Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (613)

Search Parameters:
Keywords = flexible energy market

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 2014 KiB  
Article
Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition
by Aikaterini Papapostolou, Ioanna Andreoulaki, Filippos Anagnostopoulos, Sokratis Divolis, Harris Niavis, Sokratis Vavilis and Vangelis Marinakis
Energies 2025, 18(15), 4191; https://doi.org/10.3390/en18154191 (registering DOI) - 7 Aug 2025
Abstract
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy [...] Read more.
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy production, and demand flexibility is of vital importance. Blockchain has the potential to change energy services towards this direction. To optimally exploit blockchain, innovative business models need to be designed, identifying the opportunities emerging from unmet needs, while also considering potential risks so as to take action to overcome them. In this context, the scope of this paper is to examine the opportunities and the risks that emerge from the adoption of blockchain in four innovative business models, while also identifying mitigation strategies to support and accelerate the energy transition, thus proposing optimal approaches of exploitation of blockchain in energy services. The business models concern Energy Performance Contracting with P4P guarantees, improved self-consumption in energy cooperatives, energy efficiency and flexibility services for natural gas boilers, and smart energy management for EV chargers and HVAC appliances. Firstly, the value proposition of the business models is analysed and results in a comprehensive SWOT analysis. Based on the findings of the analysis and consultations with relevant market actors, in combination with the examination of the relevant literature, risks are identified and evaluated through a qualitative assessment approach. Subsequently, specific mitigation strategies are proposed to address the detected risks. This research demonstrates that blockchain integration into these business models can significantly improve energy efficiency, reduce operational costs, enhance security, and support a more decentralised energy system, providing actionable insights for stakeholders to implement blockchain solutions effectively. Furthermore, according to the results, technological and legal risks are the most significant, followed by political, economic, and social risks, while environmental risks of blockchain integration are not as important. Strategies to address risks relevant to blockchain exploitation include ensuring policy alignment, emphasising economic feasibility, facilitating social inclusion, prioritising security and interoperability, consulting with legal experts, and using consensus algorithms with low energy consumption. The findings offer clear guidance for energy service providers, policymakers, and technology developers, assisting in the design, deployment, and risk mitigation of blockchain-enabled business models to accelerate sustainable energy development. Full article
Show Figures

Figure 1

30 pages, 2505 KiB  
Article
Battery Energy Storage Systems: Energy Market Review, Challenges, and Opportunities in Frequency Control Ancillary Services
by Gian Garttan, Sanath Alahakoon, Kianoush Emami and Shantha Gamini Jayasinghe
Energies 2025, 18(15), 4174; https://doi.org/10.3390/en18154174 - 6 Aug 2025
Abstract
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of [...] Read more.
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of BESS’ participation in frequency control ancillary service (FCAS) markets. This review synthesises the current state of knowledge on the evolution of the energy market and the role of battery energy storage systems in providing grid stability, particularly frequency control services, with a focus on their integration into evolving high-renewable-energy-source (RES) market structures. Specifically, solar PV and wind energy are emerging as the main drivers of RES expansion, accounting for approximately 61% of the global market share. A BESS offers greater flexibility in storage capacity, scalability and rapid response capabilities, making it an effective solution to address emerging security risks of the system. Moreover, a BESS is able to provide active power support through power smoothing when coupled with solar photovoltaic (PV) and wind generation. In this paper, we provide an overview of the current status of energy markets, the contribution of battery storage systems to grid stability and flexibility, as well as the challenges that BESS face in evolving electricity markets. Full article
Show Figures

