Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,340)

Search Parameters:
Keywords = flower quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2110 KiB  
Article
Establishment of an Efficient Regeneration System of Rosa ‘Pompon Veranda’
by Yuexin Zhang, Qin Zhou, Ruijie Li, Miao Tian, Changlong Zhong, Xiongbo Jiang and Wei Zhang
Agronomy 2025, 15(8), 1834; https://doi.org/10.3390/agronomy15081834 - 29 Jul 2025
Viewed by 237
Abstract
Roses are one of the most essential ornamental flowers in the world. At present, traditional techniques such as cross breeding are mainly used in rose breeding. The inefficiency of the in vitro regeneration system has become the limiting step for the innovation and [...] Read more.
Roses are one of the most essential ornamental flowers in the world. At present, traditional techniques such as cross breeding are mainly used in rose breeding. The inefficiency of the in vitro regeneration system has become the limiting step for the innovation and genetic improvement of rose germplasm resources. A tissue culture rapid propagation system of Rosa ‘Pompon Veranda’ was established using the stem segments with shoots as the initial experimental material. The results showed that the best disinfection method was to soak the explants in 75% ethanol for 1 min, and then soak them in 15% sodium hypochlorite solution for 15 min. The contamination rate was only about 6%. The best rooting medium for tissue culture seedlings was 1/2MS with 0.1 mg∙L−1 NAA, and the rooting rate can reach around 95%. On this basis, calluses were induced by using leaflets of tissue-cultured seedlings as explants. The results showed that the optimal medium for inducing callus tissue was MS + 5.0 mg∙L−1 2,4-D, with an induction rate of 100%. The calluses were cultured in the medium of MS with 0.01 mg∙L−1 NAA, 1.5 mg∙L−1 TDZ and 0.1 mg∙L−1 GA3 for 12 days in the dark and then transferred to light conditions. The differentiation rate of callus was 10.87%. On the medium of MS with 0.5 mg∙L−1 6-BA, 0.004 mg∙L−1 NAA and 0.1 mg∙L−1 GA3, the shoots could regenerate into whole plants. This study has established an in vitro regeneration system of R. ‘Pompon Veranda’, which is a key perquisite for the subsequent establishment of its genetic transformation system. Moreover, this method will also be an important reference for studies on quality traits such as floral scent and prickles of Rosa plants. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

13 pages, 736 KiB  
Article
Birding via Facebook—Methodological Considerations When Crowdsourcing Observations of Bird Behavior via Social Media
by Dirk H. R. Spennemann
Birds 2025, 6(3), 39; https://doi.org/10.3390/birds6030039 - 28 Jul 2025
Viewed by 259
Abstract
This paper outlines a methodology to compile geo-referenced observational data of Australian birds acting as pollinators of Strelitzia sp. (Bird of Paradise) flowers and dispersers of their seeds. Given the absence of systematic published records, a crowdsourcing approach was employed, combining data from [...] Read more.
This paper outlines a methodology to compile geo-referenced observational data of Australian birds acting as pollinators of Strelitzia sp. (Bird of Paradise) flowers and dispersers of their seeds. Given the absence of systematic published records, a crowdsourcing approach was employed, combining data from natural history platforms (e.g., iNaturalist, eBird), image hosting websites (e.g., Flickr) and, in particular, social media. Facebook emerged as the most productive channel, with 61.4% of the 301 usable observations sourced from 43 ornithology-related groups. The strategy included direct solicitation of images and metadata via group posts and follow-up communication. The holistic, snowballing search strategy yielded a unique, behavior-focused dataset suitable for analysis. While the process exposed limitations due to user self-censorship on image quality and completeness, the approach demonstrates the viability of crowdsourced behavioral ecology data and contributes a replicable methodology for similar studies in under-documented ecological contexts. Full article
Show Figures

