Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164)

Search Parameters:
Keywords = fluence rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1801 KB  
Article
The Influence of Accumulated Radiolysis Products on the Mechanisms of High-Temperature Degradation of Two-Component Lithium-Containing Ceramics
by Inesh E. Kenzhina, Saulet Askerbekov, Artem L. Kozlovskiy, Aktolkyn Tolenova, Sergei Piskunov and Anatoli I. Popov
Ceramics 2025, 8(3), 99; https://doi.org/10.3390/ceramics8030099 - 3 Aug 2025
Viewed by 794
Abstract
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type, [...] Read more.
One of the advantages of the EPR spectroscopy method in assessing structural defects caused by irradiation is the fact that using this method it is possible to determine not only the concentration dependences of the defect structure but to also establish their type, which is not possible with methods such as X-ray diffraction or scanning electron microscopy. Based on the data obtained, the role of variation in the ratio of components in Li4SiO4–Li2TiO3 ceramics on the processes of softening under high-dose irradiation with protons simulating the accumulation of hydrogen in the damaged layer, as well as the concentration of structural defects in the form of oxygen vacancies and radiolysis products on the processes of high-temperature degradation of ceramics, was determined. It was found that the main changes in the defect structure during the prolonged thermal exposure of irradiated samples are associated with the accumulation of oxygen vacancies, the density of which was estimated by the change in the intensity of singlet lithium, characterizing the presence of E-centers. At the same time, it was found that the formation of interphase boundaries in the structure of Li4SiO4–Li2TiO3 ceramics leads to the inhibition of high-temperature degradation processes in the case of post-radiation thermal exposure for a long time. Also, during the conducted studies, the role of thermal effects on the structural damage accumulation rate in Li4SiO4–Li2TiO3 ceramics was determined in the case when irradiation is carried out at different temperatures. During the experiments, it was determined that the main contribution of thermal action in the process of proton irradiation at a fluence of 5 × 1017 proton/cm2 is an increase in the concentration of radiolysis products, described by changes in the intensities of spectral maxima, characterized by the presence of defects such as ≡Si–O, SiO43− and Ti3+ defects. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

16 pages, 10306 KB  
Article
Fabrication and Characterization of Flexible pH Sensors Based on Pulsed Laser-Ablated Graphene/MoS2 Interdigitated Electrodes
by Zhaochi Chen, Chengche Liu and Minh-Quang Tran
Nanomaterials 2025, 15(14), 1115; https://doi.org/10.3390/nano15141115 - 18 Jul 2025
Viewed by 579
Abstract
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS [...] Read more.
Point-of-care (POC) diagnostic technologies have become essential for the real-time monitoring and management of chronic wounds, where maintaining a moist environment and controlling pH levels are critical for effective healing. In this study, a flexible pH sensor based on a graphene/molybdenum disulfide (graphene/MoS2) composite interdigitated electrode (IDE) structure was fabricated using pulsed laser ablation. The pH sensor, with an active area of 30 mm × 30 mm, exhibited good adhesion to the polyethylene terephthalate (PET) substrate and maintained structural integrity under repeated bending cycles. Precise ablation was achieved under optimized conditions of 4.35 J/cm2 laser fluence, a repetition rate of 300 kHz, and a scanning speed of 500 mm/s, enabling the formation of defect-free IDE arrays without substrate damage. The influence of laser processing parameters on the surface morphology, electrical conductivity, and wettability of the composite thin films was systematically characterized. The fabricated pH sensor exhibited high sensitivity (~4.7% change in current per pH unit) across the pH 2–10 range, rapid response within ~5.2 s, and excellent mechanical stability under 100 bending cycles with negligible performance degradation. Moreover, the sensor retained > 95% of its stable sensitivity after 7 days of ambient storage. Furthermore, the pH response behavior was evaluated for electrode structures with different pitches, demonstrating that structural design parameters critically impact sensing performance. These results offer valuable insights into the scalable fabrication of flexible, wearable pH sensors, with promising applications in wound monitoring and personalized healthcare systems. Full article
(This article belongs to the Special Issue Laser-Based Nano Fabrication and Nano Lithography: Second Edition)
Show Figures

