Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = fluid–solid particle interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4488 KB  
Article
Reverse Steady Streaming Induced by a Freely Moving Wavy Wall
by José Carlos Domínguez-Lozoya, Sebastián Gutiérrez-Juárez, David Roberto Domínguez-Lozoya, Aldo Figueroa and Sergio Cuevas
Fluids 2026, 11(1), 27; https://doi.org/10.3390/fluids11010027 - 20 Jan 2026
Viewed by 146
Abstract
In this work, we present a theoretical and experimental investigation of the fluid–structure interaction between a freely moving wall and an oscillatory flow. Our objective is to elucidate the coupling mechanism between the fluid and the oscillating body that gives rise to reverse [...] Read more.
In this work, we present a theoretical and experimental investigation of the fluid–structure interaction between a freely moving wall and an oscillatory flow. Our objective is to elucidate the coupling mechanism between the fluid and the oscillating body that gives rise to reverse streaming, that is, the reversal in the rotation direction of the resulting steady vortices, and to apply this analysis to the case of a freely moving wavy wall. The flow is analyzed theoretically based on a two-dimensional model and an analytical solution is obtained using a perturbation method. Experimental results based on Particle Image Velocimetry are also presented, where an oscillatory flow generated by an electromagnetic force in an electrolyte layer drives a wavy wall floating on the surface. The results confirm the occurrence of reverse streaming and demonstrate that the flow dynamics depend on the density ratio between the freely moving solid and the fluid. The analytical solution qualitatively captures the streaming reversal observed in the experiments. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

16 pages, 2333 KB  
Article
On-Chip Volume Refractometry and Optical Binding of Nanoplastics Colloids in a Stable Optofluidic Fabry–Pérot Microresonator
by Noha Gaber, Frédéric Marty, Elodie Richalot and Tarik Bourouina
Photonics 2026, 13(1), 91; https://doi.org/10.3390/photonics13010091 - 20 Jan 2026
Viewed by 169
Abstract
Plastic pollution raises concerns for health and the environment. Plastics are not biodegradable but gradually erode to microplastic and nanoplastic particles spreading almost everywhere. Nanoplastics exhibit colloidal behavior. Thereby, their analysis can be accomplished by refractometry, preferably by an on-chip tool. We present [...] Read more.
Plastic pollution raises concerns for health and the environment. Plastics are not biodegradable but gradually erode to microplastic and nanoplastic particles spreading almost everywhere. Nanoplastics exhibit colloidal behavior. Thereby, their analysis can be accomplished by refractometry, preferably by an on-chip tool. We present a study of such colloids using a microfabricated Fabry–Pérot cavity with curved mirrors, which holds a capillary micro-tube used both for fluid handling and light collimation, resulting in an optically stable microresonator. Despite the numerous scatterers within the sample, the sub-millimeter scale cavity provides the advantages of reduced interaction length while maintaining light confinement. This significantly reduces optical loss and hence keeps resonance modes with quality factors (resonant frequency/bandwidth) above 1100. Therefore, small quantities of colloids can be measured by the interference spectral response through the shift in resonant wavelengths. The particles’ Brownian motion potentially causing perturbations in the spectra can be overcome either by post-measurement cross-correlation analysis or by avoiding it entirely by taking the measurements at once by a wideband source and a spectrum analyzer. The effective refractive index of solutions with solid contents down to 0.34% could be determined with good agreement with theoretical predictions. Even lower detection capabilities might be attained by slightly altering the technique to cause particle aggregation achieved solely by light. Full article
Show Figures