Figure 1

23 pages, 3342 KiB  
Article
Zoning of “Protected Designation of Origin La Mancha Saffron” According to the Quality of the Flower
by Jorge F. Escobar-Talavera, María Esther Martínez-Navarro, Sandra Bravo, Gonzalo L. Alonso and Rosario Sánchez-Gómez
Agronomy 2025, 15(8), 1819; https://doi.org/10.3390/agronomy15081819 - 27 Jul 2025
Viewed by 279
Abstract
The quality of Crocus sativus L. flowers, beyond their stigmas, is influenced by the presence of bioactive metabolites also in their floral bio-residues. Given the effect of climatic and soil variables on these bioactive compounds, the aim of this research was to develop [...] Read more.
The quality of Crocus sativus L. flowers, beyond their stigmas, is influenced by the presence of bioactive metabolites also in their floral bio-residues. Given the effect of climatic and soil variables on these bioactive compounds, the aim of this research was to develop an agroecological zoning of saffron crop areas within the Protected Designation of Origin (PDO) La Mancha region (Castilla-La Mancha, Spain) by integrating the floral metabolite content with climatic and soil variables. To achieve this, a total of 173 samples were collected during the 2022 and 2023 harvests and analyzed via RP-HPLC-DAD to determine crocins, picrocrocin, kaempferols, and anthocyanins. Two new indices, Cropi (crocins + picrocrocin) and Kaeman (kaempferols + anthocyanins), were defined to classify flowers into four quality categories (A–D). High-quality classifications (A and B) were consistently associated with plots grouped in the meteorological stations of Ontur, El Sanchón, and Bolaños, indicating favorable edaphoclimatic conditions and climatic parameters, such as moderate temperatures and reduced humidity, for metabolite biosynthesis. In contrast, plots included in the meteorological stations of Tarazona and Pedernoso were mostly assigned to lower categories (C and D). Spatial analysis using thematic maps revealed that areas with an intermediate carbonate content, less calcareous soils, and higher organic matter levels were linked to higher flower quality. These findings highlight the influence of soil characteristics and climate, with distinct seasonal contrasts, that positively influence metabolite synthesis and flower quality. Full article
Show Figures

Figure 1

16 pages, 1023 KiB  
Article
Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species
by María Rita Guzman, Xavier Rojas-Ruilova, Catarina Gomes-Domingues and Isabel Marques
Agronomy 2025, 15(8), 1802; https://doi.org/10.3390/agronomy15081802 - 25 Jul 2025
Viewed by 258
Abstract
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with [...] Read more.
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with 0, 50, 100, or 300 mM NaCl for 10 days. Salinity significantly enhanced proline content and the activity of key antioxidant enzymes (catalase, peroxidase, and ascorbate peroxidase), reflecting the activation of stress defense mechanisms. However, these defenses failed to fully protect reproductive organs. Flower number and size were consistently more sensitive to salinity than vegetative traits, with significant reductions observed even at 50 mM NaCl. Responses varied between species, with Zinnia elegans and Calendula officinalis exhibiting pronounced sensitivity to salinity, whereas Tagetes patula showed relative tolerance, particularly under moderate stress conditions. The results show that flower structures are more vulnerable to ionic and osmotic disturbances than vegetative tissues, likely due to their higher metabolic demands and developmental sensitivity. Their heightened vulnerability underscores the need to prioritize reproductive performance when evaluating stress tolerance. Incorporating these traits into breeding programs is essential for developing salt-tolerant floriculture species that maintain aesthetic quality under limited water availability. Full article
(This article belongs to the Special Issue Effect of Brackish and Marginal Water on Irrigated Agriculture)
Show Figures