Figure 1

33 pages, 5307 KB  
Article
SiPM Developments for the Time-Of-Propagation Detector of the Belle II Experiment
by Flavio Dal Corso, Jakub Kandra, Roberto Stroili and Ezio Torassa
Sensors 2025, 25(13), 4018; https://doi.org/10.3390/s25134018 - 27 Jun 2025
Viewed by 331
Abstract
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 [...] Read more.
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 modules, each module contains a finely fused silica bar, coupled to microchannel plate photomultiplier tube (MCP-PMT) photo-detectors and readout by high-speed electronics. The MCP-PMT lifetime at the nominal collider luminosity is about one year, this is due to the high photon background degrading the quantum efficiency of the photocathode. An alternative to these MCP-PMTs is multi-pixel photon counters (MPPC), known as silicon photomultipliers (SiPM). The SiPMs, in comparison to MCP-PMTs, have a lower cost, higher photon detection efficiency and are unaffected by the presence of a magnetic field, but also have a higher dark count rate that rapidly increases with the integrated neutron flux. The dark count rate can be mitigated by annealing the damaged devices and/or operating them at low temperatures. We tested SiPMs, with different dimensions and pixel sizes from different producers, to study their time resolution (the main constraint that has to satisfy the photon detector) and to understand their behavior and tolerance to radiation. For these studies we irradiated the devices to radiation up to 5×10111 MeV neutrons equivalent (neq) per cm2 fluences; we also started studying the effect of annealing on dark count rates. We performed several measurements on these devices, on top of the dark count rate, at different conditions in terms of overvoltage and temperatures. These measurements are: IV-curves, amplitude spectra, time resolution. For the last two measurements we illuminated the devices with a picosecond pulsed laser at very low intensities (with a number of detected photons up to about twenty). We present results mainly on two types of SiPMs. A new SiPM prototype developed in collaboration with FBK with the aim of improving radiation hardness, is expected to be delivered in September 2025. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 1652 KB  
Article
Photon Fluence Rate and Temperature Effects on Temperate Atlantic Kelp Species
by Tomás F. Pinheiro, Silvia Chemello, Isabel Sousa-Pinto and Tânia R. Pereira
Phycology 2025, 5(2), 27; https://doi.org/10.3390/phycology5020027 - 19 Jun 2025
Viewed by 334
Abstract
The Portuguese coast forms a key biogeographic transition zone where co-occurring kelp species show limited vertical overlap. This study aimed to understand whether temperature and light responses help explain the vertical niche differentiation of Laminaria ochroleuca, Saccorhiza polyschides, and Phyllariopsis brevipes [...] Read more.
The Portuguese coast forms a key biogeographic transition zone where co-occurring kelp species show limited vertical overlap. This study aimed to understand whether temperature and light responses help explain the vertical niche differentiation of Laminaria ochroleuca, Saccorhiza polyschides, and Phyllariopsis brevipes. Results revealed that P. brevipes, despite occupying the southernmost range, showed a low thermal tolerance: 27 °C significantly increased respiration rates, indicating metabolic stress, and exposition at 30 °C caused physiological stress. In contrast, L. ochroleuca and S. polyschides exhibited a greater thermal resilience but displayed high light requirements, with evident stress at 30 °C. These results suggest that light availability may play a key role in shaping vertical zonation in a climate warming scenario, with species adapted to low light occupying deeper subtidal zones. S. polyschides, a high light-requiring species, dominates the shallow subtidal region, while L. ochroleuca, also high light-requiring and temperature-tolerant, is abundant in both intertidal pools and shallow subtidal habitats. These findings raise new hypotheses regarding future distribution patterns under climate change: while L. ochroleuca may continue expanding polewards and potentially replace other Laminaria spp. at shallow depths, low-light-adapted, cold-water species may retain a competitive advantage in deeper zones. Full article
Show Figures

