Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = floating offshore wind turbine (FOWT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 7344 KB  
Article
Fitness-Driven Assessment of Mooring-System Designs for 15-MW FOWT in Shallow Waters
by Shun-Wen Cheng, Nai-Chi Chen, Cheng-Hsien Chung and Ray-Yeng Yang
J. Mar. Sci. Eng. 2026, 14(2), 142; https://doi.org/10.3390/jmse14020142 - 9 Jan 2026
Viewed by 115
Abstract
Offshore wind energy is a key enabler of the global net-zero transition. As nearshore fixed-bottom projects reach maturity, floating offshore wind turbines (FOWTs) are becoming the next major focus for large scale deployment. To accelerate this development and reduce construction costs, it is [...] Read more.
Offshore wind energy is a key enabler of the global net-zero transition. As nearshore fixed-bottom projects reach maturity, floating offshore wind turbines (FOWTs) are becoming the next major focus for large scale deployment. To accelerate this development and reduce construction costs, it is essential to optimize mooring systems through a systematic and performance driven framework. This study focuses on the mooring assessment of the Taiwan-developed DeltaFloat semi-submersible platform supporting a 15 MW turbine at a 70 m water depth offshore Hsinchu, Taiwan. A full-chain catenary mooring system was designed based on site specific metocean conditions. The proposed framework integrates ANSYS AQWA (version 2024 R1) and Orcina OrcaFlex (version 11.5) simulations with sensitivity analyses and performance-based fitness metrics including offset, inclination, and line tension to identify key parameters governing mooring behavior. Additionally, an analysis of variance (ANOVA) was conducted to quantitatively evaluate the statistical significance of each design parameter. Results indicate that mooring line length is the most influential factor affecting system performance, followed by line angle and diameter. Optimizing these parameters significantly improves platform stability and reduces tension loads without excessive material use. Building on the optimized symmetric configuration, an asymmetric mooring concept with unequal line lengths is proposed. The asymmetric layout achieves performance comparable to traditional 3 × 1 and 3 × 2 systems under extreme environmental conditions while demonstrating potential reductions in material use and overall cost. Nevertheless, the unbalanced load distribution highlights the need for multi-scenario validation and fatigue assessment to ensure long-term reliability. Overall, the study establishes a comprehensive and sensitivity-based evaluation framework for floating wind mooring systems. The findings provide a balanced and practical reference for the cost-efficient design of floating offshore wind farms in the Taiwan Strait and other shallow-water regions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

35 pages, 4569 KB  
Review
Review of Coupled Dynamic Modeling Methods for Floating Offshore Wind Turbines
by Jiahao Chen
Energies 2026, 19(1), 205; https://doi.org/10.3390/en19010205 - 30 Dec 2025
Viewed by 270
Abstract
Floating offshore wind turbines (FOWTs) are subjected to multiple environmental loads that induce complex coupled dynamic responses. The development of coupled dynamic methods is therefore essential for FOWT analysis and design and has long attracted significant research attention. This paper presents a comprehensive [...] Read more.
Floating offshore wind turbines (FOWTs) are subjected to multiple environmental loads that induce complex coupled dynamic responses. The development of coupled dynamic methods is therefore essential for FOWT analysis and design and has long attracted significant research attention. This paper presents a comprehensive review of the recent advances in coupled dynamic modeling methods and associated numerical tools for FOWTs. First, the fundamental dynamic components are introduced, including aerodynamics, hydrodynamics, elastodynamics, mooring dynamics, and servodynamics. Next, coupled modeling approaches, such as fully coupled, semi-coupled, and frequency-domain methods, are reviewed and compared in terms of their applicability. The paper then outlines the software tools developed based on these methodologies, along with major international code comparison and validation campaigns. Finally, emerging trends in FOWT coupled dynamics are briefly discussed, including integrated marine energy systems, advanced wake modeling, and the incorporation of artificial intelligence techniques in prediction. This paper systematically synthesizes current knowledge on coupled dynamic methods for FOWTs, providing a foundation for future research while also serving as a practical reference for advancing this area of study. Full article
(This article belongs to the Special Issue Computation Modelling for Offshore Wind Turbines and Wind Farms)
Show Figures

