidal Energy Conference, Naples, ltaly, 1–6 September 2019; p. 1226. [Google Scholar]
- Yasir, A.S.H.M.; Omar, M.A.; Azhar, N.A.M.; Mukhtar, A.; Yusoff, M.Z. A Comprehensive Review of Recent Advancements and Challenges in Breakwater Oscillating Water Column Technology for Wave Energy Conversion. Energy Rep. 2025, 13, 4095–4113. [Google Scholar] [CrossRef]
- Wu, B.J.; Zhang, F.M.; Long, Z.X.; Li, M.; Wu, R.K. Technology of Self-propelled Pneumatic Oscillating Water Column Wave Power Ship. Acta Energiae Solaris Sin. 2022, 43, 458–462. [Google Scholar]
- Yang, S.H.; Zhang, C.Z.; Du, Z.C.; Tu, Y.Q.; Dai, X.G.; Huang, Y.; Fan, J.Y.; Hong, Z.Y.; Jiang, T.; Wang, Z.L. Fluid Oscillation-Driven Bi-directional Air Turbine Triboelectric Nanogenerator for Ocean Wave Energy Harvesting. Adv. Energy Mater. 2024, 14, 2304184. [Google Scholar] [CrossRef]
- Sheng, S.W.; Wang, K.L.; Lin, H.J.; Zhang, Y.Q.; You, Y.G.; Wang, Z.P. Open Sea Tests of 100 kW Wave Energy Converter Sharp Eagle Wanshan. Acta Energiae Solaris Sin. 2019, 40, 709–714. [Google Scholar]
- Han, Z.; Jin, S.Y.; Greaves, D.; Hann, M.; Shi, H.D. Study on the Energy Capture Spectrum of a Two-body Hinged-raft Wave Energy Converter. Energy 2024, 304, 132057. [Google Scholar] [CrossRef]
- Faiz, J.; Haghvirdiloo, S.; Ghaffarpour, A. Different Types of Electrical Generators for Converting Wave Energy into Electrical Energy-A Review. J. Mar. Sci. Appl. 2025, 24, 76–97. [Google Scholar] [CrossRef]
- Qin, J.C.; Chen, R.W.; Liu, F.; Wang, W.Q.; Zhang, Y.X.; Liu, C.A. Research on Direct-drive Motor for Wave Energy Conversion Based on Halbach Array. Int. J. Appl. Electromagn. Mech. 2023, 71, 183–197. [Google Scholar] [CrossRef]
- Liu, C.Y. Current Research Status and Challenge for Direct-drive Wave Energy Conversions. IETE J. Res. 2023, 69, 4631–4643. [Google Scholar] [CrossRef]
- Sang, Y.Y.; Sheng, J.M.; Xue, H.; Wang, Y.F.; Wu, Q.G. Non-linear Coordinated Control of LPMG-based Direct Drive Wave Energy Conversion System with Supplementary Energy Storage System Based on Feedback Linearization. IET Renew. Power Gener. 2024, 18, 3077–3090. [Google Scholar] [CrossRef]
- Chen, M.S.; Huang, L.; Li, Y.; Fang, S.H. Analysis of Magnetic Field Modulation Mechanism in Transverse Flux Cylindrical Linear Generator Used in Direct Drive Wave Energy Conversion. In Proceedings of the IEEE 21st Biennial Conference on Electromagnetic Field Computation (IEEE CEFC), Jeju, Republic of Korea, 2–5 June 2024. [Google Scholar]
- Huang, X.R.; Lin, Z.C.; Chen, K.M.; Zhou, J.Y.; Xiao, X. Improving Wave-to-wire Efficiency of Direct-drive Wave Energy Converters with Loss-aware Model Predictive Control and Variable DC Voltage Control. IEEE Trans. Ind. Electron. 2025, 72, 1561–1570. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.H.; Liang, H.H.; Luo, Q.; Wang, C.F. Power Optimization of Direct-drive Wave Power System Based on Direct Thrust Force Control. Acta Energiae Solaris Sin. 2024, 45, 206–212. [Google Scholar]
- Ocean Power Technologies Announces Renewable Energy Production Milestone. Available online: https://investors.oceanpowertechnologies.com/news-releases/news-release-details/ocean-power-technologies-announces-renewable-energy-production (accessed on 10 February 2025).
