Detection of Filtration Characteristics of Nontraditional Asymmetric Microporous Membranes Using Size-Controllable Micro-Hydrogel
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hybrid Micro-Hydrogels PNM-Ag-n (n = 1–4)
2.3. Filtration of Microgel Suspension
2.4. Characterization
3. Results and Discussion
3.1. Synthesis and Characterization of Microgels
3.2. Filtration of Microgel Suspensions in MLSN and HPWP Membranes
3.3. Filtration Characteristics of Microgels of Different Sizes in HPWP (Asymmetric) Membrane
3.4. Filtration Characteristics of Microgel Suspensions with Different Solid Content in the HPWP (Asymmetric) Membrane
3.5. Membrane Blockage Mechanism in the Filtration Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Barhoum, A.; Deshmukh, K.; Garcia-Betancourt, M.L.; Alibakhshi, S. Nanocelluloses as sustainable membrane materials for separation and filtration technologies: Principles, opportunities, and challenges. Carbohydr. Polym. 2023, 317, 121057. [Google Scholar] [CrossRef]
- Wang, J.W.; Cahyadi, A.; Wu, B.; Pee, W.X. The roles of particles in enhancing membrane filtration: A review. J. Membr. Sci. 2020, 595, 117570. [Google Scholar] [CrossRef]
- López-Serna, R.; Posadas, E.; García-Encina, P.A.; Muñoz, R. Removal of contaminants of emerging concern from urban wastewater in novel algal-bacterial photobioreactors. Sci. Total Environ. 2019, 662, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Xu, P.; Chen, X.F.; Wang, T. High-flux ceramic membrane derived from UV-curable slurry for efficient separation of nanoparticles suspension. Sep. Purif. Technol. 2023, 304, 122331. [Google Scholar] [CrossRef]
- Metreveli, G.; Wågberg, L.; Emmoth, E.; Belák, S.; Stromme, M.; Mihranyan, A. A Size-exclusion nanocellulose filter paper for virus removal. Adv. Healthc. Mater. 2014, 3, 1546–1550. [Google Scholar] [CrossRef]
- Johnson, T.F.; Jones, K.; Iacoviello, F.; Turner, S.; Jackson, N.B.; Zourna, K.; Welsh, J.H.; Shearing, P.R.; Hoare, M.; Bracewell, D.G. Liposome sterile filtration characterization via X-ray computed tomography and confocal microscopy. Membranes 2021, 11, 905. [Google Scholar] [CrossRef]
- Wang, Y.; Hammes, F.; Düggelin, M.; Egli, T. Influence of size, shape, and flexibility on bacterial passage through micropore membrane filters. Environ. Sci. Technol. 2008, 42, 6749–6754. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Li, S.; Chen, S.; Zhang, J.; Ikoma, T.; Li, X.; Chen, W. Synthesis of hydroxyapatite whisker membranes for use as biocompatible and recyclable filters for bacterial removal. J. Phys. Chem. Solids 2022, 170, 110901. [Google Scholar] [CrossRef]
- Xu, R.; Feng, J.; Qian, J. Electrospun nanoscale bent fibrous membrane with controllable porous structure and hydrophilic modification for high-efficiency oil-water separation, particle/bacterial filtration and antibacterial applications. J. Membr. Sci. 2023, 685, 121907. [Google Scholar] [CrossRef]
- Koh, E.; Cho, N.; Park, H.M.; Lee, Y.T. Surface modification of PVDF hollow fiber ultrafiltration membranes for biopharmaceutical products, virus, and bacterial phage removal technology. J. Water Process Eng. 2023, 55, 104094. [Google Scholar] [CrossRef]
- Taylor, N.; Ma, W.J.; Kristopeit, A.; Wang, S.; Zydney, A.L. Retention characteristics of sterile filters—Effect of pore size and structure. J. Membr. Sci. 2021, 635, 119436. [Google Scholar] [CrossRef]
- Leisi, R.; Rostami, I.; Laughhunn, A.; Bieri, J.; Roth, N.J.; Widmer, E.; Ros, C. Visualizing protein fouling and its impact on parvovirus retention within distinct filter membrane morphologies. J. Membr. Sci. 2022, 659, 120791. [Google Scholar] [CrossRef]
- Wang, M.; Sun, F.; Zeng, H.; Su, X.; Zhou, G.; Liu, H.; Xing, D. Modified polyethersulfone ultrafiltration membrane for enhanced antifouling capacity and dye catalytic degradation efficiency. Separations 2022, 9, 92. [Google Scholar] [CrossRef]
- Li, W.; Duclos-Orsello, C.; Ho, C. Theoretical analysis of the effects of asymmetric membrane structure on fouling during microfiltration. AIChE J. 2009, 55, 1434–1446. [Google Scholar] [CrossRef]