Figure 1

23 pages, 8741 KB  
Article
Heave Plate Shape Effects on the Motion Performance of 15 MW Floating Offshore Wind Turbine
by Salim Abdullah Bazher, Haemyung Chon, Jackyou Noh, Jungkeun Oh and Daewon Seo
Energies 2026, 19(1), 94; https://doi.org/10.3390/en19010094 - 24 Dec 2025
Viewed by 307
Abstract
Floating offshore wind turbines (FOWTs) are essential for meeting global renewable energy goals, yet their viability depends strongly on platform motion in harsh marine environments and the resulting influence on structural loading and the levelized cost of energy. This study examines the dynamic [...] Read more.
Floating offshore wind turbines (FOWTs) are essential for meeting global renewable energy goals, yet their viability depends strongly on platform motion in harsh marine environments and the resulting influence on structural loading and the levelized cost of energy. This study examines the dynamic response of a 15 MW semi-submersible FOWT based on the IEA-15-240-RWT developed by NREL. The baseline UMaine VolturnUS-S platform is evaluated alongside two newly proposed variants, KSNU-1 15 MW and KSNU-2 15 MW, each equipped with distinct heave-plate configurations designed to enhance hydrodynamic damping while maintaining equal surface area for fair comparison. Hydrodynamic coefficients are obtained through potential-flow analysis using Ansys Aqwa, and fully coupled aero-hydro-servo-elastic simulations are conducted with OpenFAST. The performance of all platforms is assessed under two design load cases (DLCs): the fatigue limit state (FLS) and the ultimate limit state (ULS). The results show that both KSNU platforms achieve slight reductions in surge, sway, and heave motions, with KSNU-2 providing the most consistent improvement in vertical and horizontal stability. Rotational responses increase modestly but remain within acceptable limits. Overall, the KSNU-2 design demonstrates improved motion control without compromising energy output, offering a promising configuration for large-scale floating wind applications. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

24 pages, 5047 KB  
Article
Study on Yaw Control of the Semi-Submersible Wind Turbine Array Under Misaligned Wind-Wave Conditions
by Xiaofei Zhang, Zhengwei Yang and Zhiqiang Xin
Modelling 2026, 7(1), 2; https://doi.org/10.3390/modelling7010002 - 23 Dec 2025
Viewed by 261
Abstract
When operating in the marine environment, floating offshore wind turbines (FOWTs) are subjected to various inflow conditions such as wind, waves, and currents. To investigate the effects of complex inflow conditions on offshore wind farms, an integrated fluid-structure interaction computational and coupled dynamic [...] Read more.
When operating in the marine environment, floating offshore wind turbines (FOWTs) are subjected to various inflow conditions such as wind, waves, and currents. To investigate the effects of complex inflow conditions on offshore wind farms, an integrated fluid-structure interaction computational and coupled dynamic analysis method for FOWTs is employed. An aero-hydro-servo-elastic coupled analysis model of the NREL 5 MW semi-submersible wind turbine array based on the OC4-DeepCwind platform is established. The study examines the variations in power generation, platform motion, structural loads, and flow field distribution of the FOWT array under different wave incident angles and yaw angles of the first column turbines. The results indicate that the changes in power generation, platform motion, and flow field distribution of the wind farm are significantly influenced by the yaw angle. The maximum tower top yaw bearing torque and the tower base Y-direction bending moment of the wind turbines undergo significant changes with the increase in the angle between wind and wave directions. The study reveals the mechanism of power generation and load variation during yaw control of the FOWT array under misaligned wind and wave conditions, providing a theoretical basis for the future development of offshore floating wind farms. Full article
Show Figures