- Current Seabased Projects. Available online: https://seabased.com/seabased-projects (accessed on 10 February 2025).
- AWS Waveswing Trials Exceed Expectations. Available online: https://awsocean.com/2022/11 (accessed on 10 February 2025).
- Haaland, C.M. Double-Duct Liquid Metal Magnetohydrodynamic Engines. U.S. Patent 5473205, 5 December 1995. [Google Scholar]
- Haaland, C.M.; Deeds, W.E. Single Channel Double-Duct Liquid Metal Electrical Generator Using a Magnetohydrodynamic Device. U.S. Patent 5923104, 13 July 1999. [Google Scholar]
- Satake, S.; Maeda, T.; Shimizu, K.; Fujino, T.; Ishikawa, M. Study of Influence of Induced Magnetic Field of Liquid Metal MHD Generator Experimental Facility. In Proceedings of the 38th AIAA Plasmadynamics and Lasers Conference in Conjunction with the 16th, Miami, FL, USA, 25–28 June 2007. AIAA 2007-4022. [Google Scholar]
- Altshuller, D.A.; Koslover, R.A. Optimal Control of the Magnetohydrodynamic Ocean Wave Energy Converter: Theory; PhysCon: St. Petersburg, Russia, 2005; pp. 126–129. [Google Scholar]
- Peng, Y. Novel Wave Energy Converter with Magnetohydrodynamic Generator. In Proceedings of the Conference on China Technological Development of Renewable Energy, Beijing, China, 18–19 December 2010; pp. 638–643. [Google Scholar]
- Hendel, F.J. Flowing Saline Water Magnetohydrodynamic Electric Generator. U.S. Patent 4151423A, 24 April 1979. [Google Scholar]
- Rynne, M.T. Ocean Wave Energy Conversion System. U.S. Patent 5136173, 4 August 1992. [Google Scholar]
- Gao, Y.B.; Wang, Y.S.; Zhao, Z.K.; Li, J.C.; Xia, F.M. A Combined Power Generation System with Hydropower Generation and MHD Generation. CN Patent 115217707A, 21 October 2022. [Google Scholar]
- Patton, E.M. Dynamic Nonlinear Interactions for Deep Water Wave Power Generation; Final Report; SBIR Phase I Contract N00014-02-M-0145; Office of Naval Research: Arlington, VA, USA, 15 November 2002. [Google Scholar]
- Feng, Y.X.; Zheng, X.F.; Xu, Q.; Jiang, Y.T.; Feng, N. A Marine Energy Harvesting Device. CN Patent 118783721A, 15 October 2024. [Google Scholar]
- Li, Y.G.; Zheng, D.J. A Liquid Metal MHD Wave Energy Converter. CN Patent 118783721A, 7 March 2021. [Google Scholar]
- Liu, Y.J.; Liu, B.L.; Peng, A.W. Effect of Working Medium Property on Performance of Heaving Float Wave Energy Converter with Liquid Metal MHD Generator. In Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference, San Francisco, CA, USA, 25–30 June 2017; pp. 120–125. [Google Scholar]
- Liu, H.B.; Zhao, L.Z.; Zhu, P.Q.; Shi, Y.T.; Peng, A.W. Optimal Design of MHD Wave Generator under Real Sea Conditions. Acta Energiae Solaris Sin. 2022, 43, 498–505. [Google Scholar]
- Shi, Y.T. Performance Analysis of the Array Float Type Wave Energy Conversion with Liquid Metal MHD Generator. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, June 2021. [Google Scholar]
- Liu, Y.J. Investigation on Performance Characteristics of Wave Energy Converter with Liquid Metal MHD Generator. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, May 2017. [Google Scholar]
