Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (184)

Search Parameters:
Keywords = flame-retardant fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 2969 KiB  
Review
Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications
by Liying Li, Guiyu Jin, Jian Shen, Mengyan Guo, Jiacheng Song, Yiming Li and Jian Xiong
Gels 2025, 11(7), 548; https://doi.org/10.3390/gels11070548 - 15 Jul 2025
Viewed by 610
Abstract
Amidst global imperatives for sustainable energy and environmental remediation, carbon aerogels (CAs) present a transformative alternative to conventional carbon materials (e.g., activated carbon, carbon fibers), overcoming limitations of disordered pore structures, unmodifiable surface chemistry, and functional inflexibility. This review systematically examines CA-based electrochemical [...] Read more.
Amidst global imperatives for sustainable energy and environmental remediation, carbon aerogels (CAs) present a transformative alternative to conventional carbon materials (e.g., activated carbon, carbon fibers), overcoming limitations of disordered pore structures, unmodifiable surface chemistry, and functional inflexibility. This review systematically examines CA-based electrochemical systems as its primary focus, analyzing fundamental charge-storage mechanisms and establishing structure–property–application relationships critical to energy storage performance. We critically assess synthesis methodologies, emphasizing how stage-specific parameters govern structural/functional traits, and detail multifunctional modification strategies (e.g., heteroatom doping, composite engineering) that enhance electrochemical behavior through pore architecture optimization, surface chemistry tuning, and charge-transfer kinetics acceleration. Electrochemical applications are extensively explored, including the following: 1. Energy storage: supercapacitors (dual EDLC/pseudocapacitive mechanisms) and battery hybrids. 2. Electrocatalysis: HER, OER, ORR, and CO2 reduction reaction (CO2RR). 3. Electrochemical processing: capacitive deionization (CDI) and electrosorption. Beyond this core scope, we briefly acknowledge CA versatility in ancillary domains: environmental remediation (heavy metal removal, oil/water separation), flame retardancy, microwave absorption, and CO2 capture. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

18 pages, 5503 KiB  
Article
Enhancing Cotton Fabrics Through Grafting of Glycine-Based Polyamidoamine
by Matteo Arioli, Jenny Alongi, Claudia Forte, Silvia Pizzanelli and Elisabetta Ranucci
Polymers 2025, 17(12), 1676; https://doi.org/10.3390/polym17121676 - 17 Jun 2025
Viewed by 402
Abstract
Durable polyamidoamine (PAA) coatings were covalently grafted onto cotton by applying a water-soluble, glycine-based PAA (M-GLY) through a radical polymerization mechanism. M-GLY oligomers of different chain lengths, terminated with bisacrylamide groups, were synthesized via polyaddition of N,N′-methylenebisacrylamide and glycine at molar ratios of [...] Read more.
Durable polyamidoamine (PAA) coatings were covalently grafted onto cotton by applying a water-soluble, glycine-based PAA (M-GLY) through a radical polymerization mechanism. M-GLY oligomers of different chain lengths, terminated with bisacrylamide groups, were synthesized via polyaddition of N,N′-methylenebisacrylamide and glycine at molar ratios of 1:0.9, 1:0.85, and 1:0.8. Cotton strips were then impregnated with differently concentrated (10 and 20 wt.%) aqueous solutions of the M-GLY oligomers in the presence of potassium persulfate, which oxidized cellulose and generated radicals that initiated polymerization of the M-GLY terminals, thereby enabling covalent grafting onto cotton. This process yielded M-GLY-grafted cotton (COT-g-M-GLY) with 2–15% add-on levels. Scanning electron microscopy revealed uniform surface coverage and penetration of the coating into fiber interiors. Grafting did not alter cellulose crystallinity—65% vs. 64% for grafted and virgin cotton. However, thermogravimetric analysis showed that COT-g-M-GLY exhibited lower thermo-oxidative stability than M-GLY-adsorbed cotton (COT/M-GLY) at similar add-ons. Flame-retardancy tests indicated that COT-g-M-GLY reduced the burning rate (by 10% to 30%) but did not achieve self-extinguishing behavior, unlike COT/M-GLY. Despite this, COT-g-M-GLY provided good protection against UV-induced photodegradation. After accelerated UVA–UVB exposure, cotton samples with 10% M-GLY add-on showed a significantly reduced yellowing rate compared to untreated cotton, as confirmed by spectrophotometric analysis. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