Figure 1

20 pages, 1485 KB  
Article
SPH Simulation of Multiple Droplets Impact and Solidification on a Cold Surface
by Lujie Yuan, Qichao Wang and Hongbing Xiong
Coatings 2026, 16(1), 117; https://doi.org/10.3390/coatings16010117 - 15 Jan 2026
Viewed by 249
Abstract
The impact and solidification of multiple molten droplets on a cold substrate critically influence the quality and performance of thermally sprayed coatings. We present a Smoothed Particle Hydrodynamics (SPH) model that couples fluid-solid interaction, wetting, heat transfer and phase change to simulate multi-droplet [...] Read more.
The impact and solidification of multiple molten droplets on a cold substrate critically influence the quality and performance of thermally sprayed coatings. We present a Smoothed Particle Hydrodynamics (SPH) model that couples fluid-solid interaction, wetting, heat transfer and phase change to simulate multi-droplet impact and freezing. The model is validated against benchmark cases, including the Young–Laplace relation, wetting dynamics, single-droplet impact and the Stefan solidification problem, showing good agreement. Using the validated model, we investigate two droplets—either centrally or off-centrally—impacting on a cold surface. Simulations reveal two distinct solidification patterns: convex pattern (CVP), which results in a mountain-like splat morphology, and concave pattern (CCP), which leads to a valley-like shape. The criterion for the two patterns is explored with two dimensionless numbers, the Reynolds number Re and the Stefan number Ste. When Re17.8, droplets tend to solidify in CVP; at higher Reynolds numbers Re18.8, they tend to solidify in CCP. The transition between the two patterns is primarily governed by Re, with Ste exerting a secondary influence. For example, when droplets have Re=9.9 and Ste=5.9, they tend to solidify in a convex pattern, whereas at Re=19.8 and Ste=5.9, they tend to solidify in a concave pattern. Also, the solidification state of the first droplet greatly influences the subsequent spreading and solidification of the second droplet. A parametric study on CCP cases with varying vertical and horizontal offsets shows that larger vertical offsets accelerate solidification and reduce the maximum spreading factor. For small vertical distances, the solidification time increases with horizontal offset by more than 29%; for large vertical distances the change is minor. These results clarify how droplet interactions govern coating morphology and thermal evolution during thermal spraying. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 817 KB  
Article
Influence of Rheological, Ionic–Electrostatic, and Van Der Waals Forces on the Flow Structure of Water–Coal Fuel in Pipeline
by Eugene Semenenko, Oleksandr Krut’ and Artur Zaporozhets
Liquids 2026, 6(1), 3; https://doi.org/10.3390/liquids6010003 - 24 Dec 2025
Viewed by 209
Abstract
It has been shown for the first time that in the case of a pressure flow of a Newtonian fluid in a circular pipeline, the influence of forces of rheological origin, ion electrostatic and Van der Waals nature on the radius of the [...] Read more.
It has been shown for the first time that in the case of a pressure flow of a Newtonian fluid in a circular pipeline, the influence of forces of rheological origin, ion electrostatic and Van der Waals nature on the radius of the undeformed flow core is described by a third-degree polynomial with respect to the thickness of the layer, where the suspension structure is destroyed and its shear flow occurs. In this polynomial, the contributions of rheological forces and the influence of the hydraulic size of the solid-phase particles in the suspension enter as linear terms; ionic electrostatic and Van der Waals forces enter as quadratic and constant terms, respectively. For conditions typical of water–coal fuel, we demonstrate that the hydraulic (size) term is several orders of magnitude smaller than the leading terms and may be neglected, and that the quadratic term is negligible compared with the constant (free) term, so that the limiting value of the undeformed core radius is obtained as the real root of a cubic equation containing cubic, linear and constant terms. At DLVO equilibrium, the constant term vanishes, and the limiting relative core radius reduces to the rheological–hydraulic expression; away from equilibrium, the constant term becomes positive or negative, thereby altering the admissible interval of the relative core radius. Using Cardan’s method, we show analytically that (i) when the cubic discriminant is positive, a single real root exists and physically admissible solutions occur only for a negative constant term; (ii) when the discriminant is negative, three real roots exist and the maximum relative radius at which the suspension structure is preserved shifts above or below the rheological-only radius depending on the sign of the constant term. Numerical evaluation of the proposed lyophobicity model for proportionality coefficients k1 in the range 1–10 yields a lyophobicity function varying approximately from 0.67 to 1.06, confirming the modest but non-negligible role of interparticle interaction energy in modifying the undeformed core size under water–coal fuel conditions. These results quantify the competing roles of rheology and interparticle forces in determining the stability and extent of the undeformed core in pipeline transport of structured suspensions. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