Figure 1

53 pages, 7134 KB  
Review
Effects of Process Parameters on Pulsed Laser Micromachining for Glass-Based Microfluidic Devices
by Mrwan Alayed, Nojoud Al Fayez, Salman Alfihed, Naif Alshamrani and Fahad Alghannam
Materials 2025, 18(11), 2657; https://doi.org/10.3390/ma18112657 - 5 Jun 2025
Viewed by 1011
Abstract
Glass-based microfluidic devices are essential for applications such as diagnostics and drug discovery, which utilize their optical clarity and chemical stability. This review systematically analyzes pulsed laser micromachining as a transformative technique for fabricating glass-based microfluidic devices, addressing the limitations of conventional methods. [...] Read more.
Glass-based microfluidic devices are essential for applications such as diagnostics and drug discovery, which utilize their optical clarity and chemical stability. This review systematically analyzes pulsed laser micromachining as a transformative technique for fabricating glass-based microfluidic devices, addressing the limitations of conventional methods. By examining three pulse regimes—long (≥nanosecond), short (picosecond), and ultrashort (femtosecond)—this study evaluates how laser parameters (fluence, scanning speed, pulse duration, repetition rate, wavelength) and glass properties influence ablation efficiency and quality. A higher fluence improves the material ablation efficiency across all the regimes but poses risks of thermal damage or plasma shielding in ultrashort pulses. Optimizing the scanning speed balances the depth and the surface quality, with slower speeds enhancing the channel depth but requiring heat accumulation mitigation. Shorter pulses (femtosecond regime) achieve greater precision (feature resolution) and minimal heat-affected zones through nonlinear absorption, while long pulses enable rapid deep-channel fabrication but with increased thermal stress. Elevating the repetition rate improves the material ablation rates but reduces the surface quality. The influence of wavelength on efficiency and quality varies across the three pulse regimes. Material selection is critical to outcomes and potential applications: fused silica demonstrates a superior surface quality due to low thermal expansion, while soda–lime glass provides cost-effective prototyping. The review emphasizes the advantages of laser micromachining and the benefits of a wide range of applications. Future directions should focus on optimizing the process parameters to improve the efficiency and quality of the produced devices at a lower cost to expand their uses in biomedical, environmental, and quantum applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 2107 KB  
Article
Exact Solutions to Cancer Laser Ablation Modeling
by Luisa Consiglieri
Photonics 2025, 12(4), 400; https://doi.org/10.3390/photonics12040400 - 21 Apr 2025
Viewed by 686
Abstract
The present paper deals with the study of the fluence rate over both healthy and tumor tissues in the presence of focal laser ablation (FLA). We propose new analytical solutions for a coupled partial differential equation (PDE) system, which includes the transport equation [...] Read more.
The present paper deals with the study of the fluence rate over both healthy and tumor tissues in the presence of focal laser ablation (FLA). We propose new analytical solutions for a coupled partial differential equation (PDE) system, which includes the transport equation modeling of light penetration into biological tissue, the bioheat equation modeling the heat transfer, and its respective damage. The present work could be the first step toward knowledge of the mathematical framework for biothermophysical problems, as well as the main key to simplify the numerical calculations due to its zero cost. We derive exact solutions and simulate results from them. We discuss the potential physical contributions and present respective conclusions about the following: (1) the validity of the diffusion approximation of the radiative transfer equation; (2) the local behavior of the source of scattered photons; (3) the unsteady state of the fluence rate; and (4) the boundedness of the critical time of the thermal damage to the cancerous tissue. We also discuss some controversial and diverging hypotheses. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

14 pages, 3374 KB  
Article
Deformation of Polyethylene Subjected to Static and Nonstatic Stresses and Krypton Ions Irradiation
by Anatoliy I. Kupchishin, Artem L. Kozlovsky, Marat N. Niyazov, Kairat B. Tlebaev, Oleksandr. V. Bondar and Alexander D. Pogrebnjak
Polymers 2025, 17(8), 1081; https://doi.org/10.3390/polym17081081 - 17 Apr 2025
Viewed by 369
Abstract
The dependence of polyethylene deformation on applied mechanical stress under varying load conditions and radiation doses was investigated experimentally. Obtained results reveal significant alterations in the mechanical properties of polyethylene following irradiation with krypton ions at doses of 1.5 × 106, [...] Read more.
The dependence of polyethylene deformation on applied mechanical stress under varying load conditions and radiation doses was investigated experimentally. Obtained results reveal significant alterations in the mechanical properties of polyethylene following irradiation with krypton ions at doses of 1.5 × 106, 1.6 × 107, 5.0 × 108, and 1.0 × 109 ions/s. The stress–strain curves obtained for both the unirradiated and irradiated samples are numerically modeled using frameworks developed by the authors. The findings indicate that irradiation with krypton ions at an energy level of 147 MeV exerts a pronounced impact on the deformation and strength characteristics of polyethylene. Notably, increasing the radiation dose to 109 particles/s results in a 2.5-fold increase in the rate of mechanical stress. Furthermore, the degree of deformation distortions in molecular chains induced by high-energy Kr15+ ion irradiation has been quantified as a function of irradiation fluence. Increasing the irradiation fluence from 106 ion/cm2 to 107 ion/cm2 causes only minor variations in deformation distortions, which are attributed to the localized isolation of latent tracks and associated changes in electron density. A comparative analysis of the mechanical behavior of irradiated polymer materials further revealed differences between ion and electron irradiation effects. It was observed that Teflon films lose their plasticity after irradiation, whereas polyethylene films exhibit enhanced elongation and tearing performance at higher strain values relative to their non-irradiated counterparts. This behavior was consistently observed for films irradiated with both ions and electrons. However, an important distinction was identified: high-energy electron irradiation degrades the strength of polyethylene, whereas krypton ion irradiation at 147 MeV does not result in strength reduction. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