Figure 1

16 pages, 1628 KiB  
Article
A Stackelberg Game-Based Joint Clearing Model for Pumped Storage Participation in Multi-Tier Electricity Markets
by Lingkang Zeng, Mutao Huang, Hao Xu, Zhongzhong Chen, Wanjing Li, Jingshu Zhang, Senlin Ran and Xingbang Chen
Processes 2025, 13(8), 2472; https://doi.org/10.3390/pr13082472 - 4 Aug 2025
Viewed by 144
Abstract
To address the limited flexibility of pumped storage power stations (PSPSs) under hierarchical clearing of energy and ancillary service markets, this study proposes a joint clearing mechanism for multi-level electricity markets. A bi-level optimization model based on the Stackelberg game is developed to [...] Read more.
To address the limited flexibility of pumped storage power stations (PSPSs) under hierarchical clearing of energy and ancillary service markets, this study proposes a joint clearing mechanism for multi-level electricity markets. A bi-level optimization model based on the Stackelberg game is developed to characterize the strategic interaction between PSPSs and the market operator. Simulation results on the IEEE 30-bus system demonstrate that the proposed mechanism captures the dynamics of nodal supply and demand, as well as time-varying network congestion. It guides PSPSs to operate more flexibly and economically. Additionally, the mechanism increases PSPS profitability, reduces system costs, and improves frequency regulation performance. This game-theoretic framework offers quantitative decision support for PSPS participation in multi-level spot markets and provides insights for optimal storage deployment and market mechanism improvement. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

52 pages, 1100 KiB  
Article
The Impact of Renewable Generation Variability on Volatility and Negative Electricity Prices: Implications for the Grid Integration of EVs
by Marek Pavlík, Martin Vojtek and Kamil Ševc
World Electr. Veh. J. 2025, 16(8), 438; https://doi.org/10.3390/wevj16080438 - 4 Aug 2025
Viewed by 149
Abstract
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot [...] Read more.
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot prices, and electric vehicle (EV) charging strategies. Based on empirical data from Germany, France, and the Czech Republic for the period 2015–2025, four research hypotheses are tested using correlation and regression analysis, cost simulations, and classification algorithms. The results confirm a negative correlation between the RES share and electricity prices, as well as the effectiveness of smart charging in reducing costs. At the same time, it is shown that the occurrence of negative prices is significantly affected by a high RES share. The correlation analysis further suggests that higher production from RESs increases the potential for price optimisation through smart charging. The findings have implications for policymaking aimed at flexible consumption and efficient RES integration. Full article
Show Figures

Graphical abstract

40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 - 31 Jul 2025
Viewed by 185
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

21 pages, 2585 KiB  
Review
Advances of Articulated Tug–Barge Transport in Enhancing Shipping Efficiency
by Plamen Yanakiev, Yordan Garbatov and Petar Georgiev
J. Mar. Sci. Eng. 2025, 13(8), 1451; https://doi.org/10.3390/jmse13081451 - 29 Jul 2025
Viewed by 198
Abstract
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is [...] Read more.
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is expected to lead to an increase in the annual growth rate from 2025 to 2032. This study aims to analyse the current advancements in ATB technology and provide insights into the ATB fleet and the systems that connect tugboats and barges. Furthermore, it highlights the advantages of this transportation system, especially regarding its role in enhancing energy efficiency within the maritime transport sector. Currently, there is limited information available in the public domain about ATBs compared to other commercial vessels. The analysis reveals that much of the required information for modern ATB design is not accessible outside specialised design companies. The study also focuses on conceptual design aspects, which include the main dimensions, articulated connections, propulsion systems, and machinery, concluding with an evaluation of economic viability. Special emphasis is placed on defining the main dimensions, which is a critical part of the complex design process. In this context, the ratios of length to beam (L/B), beam to draft (B/D), beam to depth (B/T), draft to depth (T/D), and power to the number of tugs cubed (Pw/N3) are established as design control parameters in the conceptual design phase. This aspect underscores the novelty of the present study. Additionally, the economic viability is analysed in terms of both CAPEX (capital expenditures) and OPEX (operational expenditures). While CAPEX does not significantly differ between the methods used in different types of commercial ships, OPEX should account for the unique characteristics of ATB vessels. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 394
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