Figure 1

29 pages, 12750 KB  
Article
Analysis of Dynamic Responses of Floating Offshore Wind Turbines in Typical Upstream Wake Conditions Based on an Innovative Coupled Dynamic Analysis Method
by Yangwei Wang, Jisen Zong, Jianhui Mou, Junjie Yang and Xinghao Zhu
J. Mar. Sci. Eng. 2025, 13(12), 2276; https://doi.org/10.3390/jmse13122276 - 28 Nov 2025
Viewed by 474
Abstract
Floating offshore wind turbines (FOWTs) are crucial for harnessing deep-sea wind energy resources. However, existing studies on FOWTs have predominantly focused on standalone wind turbines, neglecting the wake effects from upstream turbines within the offshore wind farms, thereby leading to inaccurate analyses. This [...] Read more.
Floating offshore wind turbines (FOWTs) are crucial for harnessing deep-sea wind energy resources. However, existing studies on FOWTs have predominantly focused on standalone wind turbines, neglecting the wake effects from upstream turbines within the offshore wind farms, thereby leading to inaccurate analyses. This study developed a coupled dynamic analysis method integrating aerodynamics, hydrodynamics, and mooring dynamics, incorporating the upstream wake effects through a three-dimensional (3D) Gaussian wake model and a nonlinear lift line free vortex wake (LLFVW) model. The proposed method was validated through comparisons with experiments in the wave tank and on the equivalent mechanism by the scaled-down models. Dynamic responses in four upstream wake conditions, i.e., no-wake, central wake, lateral offset wake, and multi-wake conditions, were simulated. The results indicated that upstream wake effects exert a significant influence on the dynamic responses of the FOWTs. All the three wake conditions markedly reduced the vibration displacement, fore–aft and side-to-side moments due to velocity deficits. Compared to the central wake, the lateral offset wake exerted a more pronounced effect on the fluctuations in tower-top vibration acceleration, the variations in tower-base moment, and the fluctuations in platform pitch acceleration, thereby posing critical fatigue risks. In contrast, multi-wake effects are less pronounced under the studied configuration. These findings emphasize the necessity of avoiding lateral offset exposures in wind farm layout planning. The proposed framework offers a practical tool for wake-aware design and optimization of FOWTs arrays. Full article
(This article belongs to the Special Issue Modelling Techniques for Floating Offshore Wind Turbines)
Show Figures

Figure 1

22 pages, 6440 KB  
Article
Nonlinear Hydrostatic and Hydrodynamic Effects of Semi-Submersible Floating Offshore Wind Turbines
by Jiahao Chen
J. Mar. Sci. Eng. 2025, 13(12), 2262; https://doi.org/10.3390/jmse13122262 - 27 Nov 2025
Viewed by 397
Abstract
Floating offshore wind turbines (FOWTs) are subject to nonlinear hydrostatic and hydrodynamic loads due to their intricate platform geometry. However, most fully coupled simulation tools for FOWTs rely on linearized hydrostatics and frequency-domain potential flow models transformed into the time domain, which assume [...] Read more.
Floating offshore wind turbines (FOWTs) are subject to nonlinear hydrostatic and hydrodynamic loads due to their intricate platform geometry. However, most fully coupled simulation tools for FOWTs rely on linearized hydrostatics and frequency-domain potential flow models transformed into the time domain, which assume a stationary waterline and wetted surface. To overcome these limitations, this study develops an innovative coupled simulation tool named FAST2WASIM (F2W), which incorporates nonlinear hydrostatic and hydrodynamic effects while preserving computational efficiency for engineering applications. This paper first describes the overall framework of the F2W methodology, outlines its underlying hydrodynamic theory, and presents the numerical model of the OC4 DeepCwind semi-submersible FOWT. Response predictions under a range of test conditions are then compared between FAST and F2W, demonstrating the validity of the proposed tool and revealing the inadequacies of conventional linear methods in predicting the hydrodynamic behavior of semi-submersible FOWTs. Finally, a novel structural analysis workflow for semi-submersible FOWTs based on F2W is introduced, and its differences from the traditional approach are examined in terms of computational time and structural stress outputs. This work offers an efficient and high-fidelity approach for simulating nonlinear hydrodynamics of semi-submersible FOWTs and provides valuable insights for practical engineering design. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