- Wickramasinghe, S.R.; Stump, E.D.; Grzenia, D.L.; Husson, S.M.; Pellegrino, J. Understanding virus filtration membrane performance. J. Membr. Sci. 2010, 365, 160–169. [Google Scholar] [CrossRef]
- Khan, S.; Das, P.; Abdulquadir, M.; Thaher, M.; Al-Ghasal, G.; Kashem, A.H.M.; Faisal, M.; Sayadi, S.; Al-Jabri, H. Pilot-scale crossflow ultrafiltration of four different cell-sized marine microalgae to assess the ultrafiltration performance and energy requirements. Sep. Purif. Technol. 2023, 315, 123681. [Google Scholar] [CrossRef]
- Arunkumar, A.; Singh, N.; Peck, M.; Borys, M.C.; Li, Z.J. Investigation of single-pass tangential flow filtration (SPTFF) as an inline concentration step for cell culture harvest. J. Membr. Sci. 2017, 524, 20–32. [Google Scholar] [CrossRef]
- Weinberger, M.E.; Kulozik, U. Understanding the fouling mitigation mechanisms of alternating crossflow during cell-protein fractionation by microfiltration. Food Bioprod. Process. 2022, 131, 136–143. [Google Scholar] [CrossRef]
- Stressmann, M.; Moresoli, C. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant. Biotechnol. Prog. 2008, 24, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Iritani, E.; Katagiri, N.; Takenaka, T.; Yamashita, Y. Membrane pore blocking during cake formation in constant pressure and constant flux dead-end microfiltration of very dilute colloids. Chem. Eng. Sci. 2015, 122, 465–473. [Google Scholar] [CrossRef]
- Bondy, C.M.; Santeufemio, C. Analysis of fouling within microporous membranes in biopharmaceutical applications using latex microsphere suspensions. J. Membr. Sci. 2010, 349, 12–24. [Google Scholar] [CrossRef]
- Bowen, W.R.; Jenner, F. Theoretical descriptions of membrane filtration of colloids and fine particles: An assessment and review. Adv. Colloid Interface Sci. 1995, 56, 141–200. [Google Scholar] [CrossRef]
- Akthakul, A.; Hochbaum, A.; Stellaci, F. Size fractionation of metal nanoparticles by membrane filtration. Adv. Mater. 2005, 17, 532–535. [Google Scholar] [CrossRef]
- Marcati, A.; Ursu, A.V.; Laroche, C.; Soanen, N.; Marchal, L.; Jubeau, S.; Djelveh, G.; Michaud, P. Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. Algal Res. 2014, 5, 258–263. [Google Scholar] [CrossRef]
- Elcik, H.; Cakmakci, M.; Ozkaya, B. The fouling effects of microalgal cells on crossflow membrane filtration. J. Membr. Sci. 2016, 499, 116–125. [Google Scholar] [CrossRef]
- Zhang, D.; Patel, P.; Strauss, D.; Qian, X.; Wickramasinghe, S.R. Modeling tangential flow filtration using reverse asymmetric membranes for bioreactor harvesting. Biotechnol. Prog. 2021, 37, e3084. [Google Scholar] [CrossRef]
- Gaveau, A.; Coetsier, C.; Roques, C.; Bacchin, P.; Dague, E.; Causserand, C. Bacteria transfer by deformation through microfiltration membrane. J. Membr. Sci. 2017, 523, 446–455. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, H.; Denduluri, A.; Ou, Y.; Erkamp, N.A.; Qi, R.; Shen, Y.; Knowles, T.P.J. Recent advances in microgels: From biomolecules to functionality. Small 2022, 18, 2200180. [Google Scholar] [CrossRef]
- Bolla, P.K.; Rodriguez, V.A.; Kalhapure, R.S.; Kolli, C.S.; Andrews, S.; Renukuntla, J. A review on pH and temperature responsive gels and other less explored drug delivery systems. J. Drug Deliv. Sci. Technol. 2018, 46, 416–435. [Google Scholar] [CrossRef]
- Hendrickson, G.R.; Lyon, L.A. Microgel translocation through pores under confinement. Angew. Chem. Int. Ed. 2010, 49, 2193–2197. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Torres, G.M.G.T.; Hoare, T.; Ghosh, R. Transmission behavior of pNIPAM microgel particles through porous membranes. J. Membr. Sci. 2015, 479, 141–147. [Google Scholar] [CrossRef]
- Büning, D.; Ennen-Roth, F.; Netke, T.; Schumacher, J.; Ulbricht, M. Microfiltration of polymeric microgels as soft model colloids through sterile filter membranes. J. Membr. Sci. 2022, 649, 120364. [Google Scholar] [CrossRef]