26 pages, 1378 KiB  
Article
Effects of Electricity Price Volatility, Energy Mix and Training Interval on Prediction Accuracy: An Investigation of Adaptive and Static Regression Models for Germany, France and the Czech Republic
by Marek Pavlík and Matej Bereš
Energies 2025, 18(15), 3893; https://doi.org/10.3390/en18153893 - 22 Jul 2025
Viewed by 308
Abstract
Electricity markets in Europe have undergone major changes in the last decade, mainly due to the increasing share of variable renewable energy sources (RES), changing demand patterns, and geopolitical factors—particularly the war in Ukraine, tensions over energy imports, and disruptions in natural gas [...] Read more.
Electricity markets in Europe have undergone major changes in the last decade, mainly due to the increasing share of variable renewable energy sources (RES), changing demand patterns, and geopolitical factors—particularly the war in Ukraine, tensions over energy imports, and disruptions in natural gas supplies. These changes have led to increased electricity price volatility, reducing the reliability of traditional forecasting tools. This research analyses the potential of static and adaptive linear regression as electricity price forecasting tools in the context of three countries with different energy mixes: Germany, France and the Czech Republic. The static regression approach was compared with an adaptive approach based on incremental model updates at monthly intervals. Testing was carried out in three different scenarios combining stable and turbulent market periods. The quantitative results showed that the adaptive model achieved a lower MAE and RMSE, especially when trained on data from high-volatility periods. However, models trained under turbulent conditions performed poorly in stable environments due to a shift in market dynamics. The results supported several of the hypotheses formulated and demonstrated the need for localised, flexible and continuously updated forecasting. Limitations of the adaptive approach and suggestions for future research, including changing the length of training windows and the use of seasonal models, are also discussed. The research confirms that modern markets require adaptive analytical approaches that account for changing RES dynamics and country specificities. Full article
Show Figures

Figure 1

34 pages, 712 KiB  
Review
Transformation of Demand-Response Aggregator Operations in Future US Electricity Markets: A Review of Technologies and Open Research Areas with Game Theory
by Styliani I. Kampezidou and Dimitri N. Mavris
Appl. Sci. 2025, 15(14), 8066; https://doi.org/10.3390/app15148066 - 20 Jul 2025
Viewed by 316
Abstract
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how [...] Read more.
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how demand–response (DR) aggregators and distributed loads can support these climate goals while addressing critical operational challenges. We hypothesize that current DR aggregator frameworks fall short in the areas of distributed load operational flexibility, scalability with the number of distributed loads (prosumers), prosumer privacy preservation, DR aggregator and prosumer competition, and uncertainty management, limiting their potential to enable large-scale prosumer participation. Using a systematic review methodology, we evaluate existing DR aggregator and prosumer frameworks through the proposed FCUPS criteria—flexibility, competition, uncertainty quantification, privacy, and scalability. The main results highlight significant gaps in current frameworks: limited support for decentralized operations; inadequate privacy protections for prosumers; and insufficient capabilities for managing competition, uncertainty, and flexibility at scale. We conclude by identifying open research directions, including the need for game-theoretic and machine learning approaches that ensure privacy, scalability, and robust market participation. Addressing these gaps is essential to shape future research agendas and to enable DR aggregators to contribute meaningfully to US climate targets. Full article
Show Figures