20 pages, 9718 KB  
Article
Development and Validation of Monte Carlo Methods for Converay: A Proof-of-Concept Study
by Rodolfo Figueroa, Francisco Malano, Alejandro Cuadra, Jaime Guarda, Jorge Leiva, Fernando Leyton, Adlin López, Claudio Solé and Mauro Valente
Cancers 2025, 17(7), 1189; https://doi.org/10.3390/cancers17071189 - 31 Mar 2025
Cited by 1 | Viewed by 527
Abstract
Background: Radiotherapy technology has undergone significant advancements, driven by the pursuit of improved tumor control probabilities and reduced normal tissue complication probabilities. This has been achieved primarily through innovative approaches that prioritize high dose conformity on complex treatment targets. The CONVERAY project introduces [...] Read more.
Background: Radiotherapy technology has undergone significant advancements, driven by the pursuit of improved tumor control probabilities and reduced normal tissue complication probabilities. This has been achieved primarily through innovative approaches that prioritize high dose conformity on complex treatment targets. The CONVERAY project introduces a groundbreaking teletherapy system featuring a convergent X-ray beam, which enables highly conformal dose distributions by converging photons to a focal spot, thereby achieving exceptionally high fluence rates. Methods: Customized Monte Carlo subroutines have been developed to simulate particle fluence and associated dosimetry effects for the CONVERAY device. This simulation approach facilitated a detailed, step-by-step characterization of radiation fluence and interaction processes, enabling seamless integration with a conventional clinical linear accelerator head. Key physical properties of the radiation beam have been comprehensively characterized for various CONVERAY configurations, providing a solid foundation for evaluating the corresponding dosimetry performance. Results: Monte Carlo simulations successfully tracked the phase state of the CONVERAY device, characterizing the influence of individual components on convergent photon beam production. Simulations evaluated dosimetry performance, confirming the device’s capability to achieve high dose concentrations around the focal spot. Preliminary tests on realistic scenarios (intracranial and pulmonary irradiations) demonstrated promising spatial dose concentration within tumor volumes, while gantry rotation significantly improved dose conformation. Conclusions: This proof-of-concept Monte Carlo study of the CONVERAY prototype provided critical insights into the generation of convergent X-ray beams, validating the device’s ability to achieve its primary objective. Notably, simulation results reveal the potential for exceptionally high dose concentrations within complex treatment volumes, demonstrating promising dosimetry performance. Full article
(This article belongs to the Special Issue Radiation Dose in Cancer Radiotherapy)
Show Figures