21 pages, 7248 KB  
Article
Analysis of Sedimentation Behavior and Influencing Factors of Solid Particles in CO2 Fracturing Fluid
by Qiang Li, Dandan You, Qingchao Li, Fuling Wang, Yanling Wang and Yandong Yang
Processes 2025, 13(12), 4049; https://doi.org/10.3390/pr13124049 - 15 Dec 2025
Viewed by 366
Abstract
The fast settling rate of solid particles in the CO2 fracturing fluid is a serious obstacle to ensuring the smooth progress of reservoir stimulation during conventional energy extraction, exerting a critical influence on enhancing both transformation efficiency and crude oil recovery. In [...] Read more.
The fast settling rate of solid particles in the CO2 fracturing fluid is a serious obstacle to ensuring the smooth progress of reservoir stimulation during conventional energy extraction, exerting a critical influence on enhancing both transformation efficiency and crude oil recovery. In this study, a fluid–solid coupling numerical model was developed, incorporating reservoir conditions and fluid properties, to simulate the settling behavior of solid particles in geological reservoir fluids. In addition, the effects of various geological factors and fluid parameters on particle settling were systematically examined. Furthermore, molecular dynamics theory, together with the analysis of intermolecular bonding interactions, was employed to elucidate the underlying mechanisms governing particle settling under different conditions. The findings of this study have the potential conclusion that the numerical model constructed in this study showed a high degree of fit (98.7%) with the experimental data, demonstrating the high applicability and good match of the numerical model. Furthermore, CO2 viscosity is a significant factor influencing the differential settling of particles in reservoir fluids, and CO2 fracturing fluid at 8 mPa·s can reduce the settling distance and velocity of solid particles to 3.2 m and 0.21 m/s, respectively. Simultaneously, both high reservoir pressure and a rough surface can effectively suppress the settling behavior of solid particles in CO2 fracturing fluid, reducing the settling distance to 3.4 cm and 3.8 cm, respectively. However, the utilisation of high-temperature reservoirs at 383 K has been demonstrated to reduce the particle settling distance to 3.5 cm, a phenomenon that is evidently not conducive to the stimulation of deep, high-temperature reservoirs. The findings of this research endeavour have the potential to provide fundamental data for the utilisation of CO2 fracturing fluids in reservoir stimulation and EOR. Full article
Show Figures

Figure 1

17 pages, 12479 KB  
Article
A Study of Sediment Behavior for Dam-Break Flow over Granular Bed
by Kyung Sung Kim
Mathematics 2025, 13(24), 3919; https://doi.org/10.3390/math13243919 - 8 Dec 2025
Viewed by 320
Abstract
Dam-break flows involve strong non-linearity and complex fluid–solid interactions, often causing severe flooding and structural damage. Particle-based CFD methods, such as the Moving Particle Semi-implicit (MPS) method, are effective in modeling such flows due to their mesh-free, Lagrangian nature. This study presents an [...] Read more.
Dam-break flows involve strong non-linearity and complex fluid–solid interactions, often causing severe flooding and structural damage. Particle-based CFD methods, such as the Moving Particle Semi-implicit (MPS) method, are effective in modeling such flows due to their mesh-free, Lagrangian nature. This study presents an improved MPS method with a novel friction model and enhanced fluid–solid interaction scheme to simulate dam-break-induced flows over fixed and mobile beds. The model is validated using experimental and analytical benchmarks, demonstrating improved accuracy and stability. Simulation results show that mobile beds significantly influence wave attenuation, energy dissipation, and sediment transport. In particular, step-down bed conditions promote sediment motion and modify wave behavior. These findings emphasize the importance of accounting for mobile seabed dynamics in numerical modeling of coastal and dam-break scenarios. The proposed MPS model offers a reliable and efficient tool for capturing key phenomena associated with fluid–solid interactions in naval and ocean engineering applications. Full article
(This article belongs to the Special Issue High-Order Numerical Methods and Computational Fluid Dynamics)
Show Figures