Figure 1

44 pages, 5275 KiB  
Review
The Power Regulation Characteristics, Key Challenges, and Solution Pathways of Typical Flexible Resources in Regional Energy Systems
by Houze Jiang, Shilei Lu, Boyang Li and Ran Wang
Energies 2025, 18(14), 3830; https://doi.org/10.3390/en18143830 - 18 Jul 2025
Viewed by 474
Abstract
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the [...] Read more.
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the flexible resources of building energy systems and vehicle-to-grid (V2G) interaction technologies, and mainly focuses on the regulation characteristics and coordination mechanisms of distributed energy supply (renewable energy and multi-energy cogeneration), energy storage (electric/thermal/cooling), and flexible loads (air conditioning and electric vehicles) within regional energy systems. The study reveals that distributed renewable energy and multi-energy cogeneration technologies form an integrated architecture through a complementary “output fluctuation mitigation–cascade energy supply” mechanism, enabling the coordinated optimization of building energy efficiency and grid regulation. Electricity and thermal energy storage serve as dual pillars of flexibility along the “fast response–economic storage” dimension. Air conditioning loads and electric vehicles (EVs) complement each other via thermodynamic regulation and Vehicle-to-Everything (V2X) technologies, constructing a dual-dimensional regulation mode in terms of both power and time. Ultimately, a dynamic balance system integrating sources, loads, and storage is established, driven by the spatiotemporal complementarity of multi-energy flows. This paper proposes an innovative framework that optimizes energy consumption and enhances grid stability by coordinating distributed renewable energy, energy storage, and flexible loads across multiple time scales. This approach offers a new perspective for achieving sustainable and flexible building energy systems. In addition, this paper explores the application of demand response policies in building energy systems, analyzing the role of policy incentives and market mechanisms in promoting building energy flexibility. Full article
Show Figures

Figure 1

32 pages, 3289 KiB  
Article
Optimal Spot Market Participation of PV + BESS: Impact of BESS Sizing in Utility-Scale and Distributed Configurations
by Andrea Scrocca, Roberto Pisani, Diego Andreotti, Giuliano Rancilio, Maurizio Delfanti and Filippo Bovera
Energies 2025, 18(14), 3791; https://doi.org/10.3390/en18143791 - 17 Jul 2025
Viewed by 353
Abstract
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, [...] Read more.
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, using Monte Carlo PV production scenarios, optimizes day-ahead and intra-day market offers while incorporating PV forecast updates. In real time, battery flexibility reduces imbalances. Here we show that, to ensure dispatchability—defined as keeping annual imbalances below 5% of PV output—a 1 MW PV system requires 220 kWh of storage for utility-scale and 50 kWh for distributed systems, increasing the levelized cost of electricity by +13.1% and +1.94%, respectively. Net present value is negative for BESSs performing imbalance netting only. Therefore, a multiple service strategy, including imbalance netting and energy arbitrage, is introduced. Performing arbitrage while keeping dispatchability reaches an economic optimum with a 1.7 MWh BESS for utility-scale systems and 1.1 MWh BESS for distributed systems. These results show lower PV firming costs than previous studies, and highlight that under a multiple-service strategy, better economic outcomes are obtained with larger storage capacities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 6799 KiB  
Article
Analysis of Energy Recovery Out of the Water Supply and Distribution Network of the Brussels Capital Region
by François Nuc and Patrick Hendrick
Energies 2025, 18(14), 3777; https://doi.org/10.3390/en18143777 - 16 Jul 2025
Viewed by 252
Abstract
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s [...] Read more.
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s WSDN using four years (2019–2022) of operational data. Rather than focusing on available technologies, the analysis examines whether the real behavior of the network supports sustainable energy extraction. The approach includes network topology identification, theoretical power modeling, and detailed flow and pressure analysis. The Brussels system, composed of a Water Supply Network (WSN) and a Water Distribution Network (WDN), reveals strong disparities: the WSN offers localized opportunities for energy recovery, while the WDN presents significant operational constraints that limit economic viability. Our findings suggest that day-ahead electricity markets provide more suitable valorization pathways than flexibility markets. Most importantly, the study highlights the necessity of long-term behavioral analysis to avoid misleading conclusions based on short-term data and to support informed investment decisions in the urban water–energy nexus. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

27 pages, 578 KiB  
Review
Market Applications and Uncertainty Handling for Virtual Power Plants
by Yujie Jin and Ciwei Gao
Energies 2025, 18(14), 3743; https://doi.org/10.3390/en18143743 - 15 Jul 2025
Viewed by 369
Abstract
Virtual power plants achieve the flexible scheduling and management of power systems by integrating distributed energy resources such as renewable energy sources, energy storage systems, and controllable loads. However, due to the instability of renewable energy generation, load demand fluctuations, and market price [...] Read more.
Virtual power plants achieve the flexible scheduling and management of power systems by integrating distributed energy resources such as renewable energy sources, energy storage systems, and controllable loads. However, due to the instability of renewable energy generation, load demand fluctuations, and market price uncertainty, virtual power plants face a gigantic challenge operating and participating in electricity markets. First, this paper outlines the functions and uncertainties of virtual power plants; then, it describes the uncertainties of virtual power plants in terms of aggregation, participation in market bidding, and optimal dispatch; finally, it summarizes the review. Full article
Show Figures