Figure 1

23 pages, 7257 KB  
Article
Effect of Nanosecond Laser Ablation and Oxidation on the Surface Wettability and Microstructure of Cu-ETP Copper Sheets
by Monika Walkowicz, Piotr Osuch, Małgorzata Zasadzińska, Paweł Strzępek and Klaudia Kludacz
Coatings 2025, 15(4), 383; https://doi.org/10.3390/coatings15040383 - 25 Mar 2025
Cited by 1 | Viewed by 924
Abstract
Nanosecond laser ablation effectively modifies Cu-ETP copper surfaces by controlling wettability and microstructure. This study examines the effects of nanosecond fiber laser processing and subsequent oxidation on surface evolution. The analyzed parameters include fluence (25.46–1018.59 J/cm2), wavelength (1064 nm), repetition rate [...] Read more.
Nanosecond laser ablation effectively modifies Cu-ETP copper surfaces by controlling wettability and microstructure. This study examines the effects of nanosecond fiber laser processing and subsequent oxidation on surface evolution. The analyzed parameters include fluence (25.46–1018.59 J/cm2), wavelength (1064 nm), repetition rate (25–1000 kHz), and pulse duration (2–500 ns). To investigate high energy densities, fluence values were set above typical ablation thresholds, inducing hierarchical surface structures affecting wettability. Post-ablation oxidation was examined under two conditions: natural oxidation in ambient air and accelerated oxidation via low-temperature annealing (200 °C) in air. Contact angle measurements revealed that over time, the initially hydrophilic (θ < 90°) laser-textured surfaces exhibited a transition toward hydrophobicity (θ > 90°), which can be attributed to the adsorption of airborne organic compounds rather than oxidation alone. In contrast, annealing significantly accelerated hydrophobicity, attributed to controlled copper oxide growth. SEM and EDS analyses confirmed that higher fluences enhanced roughness and oxidation, forming multi-scale textures and oxide layers, which influenced water repellency. These findings demonstrate that high-fluence laser ablation, combined with controlled oxidation, enables precise wettability engineering. This method provides an efficient strategy for tuning surface properties, offering potential applications in anti-corrosion coatings, self-cleaning surfaces, and heat exchangers, where hydrophobicity and durability are essential. Full article
Show Figures

Figure 1

16 pages, 9709 KB  
Article
Al Doping Effect on Enhancement of Nonlinear Optical Absorption in Amorphous Bi2Te3 Thin Films
by Tengfei Zhang, Shenjin Wei, Shubo Zhang, Menghan Li, Jiawei Wang, Jingze Liu, Junhua Wang, Ertao Hu and Jing Li
Materials 2025, 18(6), 1372; https://doi.org/10.3390/ma18061372 - 20 Mar 2025
Viewed by 537
Abstract
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al [...] Read more.
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al doping on the structure, linear optical properties, and nonlinear optical absorption behavior of Bi2Te3 thin films. The amorphous Al-doped Bi2Te3 thin films with varying Al doping concentrations were prepared using magnetron co-sputtering. The structure and linear optical properties were characterized using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/Vis/NIR spectrophotometry. The third-order nonlinear optical absorption properties of Al: Bi2Te3 thin films were investigated using the open-aperture Z-scan system with a 100 fs laser pulse width at a wavelength of 800 nm and a repetition rate of 1 kHz. The results indicate that Al dopant reduces both the refractive index and extinction coefficient and induces a redshift in the optical bandgap. The optical properties of the films can be effectively modulated by varying the Al doping concentration. Compared with undoped Bi2Te3 thin films, Al-doped Bi2Te3 thin films exhibit larger nonlinear optical absorption coefficients and higher damage thresholds and maintaining high transmittance. These findings provide experimental evidence and a reliable approach for the further optimization and design of ultrafast nonlinear optical devices. Full article
Show Figures

Figure 1

18 pages, 5444 KB  
Article
The Effects of Static- and Flowing-Water-Assisted Methods on the Quality of Femtosecond Laser Drilling of Thermal-Barrier-Coated Superalloys
by Naifei Ren, Jie Zhang, Zhen Li, Dehu Qi, Hongmei Zhang and Kaibo Xia
Metals 2025, 15(3), 261; https://doi.org/10.3390/met15030261 - 28 Feb 2025
Cited by 1 | Viewed by 943
Abstract
Under high fluence and a high repetition rate, femtosecond laser drilling still produces defects due to heat accumulation. In order to suppress these defects, this study conducted research on water-assisted femtosecond laser drilling. This study focused on the impact of two different water-assisted [...] Read more.
Under high fluence and a high repetition rate, femtosecond laser drilling still produces defects due to heat accumulation. In order to suppress these defects, this study conducted research on water-assisted femtosecond laser drilling. This study focused on the impact of two different water-assisted methods, static-water-based and flowing-water-based approaches, on the quality of microholes made using layer-by-layer helical drilling with a femtosecond laser in thermal-barrier-coated superalloys. Furthermore, the effects of single-pulse laser energy on the hole entrance/exit diameter, taper angle, sidewall morphology, sidewall roughness, and sidewall oxygen content in the two water environments were compared and analyzed. Water-based-assisted laser drilling is an auxiliary method where the lower surface of the workpiece is placed in water while the upper surface remains in the air. On the other hand, the water flows horizontally in the flowing-water-based method. The experimental results demonstrate that both static- and flowing-water-based methods can significantly improve the quality of femtosecond laser drilling. Notably, the improvement effect was more pronounced with the flowing-water-based method. At a laser pulse energy of 50 μJ, the hole taper angle in the flowing-water environment was reduced by 38.80% compared with that in the air. With flowing-water-based assistance, the hole sidewall roughness was lower and the melt was less. Flowing water was better at carrying away the debris and heat generated by processing. The oxygen content of the hole sidewalls decreased significantly in both kinds of water-assisted environments. The experimental results provide a valuable reference for optimizing water-assisted femtosecond laser drilling. Full article
Show Figures