Figure 1

19 pages, 5536 KB  
Article
Improved Dissolution of Poorly Water-Soluble Rutin via Solid Dispersion Prepared Using a Fluid-Bed Coating System
by Hien V. Nguyen, Nga Thi-Thuy Nguyen, Huong Kim-Thien Tran, Thuy Thi-Nhu Huynh, Vi Huyen-Bao Vo, Cuc Thi-Thu Le and Tushar Saha
Pharmaceutics 2025, 17(12), 1559; https://doi.org/10.3390/pharmaceutics17121559 - 3 Dec 2025
Viewed by 1544
Abstract
Background/Objectives: Rutin, a bioactive flavonol glycoside known for its antioxidant, anti-inflammatory, and anticancer activities, faces limited clinical application due to its poor aqueous solubility and low oral bioavailability. This study aimed to enhance the dissolution of rutin by preparing solid dispersions (SDs) [...] Read more.
Background/Objectives: Rutin, a bioactive flavonol glycoside known for its antioxidant, anti-inflammatory, and anticancer activities, faces limited clinical application due to its poor aqueous solubility and low oral bioavailability. This study aimed to enhance the dissolution of rutin by preparing solid dispersions (SDs) using a fluid-bed coating system and formulating the resulting SDs into tablet dosage forms. Methods: Rutin was dissolved in methanol and sprayed onto various carriers, including lactose monohydrate, mannitol, microcrystalline cellulose, silicon dioxide, and calcium carbonate. Results: Among the carriers tested, lactose monohydrate produced the highest dissolution enhancement, achieving complete drug release within 15 min versus approximately 60% for free rutin. Further investigation into the effect of the rutin-to-lactose ratio on dissolution enhancement identified 1:10 as the most effective. Characterization by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) confirmed a marked reduction in rutin crystallinity, while scanning electron microscopy (SEM) revealed reduced particle size and successful adsorption onto the carrier. Fourier transformed infrared (FT-IR) analysis suggested hydrogen bonding interactions between rutin and lactose monohydrate, which contributed to improved dissolution. The optimal SD was incorporated into tablets containing 50 mg of rutin via wet granulation, and the inclusion of sodium lauryl sulfate further enhanced dissolution. Stability testing demonstrated that the optimized tablets maintained their dissolution profile after 6 months under accelerated conditions (40 °C and 75% RH). Conclusions: These findings indicate that fluid-bed coating is an effective approach for preparing SDs to improve the dissolution of rutin and may be extended to other natural polyphenolic compounds. Full article
Show Figures

Figure 1

14 pages, 2296 KB  
Article
Detection of Filtration Characteristics of Nontraditional Asymmetric Microporous Membranes Using Size-Controllable Micro-Hydrogel
by Hao Zhang, Tiantian Zhu, Yushan Zheng, Weiheng Liu, Tangxin Zhang, Yuhua Mao, Jiayuan Wang, Lingyu Zhu, Cheng Xu and Jianli Wang
Polymers 2025, 17(21), 2958; https://doi.org/10.3390/polym17212958 - 6 Nov 2025
Cited by 1 | Viewed by 653
Abstract
Microporous membranes are frequently used to remove or concentrate suspended solids. To maximize filtration efficiency for certain high-value liquids, a microporous membrane with a nontraditional asymmetric topology was recently developed to treat bio-based liquids, such as the isolation of proteins/enzymes from concentrates or [...] Read more.
Microporous membranes are frequently used to remove or concentrate suspended solids. To maximize filtration efficiency for certain high-value liquids, a microporous membrane with a nontraditional asymmetric topology was recently developed to treat bio-based liquids, such as the isolation of proteins/enzymes from concentrates or the concentration of active cells from cultivation media. In this study, compared with both asymmetric and symmetric membranes, we reveal the unique filtration properties of “upper-stream open” asymmetric membrane using four types of fluids comprising monodispersed micro-hydrogels with sizes ranging from 294 to 517 nm. The results indicate that the internal pore structures of the membranes significantly affect the retention of microhydrogels of identical sizes. Asymmetric membranes offer considerable advantages in terms of retention efficiency and particle localization. By applying four classical blocking models along with adsorption models, the primary blockage mechanisms in asymmetric membranes for microgels of different sizes were explored. These results offer a better understanding of the interaction between the membrane and filtrate, assist in membrane selection, and elucidate the experimental results of membrane filtration. Full article
(This article belongs to the Special Issue Advances in Multifunctional Polymer-Based Nanocomposites, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 30023 KB  
Article
Numerical and Experimental Analysis of Internal Flow Characteristics of Four-Way Opposing Diaphragm Pump
by Guangjie Peng, Han Chai, Chengqiang Liu, Kai Zhao, Jianfang Zhang and Hao Chang
Water 2025, 17(21), 3094; https://doi.org/10.3390/w17213094 - 29 Oct 2025
Viewed by 728
Abstract
This study investigates the steady-state behavior of a four-way opposed diaphragm pump. Simulations and experimental results confirm that peak stress locations align with observed damage sites. During the return stroke, diaphragm flipping induces tension at the flow-fixed interface edges, creating stress concentrations that [...] Read more.
This study investigates the steady-state behavior of a four-way opposed diaphragm pump. Simulations and experimental results confirm that peak stress locations align with observed damage sites. During the return stroke, diaphragm flipping induces tension at the flow-fixed interface edges, creating stress concentrations that contribute to fatigue and failure. Particle image velocimetry (PIV) shows that, under constant flow, increased voltage enhances umbrella valve opening, accelerates movement, broadens flow distribution, and disrupts symmetry. At 90°, valve-edge velocity exhibits sharp, high-amplitude oscillations and a narrow, elongated return region. Vortices near the valve port interfere with fluid motion, causing pressure fluctuations and potential sealing issues or increased opening resistance. Higher flow rates intensify vortex strength and shift their position, generating diaphragm pressure differentials that alter flow direction and velocity, reducing stability and inducing secondary vortices. Compared to a modified diaphragm, the standard type shows more complex vortex structures, greater flow instability, and dynamic response degradation under identical pressure and varying flow. These fragmented vortices further disrupt flow, affecting pump performance. The findings provide design insights for diaphragm pump optimization. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