31 pages, 4977 KiB  
Review
Polyimine-Based Self-Healing Composites: A Review on Dynamic Covalent Thermosets for Sustainable and High-Performance Applications
by Xiaoxue Wang, Si Zhang and Yun Chen
Polymers 2025, 17(12), 1607; https://doi.org/10.3390/polym17121607 - 9 Jun 2025
Viewed by 800
Abstract
Polyimine-based composites have emerged as a promising class of dynamic covalent thermosets, combining high mechanical strength, thermal stability, self-healing, recyclability, and reprocessability. This review systematically summarizes recent advances in polyimine synthesis, highlighting dynamic covalent chemistry (DCC) strategies such as imine exchange and reversible [...] Read more.
Polyimine-based composites have emerged as a promising class of dynamic covalent thermosets, combining high mechanical strength, thermal stability, self-healing, recyclability, and reprocessability. This review systematically summarizes recent advances in polyimine synthesis, highlighting dynamic covalent chemistry (DCC) strategies such as imine exchange and reversible Schiff base reactions. Structural customization can be achieved by incorporating reinforcing phases such as carbon nanotubes, graphene, and bio-based fibers. Advanced fabrication methods—including solution casting, hot pressing, and interfacial polymerization—enable precise integration of these components while preserving structural integrity and adaptability. Mechanical performance analysis emphasizes the interplay between dynamic bonds, interfacial engineering, and multiscale design strategies. Polyimine composites exhibit outstanding performance characteristics, including a self-healing efficiency exceeding 90%, a tensile strength reaching 96.2 MPa, and remarkable chemical recyclability. Emerging engineering applications encompass sustainable green materials, flexible electronics, energy storage devices, and flame-retardant systems. Key challenges include balancing multifunctionality, enhancing large-scale processability, and developing low-energy recycling strategies. Future efforts should focus on interfacial optimization and network adaptivity to accelerate the industrial translation of polyimine composites, advancing next-generation sustainable materials. Full article
(This article belongs to the Collection Progress in Polymer Applications)
Show Figures

Figure 1

18 pages, 1272 KiB  
Article
Novel Flame-Retardant Wood-Polymer Composites by Using Inorganic Mineral Huntite and Hydromagnesite: An Aspect of Application in Electrical Engineering
by Gül Yılmaz Atay, Jacek Lukasz Wilk-Jakubowski and Valentyna Loboichenko
Materials 2025, 18(11), 2652; https://doi.org/10.3390/ma18112652 - 5 Jun 2025
Viewed by 460
Abstract
In this study, a flame-retardant wood-polymer composite was produced using huntite-hydromagnesite mineral, recognized for its non- flammability properties. In this context, wood-polymer composites were produced with the co-rotating twin-screw extrusion technique, while polypropylene was applied as the composite matrix, medium density fiberboard waste [...] Read more.
In this study, a flame-retardant wood-polymer composite was produced using huntite-hydromagnesite mineral, recognized for its non- flammability properties. In this context, wood-polymer composites were produced with the co-rotating twin-screw extrusion technique, while polypropylene was applied as the composite matrix, medium density fiberboard waste and inorganic huntite-hydromagnesite mineral were used as the reinforcement material. The proportion of wood powder additives was changed to 10% and 20%, and the huntite and hydromagnesite ratio was changed to 30%, 40%, 50% and 60%. Maleic anhydride grafted polypropylene, i.e., MAPP, was applied as a binder at a rate of 3%. Polypropylene, wood fibers, mineral powders, and MAPP blended in the mixer were processed in the extruder and turned into granules. Structural, morphological, thermal, mechanical, and flame-retardant properties of the composites were analyzed using XRD, SEM, FTIR, TGA, tensile testing, and the UL-94 vertical flammability test. Test samples were prepared to evaluate the physical and mechanical properties with a compression molding machine. It was concluded that the composites gained significant flame retardancy with the addition of huntite hydromagnesite. The potential for using this material in various fields and its compliance with the principles of circular economy and the Sustainable Development Goals (SDG 12) were noted. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