Figure 1

10 pages, 2344 KB  
Article
Fluence Rate-Dependent Kinetics of Light-Triggered Liposomal Doxorubicin Assessed by Quantitative Fluorescence-Based Endoscopic Probe
by Daniel J. Rohrbach, Kevin A. Carter, Dandan Luo, Shuai Shao, Semra Aygun-Sunar, Jonathan F. Lovell and Ulas Sunar
Int. J. Mol. Sci. 2025, 26(3), 1212; https://doi.org/10.3390/ijms26031212 - 30 Jan 2025
Cited by 1 | Viewed by 942
Abstract
Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This [...] Read more.
Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin−phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery. By integrating diffuse reflectance and fluorescence spectroscopy, our approach not only corrects for the effects of tissue optical properties but also ensures accurate drug delivery to deep-seated tumors. Preliminary results validate the probe’s effectiveness in controlled settings, highlighting its potential for future clinical adaptation. This study sets the stage for in vivo applications, enabling the exploration of next-generation treatment paradigms for the management of cancer that involve optimizing chemotherapy administration for precision and control. Full article
(This article belongs to the Special Issue Photodynamic Therapy and Photodetection, 2nd Edition)
Show Figures

Figure 1

17 pages, 13254 KB  
Article
Research on Laser Cleaning of Graphite Lubrication Coating on the Magnesium Alloy Surface
by Zhenhai Xu, Yunhui Yue, Donghe Zhang, Shaoxi Xue, Erju Liu, Debin Shan, Jie Xu and Bin Guo
Materials 2025, 18(3), 484; https://doi.org/10.3390/ma18030484 - 21 Jan 2025
Viewed by 976
Abstract
The lubricating coating must be removed from the forged or stamped workpieces. Developing environment-friendly and high-precision cleaning technology is necessary. In this study, a nanosecond pulsed laser was used to clean the graphite lubricating coating of 15 μm thickness on the surface of [...] Read more.
The lubricating coating must be removed from the forged or stamped workpieces. Developing environment-friendly and high-precision cleaning technology is necessary. In this study, a nanosecond pulsed laser was used to clean the graphite lubricating coating of 15 μm thickness on the surface of an MB15 magnesium alloy. The effects of various laser cleaning parameters on the cleaning quality and the cleaning mechanism were studied. When the laser fluence (F) increases from 1.27 to 7.64 J/cm2, the clearance rate increases, and the surface roughness initially decreases before increasing. When the pulse frequency (f) increases from 10 to 30 kHz, the single-pulse energy decreases, the clearance rate decreases, and the surface roughness increases. When the scanning speed (v) increases from 1000 to 5000 mm/s, the spot overlap rate decreases, the clearance rate decreases, and the surface roughness firstly decreases and then increases. The optimal cleaning parameter combinations are F = 3.82 J/cm2, f = 10 kHz, and v = 3000 mm/s. The graphite lubrication coating was almost completely removed without damaging the substrate surface, and the surface carbon content of the sample was decreased to 6.42%. The laser cleaning mechanism of the graphite lubricating coating on the magnesium alloy surface is dominated by thermal ablation. As the laser fluence increases, the physical and chemical reactions become more violent. Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