Figure 1

17 pages, 7928 KiB  
Article
Light–Nutrient Optimization Enhances Cherry Tomato Yield and Quality in Greenhouses
by Jianglong Li, Zhenbin Xie, Tiejun Zhao, Hongjun Li, Riyuan Chen, Shiwei Song and Yiting Zhang
Horticulturae 2025, 11(8), 874; https://doi.org/10.3390/horticulturae11080874 - 25 Jul 2025
Viewed by 351
Abstract
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: [...] Read more.
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: nitrogen 10.7 me/L, phosphorus 2.7 me/L, potassium 5.3 me/L) during flowering stage, and 2.4 dS/m (N1: nitrogen 16 me/L, phosphorus 4 me/L, potassium 8 me/L; N2: nitrogen 10.7 me/L, phosphorus 5.4 me/L, potassium 10.8 me/L) from fruit setting to harvest. N1 used standard adjustments, while N2 was optimized by adding solely with KCl and KH2PO4. Lighting treatments included L1 (natural light) and L2 (supplemental red/blue light). The application of N2 effectively decreased nitrate levels while it significantly enhanced the content of soluble sugars, flavor, and overall palatability, especially fruit coloring in cherry tomatoes, irrespective of supplementary lighting conditions. However, such optimization also increased sourness or altered the sugar–acid ratio. Supplementary lighting generally promoted the accumulation of soluble sugars, sweetness, and tomato flavor, although its effects varied markedly among different fruit clusters. The combination of optimized nutrient solutions and supplementary lighting exhibited synergistic effects, improving the content of soluble sugars, vitamin C, proteins, and flavor. N1 combined with L2 achieved the highest plant yield. Among the cultivars, ‘Linglong’ showed the greatest overall quality improvement, followed by ‘Baiyu’, ‘Miying’, and ‘Moka’. In conclusion, supplementary lighting can enhance the effect of nitrogen on yield and amplify the influence of phosphorus and potassium on fruit quality improvement in cherry tomatoes. The findings of this study may serve as a theoretical basis for the development of year-round production techniques for high-quality cherry tomatoes. Full article
Show Figures

Figure 1

26 pages, 3318 KiB  
Article
Responses of Tomato Growth and Soil Environment Properties to Integrated Deficit Water-Biogas Slurry Application Under Indirect Subsurface Drip Irrigation
by Peng Xiang, Jian Zheng, Panpan Fan, Yan Wang and Fenyan Ma
Agriculture 2025, 15(15), 1601; https://doi.org/10.3390/agriculture15151601 - 25 Jul 2025
Viewed by 299
Abstract
To explore the feasibility of integrated deficit water-biogas slurry irrigation under indirect subsurface drip irrigation, three deficit irrigation levels (60%FC, 70%FC, and 80%FC; FC represents field capacity) were established during the three growth stages of tomatoes. The results indicated that biogas slurry irrigation [...] Read more.
To explore the feasibility of integrated deficit water-biogas slurry irrigation under indirect subsurface drip irrigation, three deficit irrigation levels (60%FC, 70%FC, and 80%FC; FC represents field capacity) were established during the three growth stages of tomatoes. The results indicated that biogas slurry irrigation treatments increased the soil organic matter content in the root zone and water use efficiency (WUE) and reduced soil pH. As the degree of deficit increased, the plant height and stem diameter of tomatoes decreased significantly (p < 0.05), particularly during the seedling and flowering-fruiting stages. A mild deficit during the seedling stage was beneficial for subsequent plant growth, yielding maximum leaf area (6871.42 cm2 plant−1). Moderate deficit treatment at the seedling stage maximized yield, which was 19.79% higher than the control treatment in 2020 and 19.22% higher in 2021. The WUE of severe deficit treatment at the maturity stage increased by 26.6% (2020) and 31.04% (2021) compared to the control treatment. Comprehensive evaluation using TOPSIS combined with the weighted method revealed that severe deficit treatment at the maturity stage provided the best comprehensive benefits for tomatoes. In summary, deficit irrigation at different growth stages positively influenced tomato growth, quality, and soil environment in response to water-biogas slurry irrigation. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

22 pages, 5347 KiB  
Article
Transcriptome and Endogenous Hormones Reveal the Regulatory Mechanism of Flower Development in Camellia azalea
by Jian Xu, Fan Yang, Ruimin Nie, Wanyue Zhao, Fang Geng and Longqing Chen
Plants 2025, 14(15), 2291; https://doi.org/10.3390/plants14152291 - 25 Jul 2025
Viewed by 308
Abstract
Camellia azalea is an endemic species within the genus Camellia that exhibits the trait of summer flowering, which is of significant ornamental and research value. Nevertheless, research on the regulatory mechanisms of flower formation in C. azalea is still limited, so in this [...] Read more.
Camellia azalea is an endemic species within the genus Camellia that exhibits the trait of summer flowering, which is of significant ornamental and research value. Nevertheless, research on the regulatory mechanisms of flower formation in C. azalea is still limited, so in this study, transcriptome sequencing and analysis of endogenous hormone contents were conducted at three distinct growth stages: floral induction, floral organ maturation, and anthesis. Illumina sequencing yielded a total of 20,643 high-quality unigenes. Comparative analyses of representative samples from the three growth stages identified 6681, 1925, and 8400 differentially expressed genes (DEGs), respectively. These DEGs were further analyzed for functional enrichment using the GO and KEGG databases. Additionally, core genes from each flowering pathway underwent expression pattern analysis and network diagram construction. This revealed that the flower development process in C. azalea is linked to the specific expression of the genes involved in the photoperiod, temperature, and autonomous pathways and is subject to comprehensive regulation by multiple pathways. Further analysis of the dynamic trends of five endogenous hormone contents and plant hormone signal transduction genes revealed significant differences in the requirements of endogenous hormones, such as gibberellins and indoleacetic acid, by C. azalea at distinct growth stages. Additionally, the majority of genes on the phytohormone signal transduction pathway demonstrated a high correlation with the changes in the contents of each hormone. The present study integrates physiological and molecular approaches to identify key genes and metabolic pathways that regulate the summer flowering of C. azalea, thereby laying a theoretical foundation for further investigations into its flowering mechanism and related functional genes. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 1941 KiB  
Article
Blue–Red LED Light Modulates Morphophysiological and Metabolic Responses in the Medicinal Plant Nepeta nuda
by Miroslava Zhiponova, Grigor Zehirov, Krasimir Rusanov, Mila Rusanova, Miroslava Stefanova, Tsveta Ganeva, Momchil Paunov, Valentina Ganeva, Kiril Mishev, Petre I. Dobrev, Roberta Vaculíková, Václav Motyka, Zhenya Yordanova, Ganka Chaneva and Valya Vassileva
Plants 2025, 14(15), 2285; https://doi.org/10.3390/plants14152285 - 24 Jul 2025
Viewed by 308
Abstract
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda [...] Read more.
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda L.) grown under controlled in vitro conditions. White light (W) was used as a control and compared with two blue–red intensities: BR (high-intensity blue–red light) and BRS (low-intensity blue–red light or “BR with shadow”). BR-treated plants showed increased leaf area, mesophyll thickness, biomass and starch content but reduced levels of plastid pigments. BR also modified the oxidative state of plants by inducing lipid peroxidation while simultaneously activating ROS scavenging mechanisms and enhancing phenolic antioxidants. Interestingly, BR decreased the accumulation of the Nepeta sp.-specific iridoid, nepetalactone. These effects appear to be regulated by the phytohormones auxin, abscisic acid and jasmonates. BRS treatment produced effects similar to the W control but led to increased plant height and reduced leaf area and thickness. Both BR and BRS regimes induced the accumulation of proteins and amino acids. We conclude that blue–red light can enhance the survival capacity of micropropagated N. nuda during subsequent soil adaptation, suggesting that similar light pre-treatment could improve plant performance under stress conditions. Full article
Show Figures

Figure 1

23 pages, 2173 KiB  
Article
Evaluation of Soil Quality and Balancing of Nitrogen Application Effects in Summer Direct-Seeded Cotton Fields Based on Minimum Dataset
by Yukun Qin, Weina Feng, Cangsong Zheng, Junying Chen, Yuping Wang, Lijuan Zhang and Taili Nie
Agronomy 2025, 15(8), 1763; https://doi.org/10.3390/agronomy15081763 - 23 Jul 2025
Viewed by 213
Abstract
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the [...] Read more.
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the cotton field soil quality evaluation system and a lack of reports on constructing a minimum dataset to evaluate the soil quality status of cotton fields. We aim to accurately and efficiently evaluate soil quality in cotton fields and screen nitrogen application measures that synergistically improve soil quality, cotton yield, and nitrogen fertilizer utilization efficiency. Taking the summer live broadcast cotton field in Jiangxi Province as the research object, four treatments, including CK without nitrogen application, CF with conventional nitrogen application, N1 with nitrogen reduction, and N2 with nitrogen reduction and organic fertilizer application, were set up for three consecutive years from 2022 to 2024. A total of 15 physical, chemical, and biological indicators of the 0–20 cm plow layer soil were measured in each treatment. A minimum dataset model was constructed to evaluate and verify the soil quality status of different nitrogen application treatments and to explore the physiological mechanisms of nitrogen application on yield performance and stability from the perspectives of cotton source–sink relationship, nitrogen use efficiency, and soil quality. The minimum dataset for soil quality evaluation in cotton fields consisted of five indicators: soil bulk density, moisture content, total nitrogen, organic carbon, and carbon-to-nitrogen ratio, with a simplification rate of 66.67% for the evaluation indicators. The soil quality index calculated based on the minimum dataset (MDS) was significantly positively correlated with the soil quality index of the total dataset (TDS) (R2 = 0.904, p < 0.05). The model validation parameters RMSE was 0.0733, nRMSE was 13.8561%, and the d value was 0.9529, all indicating that the model simulation effect had reached a good level or above. The order of soil quality index based on MDS and TDS for CK, CF, N1, and N2 treatments was CK < N1 < CF < N2. The soil quality index of N2 treatment under MDS significantly increased by 16.70% and 26.16% compared to CF and N1 treatments, respectively. Compared with CF treatment, N2 treatment significantly increased nitrogen fertilizer partial productivity by 27.97%, 31.06%, and 21.77%, respectively, over a three-year period while maintaining the same biomass, yield level, yield stability, and yield sustainability. Meanwhile, N1 treatment had the risk of significantly reducing both boll density and seed cotton yield. Compared with N1 treatment, N2 treatment could significantly increase the biomass of reproductive organs during the flower and boll stage by 23.62~24.75% and the boll opening stage by 12.39~15.44%, respectively, laying a material foundation for the improvement in yield and yield stability. Under CF treatment, the cotton field soil showed a high degree of soil physical property barriers, while the N2 treatment reduced soil barriers in indicators such as bulk density, soil organic carbon content, and soil carbon-to-nitrogen ratio by 0.04, 0.04, 0.08, and 0.02, respectively, compared to CF treatment. In summary, the minimum dataset (MDS) retained only 33.3% of the original indicators while maintaining high accuracy, demonstrating the model’s efficiency. After reducing nitrogen by 20%, applying 10% total nitrogen organic fertilizer could substantially improve cotton biomass, cotton yield performance, yield stability, and nitrogen partial productivity while maintaining soil quality levels. This study also assessed yield stability and sustainability, not just productivity alone. The comprehensive nitrogen fertilizer management (reducing N + organic fertilizer) under the experimental conditions has high practical applicability in the intensive agricultural system in southern China. Full article
(This article belongs to the Special Issue Innovations in Green and Efficient Cotton Cultivation)
Show Figures

Figure 1

22 pages, 3879 KiB  
Article
Optimal Dark Tea Fertilization Enhances the Growth and Flower Quality of Tea Chrysanthemum by Improving the Soil Nutrient Availability in Simultaneous Precipitation and High-Temperature Regions
by Jiayi Hou, Jiayuan Yin, Lei Liu and Lu Xu
Agronomy 2025, 15(7), 1753; https://doi.org/10.3390/agronomy15071753 - 21 Jul 2025
Viewed by 294
Abstract
The simplex strategies of fertilizer management and problems caused by simultaneous precipitation and high-temperature (SPH) climate were the main factors that led to yield loss and quality decline in the continuous cropping of tea chrysanthemum (Dendranthema morifolium ‘Jinsi Huang’). In this study, [...] Read more.
The simplex strategies of fertilizer management and problems caused by simultaneous precipitation and high-temperature (SPH) climate were the main factors that led to yield loss and quality decline in the continuous cropping of tea chrysanthemum (Dendranthema morifolium ‘Jinsi Huang’). In this study, with sustainable biofertilizers being proposed as a potential solution. However, their effects under such constraints are underexplored. In this study, we compared different proportions of a sustainable dark tea biofertilizer, made with two commonly used fertilizers, by their contributions to the morphological, photosynthetic, and flowering traits of D. morifolium ‘Jinsi Huang’. The results showed that increasing the dark tea biofertilizer application to 4.5 kg·m−2 significantly enhanced the soil alkali hydrolyzed nitrogen (596.53% increase), available phosphorus (64.11%), and rapidly available potassium (75.56%) compared to the levels in yellow soil. This nutrient enrichment in soil caused D. morifolium ‘Jinsi Huang’ to produce more leaves (272.84% increase) and flower buds (1041.67%), along with a strengthened photosynthetic capacity (higher Fv/Fm values and light saturation point). These improvements alleviated the photoinhibition caused by SPH climate conditions, ultimately leading to significantly higher contents of chlorogenic acid (38.23% increase) and total flavonoids (80.28%) in the harvested flowers compared to the control group. Thus, dark tea biofertilizer is a cost-effective and efficient additive for growing tea chrysanthemum in SPH regions due to improving soil quality and causing nutritional and functional components to accumulate in harvest flowers, which greatly promotes the commercial value of rural revitalization industries centered around tea chrysanthemum. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 1393 KiB  
Article
Mitigating Water Stress and Enhancing Aesthetic Quality in Off-Season Potted Curcuma cv. ‘Jasmine Pink’ via Potassium Silicate Under Deficit Irrigation
by Vannak Sour, Anoma Dongsansuk, Supat Isarangkool Na Ayutthaya, Soraya Ruamrungsri and Panupon Hongpakdee
Horticulturae 2025, 11(7), 856; https://doi.org/10.3390/horticulturae11070856 - 20 Jul 2025
Viewed by 375
Abstract
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality [...] Read more.
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality presents a key challenge for horticulturists. Potassium silicate (PS) has been proposed as a foliar spray to alleviate plant water stress. This study aimed to evaluate the effects of PS on growth, ornamental traits, and photosynthetic parameters of off-season potted Curcuma cv. ‘Jasmine Pink’ under deficit irrigation (DI). Plants were subjected to three treatments in a completely randomized design: 100% crop evapotranspiration (ETc), 50% ETc, and 50% ETc with 1000 ppm PS (weekly sprayed on leaves for 11 weeks). Both DI treatments (50% ETc and 50% ETc + PS) reduced plant height by 7.39% and 9.17%, leaf number by 16.99% and 7.03%, and total biomass by 21.13% and 20.58%, respectively, compared to 100% ETc. Notably, under DI, PS-treated plants maintained several parameters equivalent to the 100% ETc treatment, including flower bud emergence, blooming period, green bract number, effective quantum yield of PSII (ΔF/Fm′), and electron transport rate (ETR). In addition, PS application increased leaf area by 8.11% and compactness index by 9.80% relative to untreated plants. Photosynthetic rate, ΔF/Fm′, and ETR increased by 31.52%, 13.63%, and 9.93%, while non-photochemical quenching decreased by 16.51% under water-limited conditions. These findings demonstrate that integrating deficit irrigation with PS foliar application can enhance water use efficiency and maintain ornamental quality in off-season potted Curcuma, promoting sustainable water management in horticulture. Full article
Show Figures

Figure 1

23 pages, 15440 KiB  
Article
Diversity and Correlation Analysis of Differential Amino Acid Metabolites and Dominant Endophytic Bacteria in Lycium chinense Fruits at Different Stages
by Chongxin Yin, Huichun Xie, Xiaoli Yang, Lianyu Zhou, Guigong Geng and Feng Qiao
Genes 2025, 16(7), 836; https://doi.org/10.3390/genes16070836 - 18 Jul 2025
Viewed by 317
Abstract
Background: Lycium chinense has been acknowledged for its substantial nutritional benefits. The “Mengqi No.1” variety of L. chinense is known for its high yield and exceptional quality. Methods: We screened twenty dominant endophytic bacterial genera based on OTUs from L. [...] Read more.
Background: Lycium chinense has been acknowledged for its substantial nutritional benefits. The “Mengqi No.1” variety of L. chinense is known for its high yield and exceptional quality. Methods: We screened twenty dominant endophytic bacterial genera based on OTUs from L. chinense fruits during three developmental stages. Results: Forty-three differential amino acid metabolites were selected from L. chinense fruits. Five endophytic bacteria (Enterococcus, Escherichia-Shigella, Bacteroides, Pseudomonas, and Bacillus) were dominant genera in green fruit (GF, 16–19 days after flowering), color-changing fruit (CCF, 22–25 days after flowering), and red-ripe fruit (RRF, 31–34 days after flowering). Four endophytic bacterial genera (Enterococcus, Bacillus, Pseudomonas, and Rhodanobacter) showed positive correlation with twenty different amino acid metabolites and negative correlation with seven different amino acid metabolites. Conclusions: Five genes (AST1, ltaE1, TAT1, SHMT2, and SHMT3) indicated positive correlation with seventeen different amino acid metabolites and negative correlation with eight different amino acid metabolites. AST1 gene had a major role in regulating arginine biosynthesis (ko00220); ltaE1, SHMT2, and SHMT3 genes were major in regulating glycine, serine, and threonine metabolism (ko00260); and TAT1 gene had a major role in regulating tyrosine metabolism (ko00350). These findings offer insights into the relationship between amino acid synthesis and endophytic bacteria in L. chinense fruits. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

20 pages, 3714 KiB  
Article
Seed Mixes in Landscape Design and Management: An Untapped Conservation Tool for Pollinators in Cities
by Cláudia Fernandes, Ana Medeiros, Catarina Teixeira, Miguel Porto, Mafalda Xavier, Sónia Ferreira and Ana Afonso
Land 2025, 14(7), 1477; https://doi.org/10.3390/land14071477 - 16 Jul 2025
Viewed by 935
Abstract
Urban green spaces are increasingly recognized as important habitats for pollinators, and wildflower seed mixes marketed as pollinator-friendly are gaining popularity, though their actual conservation value remains poorly understood. This study provides the first systematic screening of commercially available seed mixes in Portugal, [...] Read more.
Urban green spaces are increasingly recognized as important habitats for pollinators, and wildflower seed mixes marketed as pollinator-friendly are gaining popularity, though their actual conservation value remains poorly understood. This study provides the first systematic screening of commercially available seed mixes in Portugal, evaluating their taxonomic composition, origin, life cycle traits, and potential to support pollinator communities. A total of 229 seed mixes were identified. Although these have a predominance of native species (median 86%), the taxonomic diversity was limited, with 91% of mixes comprising species from only one or two families, predominantly Poaceae and Fabaceae, potentially restricting the range of floral resources available to pollinators. Only 21 seed mixes met the criteria for being pollinator-friendly, based on a three-step decision tree prioritizing native species, extended flowering periods, and visual diversity. These showed the highest percentage of native species (median 87%) and a greater representation of flowering plants. However, 76% of all mixes still included at least one non-native species, although none is considered invasive. Perennial species dominated all seed mix types, indicating the potential for the long-term persistence of wildflower meadows in urban spaces. Despite their promise, the ecological quality and transparency of the seed mix composition remain inconsistent, with limited certification or information on species origin. This highlights the need for clearer labeling, regulatory guidance, and ecologically informed formulations. Seed mixes, if properly designed and implemented, represent a largely untapped yet cost-effective tool for enhancing the pollinator habitats and biodiversity within urban landscapes. Full article
Show Figures

Figure 1

25 pages, 1781 KiB  
Article
Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry
by Hafsa El Horri, Susanna Bartolini, Damiano Remorini, Costanza Ceccanti, Marta Florio, Lorenzo D’Asaro, Gagandeep Jain, Rossano Massai, Marco Landi and Lucia Guidi
Agronomy 2025, 15(7), 1708; https://doi.org/10.3390/agronomy15071708 - 16 Jul 2025
Viewed by 375
Abstract
This study examined three innovative ‘light-converting films’ that convert green light (−23%) into red light (+8%; Red film), ultraviolet light (−80%) into blue light (+9%; Blue film), and green light (−5.7%) into red light (+4%; Pink film) but also ultraviolet light (−76%) into [...] Read more.
This study examined three innovative ‘light-converting films’ that convert green light (−23%) into red light (+8%; Red film), ultraviolet light (−80%) into blue light (+9%; Blue film), and green light (−5.7%) into red light (+4%; Pink film) but also ultraviolet light (−76%) into blue light (+5.6%; Pink film). These films were used for growing blueberry plants under cover under controlled tunnel conditions (27.3 ± 11.7 °C, 51.9 ± 21.6% RH). The use of Red film led to increases in the total plant biomass (+54.2%), and Red and Pink films enhanced the leaf thickness (+17.1% and +14.4%, respectively) as compared to the control (a transparent polyethylene film). No differences in the photosynthetic rate (Pn) were observed at the flowering stage, but a decrease (−25.9%) was observed in plants grown under the Pink film during the green fruit stage. The plants grown under Blue film boosted flower production, leading to +86.8% increase in the total yield. The Blue film improved the total phenolic content (+15.2%) in the fruit, and a +25.3% greater total antioxidant capacity was observed in fruit grown under Pink film. Freshly harvested blueberries were subjected to postharvest experiments (4 °C; in dark conditions; 90–95% RH). The results suggest the importance of Red film in enhancing plant biomass and Red and Blue films in improving fruit yield and maintaining nutraceutical postharvest quality in blueberry fruit. Full article
Show Figures

Figure 1

18 pages, 3442 KiB  
Article
Study on the Variation Patterns of Main Components and Chromaticity During the Developmental Process of Magnoliae Flos (Magnolia biondii)
by Chenxi Bu, Qinqin Zhang, Xiaoya Sun and Suiqing Chen
Horticulturae 2025, 11(7), 806; https://doi.org/10.3390/horticulturae11070806 - 7 Jul 2025
Viewed by 296
Abstract
Analyze the quality differences of Magnoliae Flos (MF) at different developmental stages and determine its optimal harvest period. In this study, a detection method for the main chemical components of MF was established based on GC-MS and UPLC, and the volatile oil and [...] Read more.
Analyze the quality differences of Magnoliae Flos (MF) at different developmental stages and determine its optimal harvest period. In this study, a detection method for the main chemical components of MF was established based on GC-MS and UPLC, and the volatile oil and lignan components were determined. The quality differences between MF at different developmental stages were compared based on chemical composition. Chromaticity values of MF samples were measured using electronic eye technology, followed by correlation analysis to reveal the relationship between internal compositional changes and external color differences. The results indicated that the harvesting period significantly affected the chemical composition of MF. Specifically, the contents of volatile oils and lignans initially increased and then decreased as the flower buds developed. There are obvious correlations between six different volatile components and some lignans of MF and their chromaticity values (p < 0.05). This study clarified the dynamic changes in relevant indicators during the development of MF, which can provide a reference for the rational utilization and scientific harvesting of MF resources. Full article
Show Figures

Figure 1

Back to TopTop