Figure 1

19 pages, 2359 KiB  
Article
Technical and Economic Feasibility Analysis to Implement a Solid-State Transformer in Local Distribution Systems in Colombia
by Juan Camilo Ramírez, Eduardo Gómez-Luna and Juan C. Vasquez
Energies 2025, 18(14), 3723; https://doi.org/10.3390/en18143723 - 14 Jul 2025
Cited by 1 | Viewed by 414
Abstract
Today’s power grids are being modernized with the integration of new technologies, making them increasingly efficient, secure, and flexible. One of these technologies, which is beginning to make great contributions to distribution systems, is solid-state transformers (SSTs), motivating the present technical and economic [...] Read more.
Today’s power grids are being modernized with the integration of new technologies, making them increasingly efficient, secure, and flexible. One of these technologies, which is beginning to make great contributions to distribution systems, is solid-state transformers (SSTs), motivating the present technical and economic study of local level 2 distribution systems in Colombia. Taking into account Resolution 015 of 2018 issued by the Energy and Gas Regulatory Commission (CREG), which establishes the economic and quality parameters for the remuneration of electricity operators, the possibility of using these new technologies in electricity networks, particularly distribution networks, was studied. The methodology for developing this study consisted of creating a reference framework describing the topologies implemented in local distribution systems (LDSs), followed by a technical and economic evaluation based on demand management and asset remuneration through special construction units, providing alternatives for the digitization and modernization of the Colombian electricity market. The research revealed the advantages of SST technologies, such as reactive power compensation, surge protection, bidirectional flow, voltage drops, harmonic mitigation, voltage regulation, size reduction, and decreased short-circuit currents. These benefits can be leveraged by distribution network operators to properly manage these types of technologies, allowing them to be better prepared for the transition to smart grids. Full article
Show Figures

Figure 1

27 pages, 7623 KiB  
Article
A Ladder-Type Carbon Trading-Based Low-Carbon Economic Dispatch Model for Integrated Energy Systems with Flexible Load and Hybrid Energy Storage Optimization
by Liping Huang, Fanxin Zhong, Chun Sing Lai, Bang Zhong, Qijun Xiao and Weitai Hsu
Energies 2025, 18(14), 3679; https://doi.org/10.3390/en18143679 - 11 Jul 2025
Viewed by 283
Abstract
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the [...] Read more.
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the carbon trading cost increases progressively with emission levels, thereby providing stronger incentives for emission reduction. Second, flexible loads are categorized and modeled as shiftable, transferable, and reducible types, each with distinct operational constraints and compensation mechanisms. Third, both battery and thermal energy storage systems are considered to improve system flexibility by storing excess energy and supplying it when needed. Finally, a unified optimization framework is developed to coordinate the dispatch of renewable generation, gas turbines, waste heat recovery units, and multi-energy storage devices while integrating flexible load flexibility. The objective is to minimize the total system cost, which includes energy procurement, carbon trading expenditures, and demand response compensation. Three comparative case studies are conducted to evaluate system performance under different operational configurations: the proposed comprehensive model, a carbon trading-only approach, and a conventional baseline scenario. Results demonstrate that the proposed framework effectively balances economic and environmental objectives through coordinated demand-side management, hybrid storage utilization, and the ladder-type carbon trading market mechanism. It reshapes the system load profile via peak shaving and valley filling, improves renewable energy integration, and enhances overall system efficiency. Full article
(This article belongs to the Special Issue Hybrid Battery Energy Storage System)
Show Figures

Figure 1

Back to TopTop