70 pages, 30789 KB  
Review
Advances in Flow–Structure Interaction and Multiphysics Applications: An Immersed Boundary Perspective
by Mithun Kanchan, Anwak Manoj Kumar, Pedapudi Anantha Hari Arun, Omkar Powar, Kulmani Mehar and Poornesh Mangalore
Fluids 2025, 10(8), 217; https://doi.org/10.3390/fluids10080217 - 21 Aug 2025
Cited by 3 | Viewed by 6945
Abstract
This article discusses contemporary strategies to deal with immersed boundary (IB) frameworks useful for analyzing flow–structure interaction in complex settings. It focuses on immense advancements in various fields: biology, oscillation of structures due to fluid flow, deformable materials, thermal processes, settling particles, multiphase [...] Read more.
This article discusses contemporary strategies to deal with immersed boundary (IB) frameworks useful for analyzing flow–structure interaction in complex settings. It focuses on immense advancements in various fields: biology, oscillation of structures due to fluid flow, deformable materials, thermal processes, settling particles, multiphase systems, and sound propagation. The discussion also involves a review of techniques addressing moving boundary conditions at complex interfaces. Evaluating practical examples and theoretical challenges that have been addressed by these frameworks are another focus of the article. Important results highlight the integration of IB methods with adaptive mesh refinement and high-order accuracy techniques, which enormously improve computational efficiency and precision in modeling complex solid–fluid interactions. The article also describes the evolution of IB methodologies in tackling problems of energy harvesting, bio-inspiration propulsion, and thermal-fluid coupling, which extends IB methodologies broadly in many scientific and industrial areas. More importantly, by bringing together different insights and paradigms from across disciplines, the study highlights the emerging trends in IB methodologies towards solving some of the most intricate challenges within the technical and scientific domains. Full article
Show Figures

Figure 1

18 pages, 3997 KB  
Article
Simulation of Dynamic Particle Trapping and Accumulation in HGMS Based on FEM-CFD-DEM Coupling Approach
by Xiaoming Wang, Yonghui Hu, Yefei Hao, Zhengchang Shen, Guodong Liang and Ming Zhang
Processes 2025, 13(8), 2391; https://doi.org/10.3390/pr13082391 - 28 Jul 2025
Viewed by 1004
Abstract
High-gradient magnetic separation (HGMS) is a conventional and effective method for processing weak magnetic materials. A multi-field dynamic coupling simulation method integrating the Finite Element Method (FEM), Computational Fluid Dynamics (CFD), and the Discrete Element Method (DEM) was employed to investigate the separation [...] Read more.
High-gradient magnetic separation (HGMS) is a conventional and effective method for processing weak magnetic materials. A multi-field dynamic coupling simulation method integrating the Finite Element Method (FEM), Computational Fluid Dynamics (CFD), and the Discrete Element Method (DEM) was employed to investigate the separation behavior in HGMS. The dynamic deposition process of magnetic particles under the interactions of magnetic fields, fluid flow fields, and particle–particle forces was simulated using a two-way fluid–solid coupling algorithm based on the FEM-CFD-DEM coupling approach. Experimental results demonstrated that the particle deposition profiles predicted by the double-wire medium model were in good agreement with the measured data. The research findings indicated that the separation process could be divided into three distinct stages—the adsorption stage, the closure stage, and the clogging stage—each characterized by unique dynamic behaviors and pressure-drop evolution patterns. Additionally, the effects of key parameters such as the feeding velocity and medium filling ratio on the separation process were analyzed, providing theoretical foundations and technical support for the optimization of HGMS processes and the enhancement of separation efficiency. Full article
(This article belongs to the Special Issue Mineral Processing Equipments and Cross-Disciplinary Approaches)
Show Figures