- Hu, L.; Kobayashi, H.; Okuno, Y. Performance of a Liquid Metal MHD Power Generation System for Various External Forces. In Proceedings of the AIAA Propulsion and Energy Forum & 12th International Energy Conversion Engineering Conference, Cleveland, OH, USA, 28–30 July 2014. AIAA-2014-3558. [Google Scholar]
- Jiang, C.; Wang, T.; Zhu, S.M.; Yu, G.Y.; Wu, Z.H.; Luo, E.C. A Method to Optimize the External Magnetic Field to Suppress the End Current in Liquid Metal Magnetohydrodynamic Generators. Energy 2023, 282, 128251. [Google Scholar] [CrossRef]
- Kakizaki, K.; Maeda, T.; Shimizu, K.; Ishikawa, M. Effects of Magnetic Field Distribution on Performance of Liquid Metal MHD Generator. In Proceedings of the 35th AIAA Plasmadynamics and Lasers Conference, Portland, OR, USA, 28 June–1 July 2004. AIAA 2004-2367. [Google Scholar]
- Wang, J. Study on the Demagnetization of Permanent Magnets in a Reciprocating Liquid Metal Magnetohydrodynamic Generator. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, May 2017. [Google Scholar]
- Katsunori, Y.; Tetsuhiko, M.; Yasuo, H.; Okuno, Y. Two-dimensional Numerical Simulation on Performance of Liquid Metal MHD Generator. Electr. Eng. Jpn. 2006, 156, 25–32. [Google Scholar] [CrossRef]
- Zhu, S.M.; Wang, T.; Jiang, C.; Wu, Z.H.; Yu, G.Y.; Hu, J.Y.; Markides, C.N.; Luo, E.C. Experimental and Numerical Study of a Liquid Metal Magnetohydrodynamic Generator for Thermoacoustic Power Generation. Appl. Energy 2023, 348, 121453. [Google Scholar] [CrossRef]
- Song, K.X.; Peng, A.W.; Zhao, L.Z. Effect of Load on Performance of LMMHD Generator. In Proceedings of the Thirty-Second (2022) International Ocean and Polar Engineering Conference, Shanghai, China, 5–10 June 2022. [Google Scholar]
- Zhang, Q.H.; Zhao, F.; Liu, B.L.; Li, J.; Li, R.; Peng, A.W. Efficient Real-time Output Power Control System based on LMMHD Wave Energy Generator Characteristics. Electr. Power Autom. Equip. 2024, 44, 43–49. [Google Scholar]
- Zhang, Y.R.; Zhang, Y.M.; Gao, J.X.; Zhang, Y. Design of Low-voltage High-transformation Ratio Energy Harvesting Circuit of Liquid Metal Magnetohydrodynamic Generation System. Telecom Power Technol. 2020, 37, 6–11. [Google Scholar]
- Zhang, Q.H.; Xia, Q.; Peng, A.W.; Zhao, L.Z. Design of PCS for MHD Wave Energy Underwater Recharging Platforms. In Proceedings of the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference, Rhodes, Greece, 26 June–1 July 2016; pp. 484–490. [Google Scholar]
- Sánchez-Conde, L.A.; Salgado-Herrera, N.M.; Mendoza-Baldwin, E.G. Marine Energy Conversion System Based on Magnetohydrodynamic Generators Array Interconnected into Distribution Electrical Networks. In Proceedings of the 2021 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2021), Ixtapa, Mexico, 10–12 November 2021. [Google Scholar]
- Liu, H.B.; Zhang, Q.H.; Liu, Y.J.; Peng, A.W. Research on Maximum Power Tracking Strategy of Wave Energy Based on MHD Generator. Acta Energiae Solaris Sin. 2022, 43, 402–409. [Google Scholar]
- Sun, P.Y.; Li, Q.; He, H.Z.; Chen, H.; Zhang, J.; Li, H.; Liu, D.H. Design and Optimization Investigation on Hydraulic Transmission and Energy Storage System for a Floating-array-buoys Wave Energy Converter. Energy Convers. Manag. 2021, 235, 113998. [Google Scholar] [CrossRef]