26 pages, 2003 KB  
Review
Artificial Intelligence in Floating Offshore Wind Turbines: A Critical Review of Applications in Design, Monitoring, Control, and Digital Twins
by Ewelina Kostecka, Tymoteusz Miller, Irmina Durlik and Arkadiusz Nerć
Energies 2025, 18(22), 5937; https://doi.org/10.3390/en18225937 - 11 Nov 2025
Viewed by 1586
Abstract
Floating offshore wind turbines (FOWTs) face complex aero-hydro-servo-elastic interactions that challenge conventional modeling, monitoring, and control. This review critically examines how artificial intelligence (AI) is being applied across four domains—design and surrogate modeling, structural health monitoring, control and operations, and digital twins—with explicit [...] Read more.
Floating offshore wind turbines (FOWTs) face complex aero-hydro-servo-elastic interactions that challenge conventional modeling, monitoring, and control. This review critically examines how artificial intelligence (AI) is being applied across four domains—design and surrogate modeling, structural health monitoring, control and operations, and digital twins—with explicit attention to uncertainty and reliability. Using PRISMA 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), a Scopus search identified 412 records; after filtering for articles, conference papers, and open access, 115 studies were analyzed. We organize the literature into a taxonomy covering classical supervised learning, deep neural surrogates, physics-informed and hybrid models, reinforcement learning, digital twins with online learning, and uncertainty-aware approaches. Neural surrogates accelerate coupled simulations; probabilistic encoders improve structural health monitoring; model predictive control and trust-region reinforcement learning enhance adaptive control; and digital twins integrate reduced-order physics with data-driven calibration for lifecycle management. The corpus reveals progress but also recurring limitations: simulation-heavy validation, inconsistent metrics, and insufficient field-scale evidence. We conclude with a bias-aware synthesis and propose priorities for future work, including shared benchmarks, safe RL with stability guarantees, twin-in-the-loop testing, and uncertainty-to-decision standards that connect model outputs to certification and operational risk. Full article
(This article belongs to the Special Issue Computation Modelling for Offshore Wind Turbines and Wind Farms)
Show Figures

Figure 1

20 pages, 3950 KB  
Article
Hydrodynamic Performance and Motion Response of a Novel Deep-Water TLP Floating Offshore Wind Turbine
by Ronghua Zhu, Zongyuan Lai, Chunlong Li, Haiping Qian, Huaqi Yuan, Yingchun Xie and Ke Sun
J. Mar. Sci. Eng. 2025, 13(11), 2131; https://doi.org/10.3390/jmse13112131 - 11 Nov 2025
Viewed by 667
Abstract
The deployment of floating offshore wind turbines (FOWTs) in deep, typhoon-prone waters like the South China Sea requires platforms with exceptional stability. However, the performance validation of novel Tension Leg Platform (TLP) concepts under such extreme metocean conditions remains a significant research gap. [...] Read more.
The deployment of floating offshore wind turbines (FOWTs) in deep, typhoon-prone waters like the South China Sea requires platforms with exceptional stability. However, the performance validation of novel Tension Leg Platform (TLP) concepts under such extreme metocean conditions remains a significant research gap. This study addresses this by numerically evaluating a novel TLP design, including a regular hexagonal topology, a unique bracing structure and heave plates, and an increased ballast-tank height. A coupled numerical framework, integrating potential-flow theory and blade element momentum (BEM) theory within ANSYS-AQWA (2023), was established to simulate the TLP’s dynamic response to combined irregular wave, current, and turbulent wind loads. The resulting time-series data were analyzed using the Continuous Wavelet Transform (CWT) to investigate non-stationary dynamics and capture transient peak loads critical for fatigue sizing, which demonstrated the platform’s superior stability. Under a significant wave height of 11.4 m, the platform’s maximum heave was limited to 0.86 m and its maximum pitch did not exceed 0.3 degrees. Crucially, the maximum tension in the tendons remained below 22% of their minimum breaking load. The primary contribution of this work is the quantitative validation of a novel TLP design’s resilience in an understudied, harsh deep-water environment, confirming the feasibility of the concept and presenting a viable pathway for FOWT deployment in challenging offshore regions. Full article
Show Figures