Figure 1

15 pages, 5288 KB  
Article
A Mesoscale Particle Method for Simulation of Boundary Slip Phenomena in Fluid Systems
by Alexander E. Filippov, Mikhail Popov and Valentin L. Popov
Computation 2025, 13(7), 155; https://doi.org/10.3390/computation13070155 - 1 Jul 2025
Viewed by 913
Abstract
The present work aimed to develop a simple simulation tool to support studies of slip and other non-traditional boundary conditions in solid–fluid interactions. A mesoscale particle model (movable automata) was chosen to enable performant simulation of all relevant aspects of the system, including [...] Read more.
The present work aimed to develop a simple simulation tool to support studies of slip and other non-traditional boundary conditions in solid–fluid interactions. A mesoscale particle model (movable automata) was chosen to enable performant simulation of all relevant aspects of the system, including phase changes, plastic deformation and flow, interface phenomena, turbulence, etc. The physical system under study comprised two atomically flat surfaces composed of particles of different sizes and separated by a model fluid formed by moving particles with repulsing cores of different sizes and long-range attraction. The resulting simulation method was tested under a variety of particle densities and conditions. It was shown that the particles can enter different (solid, liquid, and gaseous) states, depending on the effective temperature (kinetic energy caused by surface motion and random noise generated by spatially distributed Langevin sources). The local order parameter and formation of solid domains was studied for systems with varying density. Heating of the region close to one of the plates could change the density of the liquid in its proximity and resulted in chaotization (turbulence); it also dramatically changed the system configuration, the direction of the average flow, and reduced the effective friction force. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

30 pages, 12972 KB  
Article
Simulation and Optimization of Conveying Parameters for Vertical Screw Conveyor Based on CFD + DEM
by Xiao Mei, Xiaoyu Fang, Liyang Zhang, Yandi Wang and Yuan Tian
Fluids 2025, 10(7), 171; https://doi.org/10.3390/fluids10070171 - 30 Jun 2025
Cited by 1 | Viewed by 1393
Abstract
This study investigates the interaction between airflow and low-density bulk particles within vertical screw conveyors and examines its impact on conveying performance. A combined simulation approach integrating the Discrete Element Method and Computational Fluid Dynamics was employed to model both single-phase particle flow [...] Read more.
This study investigates the interaction between airflow and low-density bulk particles within vertical screw conveyors and examines its impact on conveying performance. A combined simulation approach integrating the Discrete Element Method and Computational Fluid Dynamics was employed to model both single-phase particle flow and gas–solid two-phase flow. A periodic model was developed based on the structural characteristics of the conveyor. Particle motion dynamics under both single-phase and coupled two-phase conditions were analyzed using EDEM and coupled Fluent-EDEM simulations. The effects of key operational parameters, including screw speed, filling rate, and helix angle, on mass flow rate were systematically evaluated. A comprehensive performance index was established to quantify conveying efficiency, and its validity was confirmed through analysis of variance on the regression model. Finally, the response surface methodology was applied to optimize parameters and determine the optimal combination of screw speed and filling rate to enhance mass flow efficiency. The results indicate that the gas–solid two-phase flow model provides a more accurate representation of real-world conveying dynamics. Future research may extend the model to accommodate more complex material conditions. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