- Liu, Y.X.; Qin, J.; Liu, Y.J. The Analysis of Key Parameters of Hydraulic Energy Storage System of Wave Energy Converter. J. Shandong Univ. (Eng. Sci.) 2021, 51, 1–8. [Google Scholar]
- Song, W.J.; Shi, H.D.; Liu, P.; Jiang, Q.L.; Yu, H.B. Experimental Study on Working Characteristics of Wave Energy Converter with Energy Accumulator. Acta Energiae Solaris Sin. 2020, 41, 165–170. [Google Scholar]
- Koslover, R.A.; Law, R.C. Modular Liquid-Metal Magnetohydrodynamic (LMMHD) Power Generation Cell. U.S. Patent 7166927, 23 January 2005. [Google Scholar]
- Xiao, T.; Peng, Y.; Zhao, L.Z.; Xu, Y.Y.; Liu, B.L.; Li, R. Performance Analysis of Liquid Metal Magnetohydrodynamic Generator for Wave Energy Conversion. Mod. Sci. Instrum. 2010, 3, 60–65. [Google Scholar]
- Liu, B.L.; Li, J.; Peng, Y.; Zhao, L.Z.; Li, R.; Xia, Q.; Sha, C.W. Performance Study of Magnetohydrodynamic Generator for Wave Energy. In Proceedings of the 24th International Offshore and Polar Engineering Conference, Busan, Republic of Korea, 15–20 June 2014; pp. 545–548. [Google Scholar]
- Xia, D.W. The R&D Activities on WECs in China. In Proceedings of the International Conference on Ocean Energy 2016, Edinburgh, UK, 23–25 February 2016. [Google Scholar]
- Zhao, L.Z.; Peng, A.W. Review of Conductive Reciprocating Liquid Metal Magnetohydrodynamic Generators. Energies 2025, 18, 959. [Google Scholar] [CrossRef]
- Domínguez-Lozoya, J.C.; Cuevas, S.; Domínguez, D.R.; Ávalos-Zúñiga, R.; Ramos, E. Laboratory Characterization of a Liquid Metal MHD Generator for Ocean Wave Energy Conversion. Sustainability 2021, 13, 4641. [Google Scholar] [CrossRef]
- Zhang, Y.R. Analysis and Research for Output Voltage Optimization of Deep-Sea Liquid Metal Magnetohydrodynamic Generator System. Master’s Thesis, Beijing University of Technology, Beijing, China, June 2020. [Google Scholar]
- Majid, M.F.M.A.; Md Apandi, M.A.H.; Sabri, M.; Shahril, K. Fundamental Studies on Development of MHD (Magnetohydrodynamic) Generator Implement on Wave Energy Harvesting. IOP Conf. Ser. Mater. Sci. Eng. 2016, 114, 012145. [Google Scholar] [CrossRef]
- Aoki, M.; Takeda, M. Study on the Effect of Magnetic Field on Seawater Electrolysis Using a Channel Flow Cell to Simulate a Linear-type Seawater Magnetohydrodynamic Power Generator. Chem. Lett. 2022, 51, 542–545. [Google Scholar] [CrossRef]
- Liu, P.Z. Duck Superconducting MHD Wave Energy Generation System and Method. CN Patent 101424242A, 6 May 2007. [Google Scholar]
- Wang, Z.; Li, Y.G.; Wang, S.M.; He, Q.Y.; Zhang, J. Research on New Type Magnetohydrodynamic Ocean Wave Energy Conversion System. Appl. Mech. Mater. 2014, 556–562, 1856–1859. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, G.; Cui, Y.; Xie, Y.D. Rays-Type LMMHD Generation Device and Method. CN Patent 105763022A, 13 July 2016. [Google Scholar]
- Peng, Y.; Lin, Z.W.; Zhao, L.Z.; Sha, C.W.; Li, R.; Xu, Y.Y.; Liu, B.L.; Li, J. Analysis of Liquid Metal MHD Wave Energy Direct Conversion System. In Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, 6–11 July 2008. [Google Scholar]
- Peng, Y.; Zhao, L.Z.; Sha, C.W.; Li, R.; Xu, Y.Y.; Lin, Z.W.; Liu, B.L.; Li, J.; Jia, L. Liquid Metal Magnetohydrodynamic Wave Energy Direct Converter Based on Magnetic Transmission. CN Patent 101162864A, 25 November 2009. [Google Scholar]