Figure 1

23 pages, 5277 KB  
Article
Numerical Analysis of FOWT Dynamics with Fully Coupled and Decoupled Methods: A Comparative Study
by Shi Liu, Yi Yang, Tao Tao, Zheng Huang, Wei Jiang, Chaohe Chen and Xinkuan Yan
Energies 2025, 18(21), 5817; https://doi.org/10.3390/en18215817 - 4 Nov 2025
Viewed by 429
Abstract
The numerical analysis technique is one of the primary methods for the design and development of floating offshore wind turbines (FOWTs). This study presents a detailed investigation into the influences of fully coupled and decoupled numerical analysis methods on the dynamic responses of [...] Read more.
The numerical analysis technique is one of the primary methods for the design and development of floating offshore wind turbines (FOWTs). This study presents a detailed investigation into the influences of fully coupled and decoupled numerical analysis methods on the dynamic responses of a floating offshore wind turbine. The fully coupled analysis is implemented via bidirectional FAST-OrcaFlex co-simulation, considering the dynamic interaction between rotor operation and platform motions. The decoupled analysis is conducted using OrcaFlex for wave-induced response analysis, incorporating unidirectional imported FAST-based thrust time series. First, the numerical tools used for simulating fully coupled numerical model of OC5 DeepCwind are verified against published model test data, including free-decay test, white noise wave test and working condition test. Then, the fully coupled and decoupled numerical models are compared under wind fields of different turbulence intensities and wind speeds to reveal the dynamic coupling effects. The results indicate that the predictions of the decoupled model are more aligned with the experimental data compared to those of the fully coupled model under conditions of combined wave and steady winds. The differences between the fully coupled and decoupled models are minor under wave-only condition. However, under turbulent condition, the decoupled model overestimates surge by up to 10% and mooring tension by less than 5%, while pitch deviations can reach 17%. These findings support the use of the decoupled method in preliminary design stages—especially for mooring system optimal design—to save computational cost and time. For detailed designs involving turbulent winds, low-frequency structure response analysis or pitch-sensitive performance, the fully coupled approach is recommended to ensure accuracy. This study could offer practical guidance for selecting suitable numerical methods in FOWT design and analysis. Full article
Show Figures

Figure 1

13 pages, 1282 KB  
Article
Multi-Objective Optimization for PTO Damping of Floating Offshore Wind–Wave Hybrid Systems Under Extreme Conditions
by Suchun Yang, Shuo Zhang, Fan Zhang, Xianzhi Wang and Dongsheng Qiao
J. Mar. Sci. Eng. 2025, 13(11), 2084; https://doi.org/10.3390/jmse13112084 - 1 Nov 2025
Viewed by 483
Abstract
Floating offshore wind–wave hybrid systems, as a novel structural form integrating floating wind turbine foundations and WECs, can effectively enhance the efficiency of renewable energy utilization when properly designed. A numerical model is established to investigate the dynamic responses of a wind–wave hybrid [...] Read more.
Floating offshore wind–wave hybrid systems, as a novel structural form integrating floating wind turbine foundations and WECs, can effectively enhance the efficiency of renewable energy utilization when properly designed. A numerical model is established to investigate the dynamic responses of a wind–wave hybrid system comprising a semi-submersible FOWT and PA wave energy converters. The optimal damping values of the PTO system for the wind–wave hybrid system are determined based on an NSGA-II. Subsequently, a comparative analysis of dynamic responses is carried out for the PTO system with different states: latching, fully released, and optimal damping. Under the same extreme irregular wave conditions, the pitch motion of the FOWT with optimal damping is reduced to 71% and 50% compared to the latching and fully released states, respectively. The maximum mooring line tension in the optimal damping state is similar to that in the fully released state, but nearly 40% lower than in the latching state. This optimal control strategy not only sustains power generation but also enhances structural stability and efficiency compared to traditional survival strategies, offering a promising approach for cost-effective offshore wind and wave energy utilization. Full article
(This article belongs to the Special Issue Optimized Design of Offshore Wind Turbines)
Show Figures

Figure 1

21 pages, 4035 KB  
Article
Soft Power Limitation Control for Floating Offshore Wind Turbines
by Kwansoo Kim, Hyun-Gyu Kim, Joong-Hyeok Lee and Jaehoon Son
Energies 2025, 18(21), 5732; https://doi.org/10.3390/en18215732 - 31 Oct 2025
Viewed by 417
Abstract
Floating offshore wind turbines (FOWTs) face significant challenges in maintaining reliable power generation while mitigating structural loads, which are critical for reducing maintenance costs and extending service life. To address these issues, this study evaluates the effectiveness of a Soft Power Limitation Control [...] Read more.
Floating offshore wind turbines (FOWTs) face significant challenges in maintaining reliable power generation while mitigating structural loads, which are critical for reducing maintenance costs and extending service life. To address these issues, this study evaluates the effectiveness of a Soft Power Limitation Control (SPLC) strategy through numerical simulations in DNV Bladed. Two representative design load cases were considered, with design load case (DLC) 1.1 representing normal turbulence and DLC 2.3 representing an extreme operating gust. Under DLC 1.1, SPLC substantially reduced tower fatigue loads, lowering the damage equivalent loads (DELs) of side-to-side and fore–aft bending moments by 21 percent and 15.2 percent, respectively, while blade and mooring loads remained nearly unchanged. Platform motions exhibited modest improvements, including a 6.5 percent reduction in surge peak-to-peak, 2.2 percent in surge RMS, and 2.6 percent in pitch peak-to-peak. Under DLC 2.3, SPLC effectively alleviated extreme responses, decreasing the maximum tower side-to-side bending moment by 30.7 percent and the blade flap-wise bending moment by 15.6 percent, without adverse effects on six-degrees-of-freedom (6-DOFs) platform motions. Overall, the results confirm that SPLC enhances both fatigue and extreme load performance while maintaining stability, highlighting its potential as a practical and cost-effective control strategy to improve the reliability, durability, and commercial viability of FOWTs. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