22 pages, 7139 KiB  
Article
Alkaline Solvothermal Debromination of Commercial Brominated Polystyrene
by Mario Ferreiro González, Fernanda Cabañas Gac and Gregory S. Patience
Recycling 2025, 10(3), 105; https://doi.org/10.3390/recycling10030105 - 1 Jun 2025
Viewed by 569
Abstract
Government regulations have required consumer products—electrical and electronic components, toys, furniture, clothing, and cars— to meet ever-increasing flame resistance standards, and industry has met these norms by adding brominated fire retardants. However, end-of-life treatment and up-cycling of these plastics is challenging as the [...] Read more.
Government regulations have required consumer products—electrical and electronic components, toys, furniture, clothing, and cars— to meet ever-increasing flame resistance standards, and industry has met these norms by adding brominated fire retardants. However, end-of-life treatment and up-cycling of these plastics is challenging as the brominated compounds are endocrine disruptors, bioaccumulators, and persist in the environment. Pyrolysis, catalytic cracking, or combustion, to recover its fuel value, produces toxic brominated dibenzodioxins and dibenzofurans Here, we demonstrated the efficacy of a solvothermal treatment that extracts up to 99% of the bromine from high-impact polystyrene (HIPS) and polystyrene (PS) in electrical and electronic waste (e-waste). The process operated between 160 °C and 230 °C with ethylene glycol or triethylene glycol as the solvent and NaOH or KOH as the extraction agent (0.5 M to 2 M). The reaction rates depended on the particle size: 60 mm plastic chunks took up to between 4 and 24 h to react while fibers 3 mm in diameter reacted in less than 5 min. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Graphical abstract

15 pages, 2849 KiB  
Article
Multifunctional Meta-Aramid Fabrics Enhanced with Inherent Flame-Retardant Polyurea Coatings: Integration of Mechanical Strength, Puncture Resistance, and Self-Healing Properties
by Kang Yang, Yuncheng Zhao, Ke Shang and Bin Zhao
Polymers 2025, 17(11), 1529; https://doi.org/10.3390/polym17111529 - 30 May 2025
Viewed by 626
Abstract
In this study, a solvent-free, slow-curing, inherently flame-retardant polyurea coating was successfully developed through an optimized formulation. The novel polyurea was synthesized using mixed Schiff base latent curing agents derived from terminal polyether amines with different-number average molecular weights (D2000 and D400), methyl [...] Read more.
In this study, a solvent-free, slow-curing, inherently flame-retardant polyurea coating was successfully developed through an optimized formulation. The novel polyurea was synthesized using mixed Schiff base latent curing agents derived from terminal polyether amines with different-number average molecular weights (D2000 and D400), methyl isobutyl ketone, and polyethyl phosphate glycol ester (OP550). Subsequently, polyurea/meta-aramid (PUA/AF) composite fabrics were fabricated via a scraping coating technique. Thermogravimetric analysis revealed enhanced char formation and reduced decomposition temperatures due to the incorporation of OP550. Comprehensive flame retardant performance was demonstrated through vertical flame testing, limiting oxygen index, and micro-scale combustion calorimetry, with results showing significantly reduced heat release rates, lower total heat release, and increased residual char. Mechanical evaluations indicated marked improvements in tearing, tensile, single-yarn tensile, and bursting forces, attributed to strong fiber–polyurea interfacial interactions, as confirmed by detailed SEM morphological analyses. Moreover, the PUA/AF composites exhibited excellent static puncture resistance and effective self-healing capability. Collectively, these advancements highlight the potential of PUA/AF composite fabrics as promising candidates for advanced protective textiles, integrating superior flame retardancy, mechanical strength, puncture resistance, and self-repairing functionality. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

11 pages, 1479 KiB  
Article
Cashmere Blended with Calcium Alginate Fibers: Eco-Friendly Improvement of Flame Retardancy and Maintenance of Hygroscopicity
by Yujie Cai, Zewen Li, Bin Wang, Chao Xu, Xing Tian and Fengyu Quan
Polymers 2025, 17(11), 1497; https://doi.org/10.3390/polym17111497 - 28 May 2025
Viewed by 465
Abstract
As a natural fiber, cashmere is favored for its softness, finesse, and warmth. However, its poor flame-retardant properties seriously affect the safety of cashmere. Current flame-retardant treatments for cashmere tend to lead to heavy metal pollution and significantly reduce wearer comfort. In this [...] Read more.
As a natural fiber, cashmere is favored for its softness, finesse, and warmth. However, its poor flame-retardant properties seriously affect the safety of cashmere. Current flame-retardant treatments for cashmere tend to lead to heavy metal pollution and significantly reduce wearer comfort. In this work, natural and environmentally friendly calcium alginate fibers were blended with cashmere to obtain blended fibers. The blended fibers exhibited good hygroscopicity and softness. The incorporation of calcium alginate fibers enhanced the flame retardancy of the blends, and the LOI of the blended fibers reached 40.2 without smoldering. It was due to a stable CaO protective layer formed by Ca2+ during combustion and the dense carbon layer with the decomposition intermediates of cashmere, which exerted a flame-retardant effect in the condensed phase. This study provided an eco-friendly approach to producing high-quality flame-retardant cashmere products. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