- Peng, Y.; Zhao, L.Z.; Jia, L.; Sha, C.W.; Li, J.; Li, R.; Xu, Y.Y.; Liu, B.L. A Floating and Suspended LMMHD Wave Energy Converter. CN Patent 101571097A, 5 September 2012. [Google Scholar]
- Liu, Y.H.; Ma, R.Q.; Duan, J.L.; Lao, S.K. An Energy Supply Device for Fishing Vessels Based on MHD Wave Energy Conversion. CN Patent 214887454U, 26 November 2021. [Google Scholar]
- Liu, Y.J.; Peng, A.W. An Oscillating Water Column MHD Wave Energy Conversion System. CN Patent 114412695A, 29 April 2022. [Google Scholar]
- Wang, Y.; Qiao, K.; Wang, Q.X.; Huo, Z.P.; Yi, R.Y.; Zhang, Y.L. A Vertical Axis LMMHD Ocean Current Power Generation Device and Method. CN Patent 109713875A, 3 May 2019. [Google Scholar]
- Wang, Y.Y. Study on Oscillating Hydrofoil Tidal Energy Generator Applied Liquid Metal Magnetohydrodynamics. Master’s Thesis, Shandong University, Jinan, China, May 2019. [Google Scholar]
- Qiao, K. Study on Tidal Power Oscillating Double Hydrofoil Liquid Metal Magnetofluid Power Generation System. Master’s Thesis, Shandong University, Jinan, China, May 2021. [Google Scholar]
- Avalos-Zúñiga, R.A.; Rivero, M. Theoretical Modeling of a Vortex-type Liquid Metal MHD Generator for Energy Harvesting Applications. Sustain. Energy Technol. Assess. 2022, 52, 102056. [Google Scholar] [CrossRef]
- Cheng, D.D. Research on the Power Conversion System for Wave Energy MHD generator. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, March 2018. [Google Scholar]
- Wang, J.; Jiang, X. Review and Analysis of SiC MOSFETs’ Ruggedness and Reliability. IET Power Electron. 2020, 13, 445–455. [Google Scholar] [CrossRef]
- Xu, C.F.; Li, Y.C.; Xu, R.X.; Cui, X.Y.; Zheng, Z. Research on High Efficiency and High Power Density Power Electronic Transformers Based on SiC Devices. In Proceedings of the 2021 IEEE IAS Industrial and Commercial Power System Asia (IEEE I&CPS ASIA 2021), Chengdu, China, 18–21 July 2021; pp. 100–104. [Google Scholar]
- Rafin, S.M.S.H.; Ahmed, R.; Haque, M.A.; Hossain, M.K.; Haque, M.A.; Mohammed, O.A.; Wang, Z.H.; Huang, J.K. Power Electronics Revolutionized: A Comprehensive Analysis of Emerging Wide and Ultrawide Bandgap Devices. Micromachines 2023, 14, 2045. [Google Scholar] [CrossRef] [PubMed]
- Akagi, H. Multilevel Converters: Fundamental Circuits and Systems. Proc. IEEE 2017, 105, 2048–2065. [Google Scholar] [CrossRef]
- Dekka, A.; Wu, B.; Fuentes, R.L.; Perez, M.; Zargari, N.R. Evolution of Topologies, Modeling, Control Schemes, and Applications of Modular Multilevel Converters. IEEE Trans. Emerg. Sel. Top. Power Electron. 2017, 5, 1631–1656. [Google Scholar] [CrossRef]
- Marquardt, R. Modular Multilevel Converters: State of the Art and Future Progress. IEEE Power Electron. Mag. 2018, 5, 24–31. [Google Scholar] [CrossRef]
- Satake, S.; Fu, J.N.; Ishikawa, M.; Maeda, T. Experimental Study of Proof-of-principle of Liquid Metal MHD Generation. Proceedings of New Energy Technology Symposium. 2008; B-1-4. [Google Scholar]
- Swift, G.W. A Liquid-Metal Magnetohydrodynamic Acoustic Transducer. J. Acoust. Soc. Am. 1988, 83, 350–361. [Google Scholar] [CrossRef]