- Liétor-Santos, J.J.; Sierra-Martín, B.; Gasser, U.; Fernández-Nieves, A. The effect of hydrostatic pressure over the swelling of microgel particles. Soft Matter 2011, 7, 6370. [Google Scholar] [CrossRef]
- Menne, D.; Pitsch, F.; Wong, J.E.; Pich, A.; Wessling, M. Temperature-modulated water filtration using microgel-functionalized hollow-fiber membranes. Angew. Chem. Int. Ed. 2014, 53, 5706–5710. [Google Scholar] [CrossRef]
- Wiese, M.; Nir, O.; Wypysek, D.; Pokern, L.; Wessling, M. Fouling minimization at membranes having a 3D surface topology with microgels as soft model colloids. J. Membr. Sci. 2019, 569, 7–16. [Google Scholar] [CrossRef]
- Nir, O.; Trieu, T.; Bannwarth, S.; Wessling, M. Microfiltration of deformable microgels. Soft Matter 2016, 12, 6512–6517. [Google Scholar] [CrossRef] [PubMed]
- Büning, D.; Schumacher, J.; Helling, A.; Chakroun, R.; Ennen-Roth, F.; Gröschel, A.H.; Thom, V.; Ulbricht, M. Soft synthetic microgels as mimics of mycoplasma. Soft Matter 2021, 17, 6445–6460. [Google Scholar] [CrossRef] [PubMed]
- Varol, H.S.; Kaya, D.; Contini, E.; Gualandi, C.; Genovese, D. Fluorescence methods to probe mass transport and sensing in solid-state nanoporous membranes. Mater. Adv. 2024, 5, 8351–8383. [Google Scholar] [CrossRef]
- Chen, W.; Qian, C.; Zhou, K.; Yu, H. Molecular spectroscopic characterization of membrane fouling: A critical review. Chem 2018, 4, 1492–1509. [Google Scholar] [CrossRef]
- Varol, H.S.; Seeger, S. Fluorescent staining of silicone micro- and nanopatterns for their optical imaging. Langmuir 2022, 38, 231–243. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, H.; Ahmed, S.; Li, S.; Zhang, S.; Wang, J. Efficient and continuous chemical conversion in a thin membrane comprising three-dimensional network trapping Ag nanoparticles. Appl. Catal. B Environ. 2022, 314, 121456. [Google Scholar] [CrossRef]
- Saleem, M.; Alibardi, L.; Cossu, R.; Lavagnolo, M.C.; Spagni, A. Analysis of fouling development under dynamic membrane filtration operation. Chem. Eng. J. 2017, 312, 136–143. [Google Scholar] [CrossRef]
- Hermia, J. Constant pressure blocking filtration laws–Application to power-law non-Newtonian fluids. Trans. Inst. Chem. Engrs. 1982, 60, 183–187. [Google Scholar]
- Teng, Y.; Ng, H.Y. Prediction of reverse osmosis membrane fouling in water reuse by integrated adsorption and data-driven models. Desalination 2024, 576, 117353. [Google Scholar] [CrossRef]










| Membrane | Material | Structure | Nominal Pore Size |
|---|---|---|---|
| HPWP | PES | Asymmetrical | 0.45 μm |
| MLSN | PES | Symmetrical | 0.45 μm |
| Microgel Suspension | Average Diameters (nm) | PDI |
|---|---|---|
| PNM-Ag-1 | 294 | 0.025 |
| PNM-Ag-2 | 362 | 0.032 |
| PNM-Ag-3 | 431 | 0.085 |
| PNM-Ag-4 | 517 | 0.114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhu, T.; Zheng, Y.; Liu, W.; Zhang, T.; Mao, Y.; Wang, J.; Zhu, L.; Xu, C.; Wang, J. Detection of Filtration Characteristics of Nontraditional Asymmetric Microporous Membranes Using Size-Controllable Micro-Hydrogel. Polymers 2025, 17, 2958. https://doi.org/10.3390/polym17212958
Zhang H, Zhu T, Zheng Y, Liu W, Zhang T, Mao Y, Wang J, Zhu L, Xu C, Wang J. Detection of Filtration Characteristics of Nontraditional Asymmetric Microporous Membranes Using Size-Controllable Micro-Hydrogel. Polymers. 2025; 17(21):2958. https://doi.org/10.3390/polym17212958
Chicago/Turabian StyleZhang, Hao, Tiantian Zhu, Yushan Zheng, Weiheng Liu, Tangxin Zhang, Yuhua Mao, Jiayuan Wang, Lingyu Zhu, Cheng Xu, and Jianli Wang. 2025. "Detection of Filtration Characteristics of Nontraditional Asymmetric Microporous Membranes Using Size-Controllable Micro-Hydrogel" Polymers 17, no. 21: 2958. https://doi.org/10.3390/polym17212958
APA StyleZhang, H., Zhu, T., Zheng, Y., Liu, W., Zhang, T., Mao, Y., Wang, J., Zhu, L., Xu, C., & Wang, J. (2025). Detection of Filtration Characteristics of Nontraditional Asymmetric Microporous Membranes Using Size-Controllable Micro-Hydrogel. Polymers, 17(21), 2958. https://doi.org/10.3390/polym17212958