15 pages, 7434 KB  
Article
A New Approach to Enhancing Radiation Hardness in Advanced Nuclear Radiation Detectors Subjected to Fast Neutrons
by Aref Vakili, Mahsa Farasat, Antonino La Magna, Markus Italia and Lucio Pancheri
Instruments 2024, 8(4), 53; https://doi.org/10.3390/instruments8040053 - 12 Dec 2024
Viewed by 1724
Abstract
Low-Gain Avalanche Diodes (LGADs) are critical sensors for the ATLAS and CMS timing detectors at the High Luminosity Large Hadron Collider (HL-LHC), offering enhanced timing resolution with gain factors of 20 to 50. However, their radiation tolerance is hindered by the Acceptor Removal [...] Read more.
Low-Gain Avalanche Diodes (LGADs) are critical sensors for the ATLAS and CMS timing detectors at the High Luminosity Large Hadron Collider (HL-LHC), offering enhanced timing resolution with gain factors of 20 to 50. However, their radiation tolerance is hindered by the Acceptor Removal Phenomenon (ARP), which deactivates boron in the gain layer, reducing gain below the threshold for accurate timing. This study investigates the radiation hardness of thin, carbon-doped LGAD sensors developed by Brookhaven National Laboratory (BNL) to address ARP-induced limitations. Active dopant profiles in the gain layer, junction, and bulk were measured using a Spreading Resistance Probe (SRP) profilometer, and the effects of annealing and neutron irradiation at fluences of 3 × 1014, 1 × 1015, and 3 × 1015 neq/cm2 (1 MeV equivalent) were analyzed. Low carbon dose rates showed minimal improvement due to enhanced deactivation, while higher doses improved radiation hardness, demonstrating a non-linear dose–response relationship. These findings highlight the potential of optimizing gain layers with high carbon doses and low-diffusion boron to extend LGAD lifetimes in high-radiation environments. Future research will refine carbon implantation strategies and explore alternative approaches to further enhance the radiation hardness of LGADs. Full article
Show Figures

Figure 1

11 pages, 3195 KB  
Article
Embryotoxicity of Diafenthiuron to Zebrafish (Danio rerio) After Advanced Oxidation Treatment
by Menglan Su, Rongkai Bao, Bo Gao, Xiaobin Liao, Peng Xiao and Wenhua Li
Water 2024, 16(23), 3478; https://doi.org/10.3390/w16233478 - 3 Dec 2024
Viewed by 919
Abstract
Diafenthiuron is a novel derivative of thiourea and is highly toxic to non-target organisms, necessitating its efficient removal from wastewater before discharge. This study compared diafenthiuron removal efficiencies at a target concentration of 1 µM using three methods: a 4 mg/L ozone (O [...] Read more.
Diafenthiuron is a novel derivative of thiourea and is highly toxic to non-target organisms, necessitating its efficient removal from wastewater before discharge. This study compared diafenthiuron removal efficiencies at a target concentration of 1 µM using three methods: a 4 mg/L ozone (O3) treatment; an ultraviolet (UV) light treatment, applying UV254 radiation with a fluence of 60 mJ/cm2 for 10 min; and a combined O3/UV treatment utilizing ozone and ultraviolet light. An acute toxicity assessment was conducted using a modeled zebrafish embryo (Danio rerio). The diafenthiuron removal efficiencies were 49.59%, 54.51%, and 68.90% for the UV light, O3, and O3/UV treatments, respectively. The treatments showed additional benefits of exerting no negative impacts on the survival rate, heart rate, or body length of the zebrafish larvae posttreatment. The survival and heart rates at 120 hpf, as well as the body length at 96 and 120 hpf, showed significant differences between the advanced oxidation and 1 μM diafenthiuron treatment groups. However, these parameters remained consistent with those of the control group. The three treatments alleviated the spatiotemporal downregulation of the liver-specific marker fabp10a caused by diafenthiuron exposure. The UV light and O3/UV treatments were efficient at degrading diafenthiuron, causing decreased reactive oxygen species levels and increased pomc and prl expression levels. The O3-treated diafenthiuron and 1 μM diafenthiuron treatments increased the reactive oxygen species levels and decreased the pomc and prl expression levels. The combined O3/UV treatment showed the highest removal efficiency and the least toxicity, making it the most effective method for diafenthiuron degradation. This study provides valuable insights into the treatment of diafenthiuron-laden wastewater. Full article
Show Figures

Figure 1

Back to TopTop