- Cosoroaba, E.; Caicedo, C.; Maharjan, L.; Clark, A.; Wu, M.X.; Liang, J.C.; Moallem, M.; Fahimi, B. 3D Multiphysics Simulation and Analysis of a Low Temperature Liquid Metal Magnetohydrodynamic Power Generator Prototype. Sustain. Energy Technol. Assess. 2019, 35, 180–188. [Google Scholar] [CrossRef]
- Voronov, I.V.; Nikolaev, V.S.; Timofeev, A.V.; Stegailov, V.V. Atomistic Mechanism of Activation Controlled Liquid Metal Corrosion at the Fe-Pb Interface. J. Nucl. Mater. 2025, 604, 155483. [Google Scholar] [CrossRef]
- Zhang, D.X.; Feng, H.Y.; Hu, H.W.; Zheng, J.; Song, P.; Mao, Z.Y. Research Status of Embrittlement Mechanism of Liquid Metal. Mater. Rep. 2023, 37, 23040090. [Google Scholar]
- Fu, S.S.; Ma, S.Q.; Ma, S.C.; Wang, J.Q.; Lv, P.; Chen, H.T.; Xing, J.D. Research Progress of Liquid Metal Corrosion. China Foundry Mach. Technol. 2020, 55, 34–42. [Google Scholar]
- Liu, W.; Du, K.F.; Hu, X.H.; Wang, D.H. Review on Research Status of Common Liquid Metal Corrosion in Liquid Metal Energy Storage Batteries. J. Chin. Soc. Corros. Prot. 2020, 2, 81–86. [Google Scholar]
Concept | Wave Absorber | Ocean Energy Utilized | Deployment Location | PTO System |
---|---|---|---|---|
Floating MHD WEC | Duck pendulum [80] | Wave pitching moment | Semi-submerged on the surface of the water | Hydraulic or mechanical system |
Multiple tube sections linked with joints [81] | ||||
Flexible shell filled with the liquid metal inside [82] | No mechanical or hydraulic system | |||
Submerged MHD WEC [83,84] | Submerged float | Heave force of waves | Submerged vertically | Mechanical or hydraulic system |
Combined MHD WEC | Float, contouring raft, and tapered channel [85] Float and buoyancy pendulum [86] | Heave and surge forces | Semi-submerged | Mechanical system |
OWC MHD WEC [87] | OWC | Heave force of waves | Semi-submerged vertically | Air, hydraulic system |
Point-absorber WEC with disk LMMHD generator [50] | Floating point absorber | Heave force | Semi-submerged on the surface of the water | Mechanical system |
Vertical-axis LMMHD ocean current power generation device [88] | Turbine | Kinetic energy of ocean current | Vertical in the water | Mechanical system |
Oscillating hydrofoil tidal energy generator [89,90] | Oscillating foil | Kinetic energy of tidal energy | Vertical in the water | Hydraulic system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Peng, A. Wave Energy Conversion Technology Based on Liquid Metal Magnetohydrodynamic Generators and Its Research Progress. Energies 2025, 18, 4615. https://doi.org/10.3390/en18174615
Zhao L, Peng A. Wave Energy Conversion Technology Based on Liquid Metal Magnetohydrodynamic Generators and Its Research Progress. Energies. 2025; 18(17):4615. https://doi.org/10.3390/en18174615
Chicago/Turabian StyleZhao, Lingzhi, and Aiwu Peng. 2025. "Wave Energy Conversion Technology Based on Liquid Metal Magnetohydrodynamic Generators and Its Research Progress" Energies 18, no. 17: 4615. https://doi.org/10.3390/en18174615
APA StyleZhao, L., & Peng, A. (2025). Wave Energy Conversion Technology Based on Liquid Metal Magnetohydrodynamic Generators and Its Research Progress. Energies, 18(17), 4615. https://doi.org/10.3390/en18174615