27 pages, 6702 KB  
Article
Study on Motion Performance and Mooring Tension Response of 16 MW Tension Leg Platform Floating Wind Turbine Under Extreme Environmental Conditions
by Xiaolong Yang, Yu Zhang, Shengwei Yan, Weihong Yu, Shunhang Lu, Haoshuang Wang and Wei Shi
J. Mar. Sci. Eng. 2025, 13(11), 2063; https://doi.org/10.3390/jmse13112063 - 29 Oct 2025
Viewed by 770
Abstract
This paper presents a 16 MW typhoon-resistant Tension Leg Platform floating offshore wind turbine (TLP FOWT) designed for the South China Sea. The survivability of the TLP FOWT under extreme environmental conditions is investigated through an integrated time-domain coupled analysis numerical model. The [...] Read more.
This paper presents a 16 MW typhoon-resistant Tension Leg Platform floating offshore wind turbine (TLP FOWT) designed for the South China Sea. The survivability of the TLP FOWT under extreme environmental conditions is investigated through an integrated time-domain coupled analysis numerical model. The accuracy of the numerical model is calibrated by comparing its results with experimental data. In comparisons of mooring system static stiffness tests and white noise tests, the results from the calibrated numerical model show good agreement with the experimental data. Regarding the free decay tests and the statistical time-domain response results, the most significant discrepancies are only 1.17% and 6.91%, respectively. Subsequently, the time-domain response of the numerical model was investigated under extreme South China Sea conditions, configured according to the IEC 61400-3-2 design load conditions. The safety of the design was then evaluated against ABS specifications. The analysis yielded maximum platform motion amplitudes and inclinations of 34.99 m (less than 30% of water depth) and below 1°, respectively. Under both 50-year and 500-year return period conditions, the platform maintained stable TLP motion characteristics with no tendon slackness, evidenced by a minimum tendon tension of 107.23 kN. All motion responses and tendon tensions complied with the ABS safety factors, confirming the design’s capability to ensure safe operation throughout its service life. The present work provides valuable insights for the design and risk assessment of future large-scale TLP FOWTs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 5464 KB  
Article
A Computational Framework for Fully Coupled Time-Domain Aero-Hydro-Servo-Elastic Analysis of Hybrid Offshore Wind and Wave Energy Systems by Deploying Generalized Modes
by Nikos Mantadakis, Eva Loukogeorgaki and Peter Troch
J. Mar. Sci. Eng. 2025, 13(11), 2047; https://doi.org/10.3390/jmse13112047 - 25 Oct 2025
Viewed by 649
Abstract
In this paper, a generic computational framework, based on the generalized-mode approach, is developed for the fully coupled time-domain aero-hydro-servo-elastic analysis of Hybrid Offshore Wind and Wave Energy Systems (HOWiWaESs), consisting of a Floating Offshore Wind Turbine (FOWT) and several wave energy converters [...] Read more.
In this paper, a generic computational framework, based on the generalized-mode approach, is developed for the fully coupled time-domain aero-hydro-servo-elastic analysis of Hybrid Offshore Wind and Wave Energy Systems (HOWiWaESs), consisting of a Floating Offshore Wind Turbine (FOWT) and several wave energy converters (WECs) mechanically connected to it. The FOWT’s platform and the WECs of the HOWiWaES are modeled as a single floating body with conventional rigid-body modes, while the motions of the WECs relative to the FOWT are described as additional generalized modes of motion. A numerical tool is established by appropriately modifying/extending the OpenFAST source code. The frequency-dependent exciting forces and hydrodynamic coefficients, as well as hydrostatic stiffness terms, are obtained using the traditional boundary integral equation method, whilst the generalized-mode shapes are determined by developing appropriate 3D vector shape functions. The tool is applied for a 5 MW FOWT with a spar-type floating platform and a conic WEC buoy hinged on it via a mechanical arm, and results are compared with those of other investigators utilizing the multi-body approach. Two distinctive cases of a pitching and a heaving WEC are considered. A quite good agreement is established, indicating the potential of the developed tool to model floating HOWiWaESs efficiently. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 5373 KB  
Article
Toward Reliable FOWT Modeling: A New Calibration Approach for Extreme Environmental Loads
by Ho-Seong Yang, Ali Alkhabbaz and Young-Ho Lee
Energies 2025, 18(20), 5545; https://doi.org/10.3390/en18205545 - 21 Oct 2025
Cited by 1 | Viewed by 544
Abstract
The current paper presents a comparative analysis between a high-fidelity simulation tool and computational fluid dynamics (CFD) in evaluating the behavior of a fully coupled floating offshore wind turbine (FOWT) system subjected to three distinct design load cases, with a particular emphasis on [...] Read more.
The current paper presents a comparative analysis between a high-fidelity simulation tool and computational fluid dynamics (CFD) in evaluating the behavior of a fully coupled floating offshore wind turbine (FOWT) system subjected to three distinct design load cases, with a particular emphasis on extreme weather scenarios. While both approaches yielded comparable results under standard operational conditions, noticeable discrepancies emerged in surge drift and mooring line tension during typhoon conditions. The present work highlighted a significant limitation of standard calibration methods based on free-deck motion that are not reflective of the unique features of extreme environmental responses. To address this limitation, a novel calibration methodology is suggested that uses drag coefficients derived from direct measurement of extreme load cases. The prediction accuracy of the high-fidelity simulation model was significantly improved by refining the transverse component of the drag coefficients of major structural components, decreasing prediction accuracy of surge and mooring tension responses from almost 30% error to about 5%. Further, despite increasing the fidelity of calibration under extreme environmental conditions, it is primarily contingent on high-fidelity measurements corresponding to the use of the most conventional calibration approach under normal environmental conditions. Ultimately, the results demonstrate the need for accurate calibration approaches to provide reliable performance predictions of FOWT systems under varying extreme environmental conditions. Full article
Show Figures