40 pages, 4107 KB  
Review
A Review of Soil Constitutive Models for Simulating Dynamic Soil–Structure Interaction Processes Under Impact Loading
by Tewodros Y. Yosef, Chen Fang, Ronald K. Faller, Seunghee Kim, Qusai A. Alomari, Mojtaba Atash Bahar and Gnyarienn Selva Kumar
Geotechnics 2025, 5(2), 40; https://doi.org/10.3390/geotechnics5020040 - 12 Jun 2025
Cited by 4 | Viewed by 3855
Abstract
The accurate modeling of dynamic soil–structure interaction processes under impact loading is critical for advancing the design of soil-embedded barrier systems. Full-scale crash testing remains the benchmark for evaluating barrier performance; however, such tests are costly, logistically demanding, and subject to variability that [...] Read more.
The accurate modeling of dynamic soil–structure interaction processes under impact loading is critical for advancing the design of soil-embedded barrier systems. Full-scale crash testing remains the benchmark for evaluating barrier performance; however, such tests are costly, logistically demanding, and subject to variability that limits repeatability. Recent advancements in computational methods, particularly the development of large-deformation numerical schemes, such as the multi-material arbitrary Lagrangian–Eulerian (MM-ALE) and smoothed particle hydrodynamics (SPH) approaches, offer viable alternatives for simulating soil behavior under impact loading. These methods have enabled a more realistic representation of granular soil dynamics, particularly that of the Manual for Assessing Safety Hardware (MASH) strong soil, a well-graded gravelly soil commonly used in crash testing of soil-embedded barriers and safety features. This soil exhibits complex mechanical responses governed by inter-particle friction, dilatancy, confining pressure, and moisture content. Nonetheless, the predictive fidelity of these simulations is governed by the selection and implementation of soil constitutive models, which must capture the nonlinear, dilatant, and pressure-sensitive behavior of granular materials under high strain rate loading. This review critically examines the theoretical foundations and practical applications of a range of soil constitutive models embedded in the LS-DYNA hydrocode, including elastic, elastoplastic, elasto-viscoplastic, and multi-yield surface formulations. Emphasis is placed on the unique behaviors of MASH strong soil, such as confining-pressure dependence, limited elastic range, and strong dilatancy, which must be accurately represented to model the soil’s transition between solid-like and fluid-like states during impact loading. This paper addresses existing gaps in the literature by offering a structured basis for selecting and evaluating constitutive models in simulations of high-energy vehicular impact events involving soil–structure systems. This framework supports researchers working to improve the numerical analysis of impact-induced responses in soil-embedded structural systems. Full article
(This article belongs to the Special Issue Recent Advances in Soil–Structure Interaction)
Show Figures

Figure 1

20 pages, 7397 KB  
Article
Computational Fluid Dynamics Modelling of Fixed-Bed Reactors Using Particle-Resolved Approach
by Cai Xu, Feng Ju, Xiaofan Zheng, Yujia Liu, Jialong Huang, Gaoyang Li, Yongshuai Li, Litao Zhu, Lei Ye and Hui Pan
Processes 2025, 13(6), 1820; https://doi.org/10.3390/pr13061820 - 8 Jun 2025
Cited by 4 | Viewed by 3411
Abstract
Traditional designs often ignore the effect of catalyst particle shape, which suffers from capturing detailed local flow hydrodynamics, mass transport and reaction behaviors, and further significantly affects reactor phenomena. This study aims to perform particle-resolved computational fluid dynamics (CFD) simulations to investigate the [...] Read more.
Traditional designs often ignore the effect of catalyst particle shape, which suffers from capturing detailed local flow hydrodynamics, mass transport and reaction behaviors, and further significantly affects reactor phenomena. This study aims to perform particle-resolved computational fluid dynamics (CFD) simulations to investigate the influence of operating conditions and various catalyst particle shapes on fixed-bed reactor performance. Three important industrial reaction systems, including methanol to dimethyl ether, CO2 hydrogenation to methanol, and levulinic acid esterification, are discussed in fixed-bed reactors. The numerical results demonstrate that reactor performance varies from the important interactive contributions of hydrodynamics characteristics and reaction behaviors. Specifically, exothermic reactions such as methanol to dimethyl ether and CO2 hydrogenation to methanol are characterized by a gradual increase in temperature along the reactor height, while endothermic reactions such as valeric acid esterification exhibit a gradual decrease in temperature along the reactor height. For the methanol to dimethyl ether system, the increase in operating temperature leads to a decrease in axial methanol concentration, as well as an improvement in axial dimethyl ether concentration. However, the change in methanol molar concentration has little influence on its conversion. Furthermore, reactor phenomena strongly vary from the different catalyst shapes. The numerical results demonstrate that the fixed bed with hollow cylinders facilitates a more uniform flow distribution, whereas the fixed bed with solid cylinders achieves higher conversion rates within a specific temperature range (483.15 K to 523.15 K). This research provides valuable insights for fixed-bed reactor optimized design, emphasizing the need for precise control over temperature, feed rate, and catalyst configuration to improve reactant conversion in industrial applications. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop