Abstract
Floating offshore wind turbines (FOWTs) face complex aero-hydro-servo-elastic interactions that challenge conventional modeling, monitoring, and control. This review critically examines how artificial intelligence (AI) is being applied across four domains—design and surrogate modeling, structural health monitoring, control and operations, and digital twins—with explicit attention to uncertainty and reliability. Using PRISMA 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), a Scopus search identified 412 records; after filtering for articles, conference papers, and open access, 115 studies were analyzed. We organize the literature into a taxonomy covering classical supervised learning, deep neural surrogates, physics-informed and hybrid models, reinforcement learning, digital twins with online learning, and uncertainty-aware approaches. Neural surrogates accelerate coupled simulations; probabilistic encoders improve structural health monitoring; model predictive control and trust-region reinforcement learning enhance adaptive control; and digital twins integrate reduced-order physics with data-driven calibration for lifecycle management. The corpus reveals progress but also recurring limitations: simulation-heavy validation, inconsistent metrics, and insufficient field-scale evidence. We conclude with a bias-aware synthesis and propose priorities for future work, including shared benchmarks, safe RL with stability guarantees, twin-in-the-loop testing, and uncertainty-to-decision standards that connect model outputs to certification and operational risk.