Figure 1

23 pages, 4689 KB  
Review
Dynamics of Offshore Wind Turbine Foundation: A Critical Review and Future Directions
by Jiaojie Xie, Hao Wang, Xin Cai, Hongjian Zhang, Lei Ren, Maowen Cai and Zhiqiang Xin
J. Mar. Sci. Eng. 2025, 13(10), 2016; https://doi.org/10.3390/jmse13102016 - 21 Oct 2025
Cited by 1 | Viewed by 1839
Abstract
Offshore wind turbines (OWTs) are being developed with larger capacities for deeper waters, facing complex environmental loads that challenge structural safety. In contrast to onshore turbines, OWT foundations must withstand combined hydrodynamic forces (waves and currents), leading to substantially higher construction costs. For [...] Read more.
Offshore wind turbines (OWTs) are being developed with larger capacities for deeper waters, facing complex environmental loads that challenge structural safety. In contrast to onshore turbines, OWT foundations must withstand combined hydrodynamic forces (waves and currents), leading to substantially higher construction costs. For floating offshore wind turbines (FOWTs), additional considerations include radiation hydrodynamic loads and additional hydrodynamic damping effects caused by platform motion. Dynamic analysis of these foundations remains a critical bottleneck, presenting new challenges for offshore wind power advancement. This article first introduces the main structural types of OWT foundations, with case studies predominantly from China. The remaining part of the article proceeds as follows: dynamics of fixed OWT foundations, dynamics of FOWT foundations, and conclusions. Next, it covers several important topics related to fixed offshore wind turbines, including pile–soil interaction, wave loads, and seismic analysis. It then discusses support platform motion analysis, hydroelastic analysis, and mooring system characteristics of floating offshore wind turbines. Finally, it presents some insights to improve design and optimization methods for enhancing the safety and reliability of offshore wind turbines. This research clarifies OWT foundation dynamics, helping researchers address challenges and optimize designs. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

Back to TopTop