12 pages, 3963 KiB  
Article
Mechanical Properties of Surface-Treated Bamboo Strip-Reinforced Biobased Polyamide Composites
by Clément Pébère, Gautier Mangeret, Eric Dantras, Colette Lacabanne, Jany Dandurand, Thomas Moussiegt, Edouard Sherwood and Gilles Hochstetter
Polymers 2025, 17(10), 1379; https://doi.org/10.3390/polym17101379 - 17 May 2025
Viewed by 506
Abstract
Fully bio-based composites were obtained from continuous bamboo strips and flame-retardant polyamide 11 (PA11-FR) matrix. A mercerization treatment was performed on the bamboo strips surface to optimize fiber-matrix interactions. Composites were obtained by thermocompression molding with two pressure plateaus. The influence of the [...] Read more.
Fully bio-based composites were obtained from continuous bamboo strips and flame-retardant polyamide 11 (PA11-FR) matrix. A mercerization treatment was performed on the bamboo strips surface to optimize fiber-matrix interactions. Composites were obtained by thermocompression molding with two pressure plateaus. The influence of the concentration of NaOH solution treatment was analyzed. The thermogravimetric analysis highlighted that the mercerization treatment removes part of hemicellulose, low molecular weight lignin and amorphous cellulose, while crystalline cellulose is preserved. Dynamic mechanical analysis performed in the shear configuration revealed the level of interactions between bamboo strips and PA11-FR matrix. The glassy modulus was improved for the composites compared to the matrix and their rubbery modulus was increased by a factor 4.6. Composites with bamboo strips treated at 1% NaOH showed the highest shear modulus across the entire temperature range with an increase by a factor of 1.39 on the glassy plateau and 1.3 on the rubbery plateau, with the untreated bamboo strips/polyamide 11-FR composite as reference. Water uptake was analogous for composites and bamboo strips, so the shear modulus at room temperature was not impacted by moisture. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

16 pages, 4581 KiB  
Article
PLA-Based Green Antimicrobial and Flame-Retardant Biocomposites Reinforced with Sida hermaphrodita Fibers
by Sandra Bischof, Tea Bušac, Tomislav Ivanković, Sabine Rolland du Roscoat, Bratislav Lukic and Zorana Kovačević
Coatings 2025, 15(5), 595; https://doi.org/10.3390/coatings15050595 - 17 May 2025
Cited by 1 | Viewed by 706
Abstract
Enhanced demand for the development of sustainable materials has generated significant research interest in products containing biomass-derived fibers, such as the fibers extracted from the energy crop Sida hermaphrodita (SH). Green chemicals and green methods, such as microwave treatment, have been used for [...] Read more.
Enhanced demand for the development of sustainable materials has generated significant research interest in products containing biomass-derived fibers, such as the fibers extracted from the energy crop Sida hermaphrodita (SH). Green chemicals and green methods, such as microwave treatment, have been used for the isolation of fibers from biomass waste. In this study, long extracted fibers were used as a reinforcement of the PLA matrix to give them high strength, which is required for high-performance biocomposites. To enable composite usage in automotive industry, several additives were applied to enhance their mechanical, thermal, and antimicrobial properties. Therefore, vegetable drying oil, montmorillonite nanoclay (MMT), and milled cork were used to improve their mechanical and thermal properties. Zinc oxide (ZnO) was applied to enhance the biocomposite’s antimicrobial properties, which were confirmed through significant bacterial reduction across all tested biocomposite variants, particularly in samples functionalized with ZnO, cork, and montmorillonite. Additionally, X-ray microtomography provided detailed insight into fiber dispersion and internal structural heterogeneity, which is crucial for evaluating mechanical performance and flame-retardant behavior. All characterization methods, including mechanical ones, lead to the conclusion that green and sustainable biocomposites based on PLA and Sida hermaphrodita fibers treated with antimicrobial (AM) and flame-retardant (FR) agents can be successfully applied for a wide variety of antimicrobial and flame-retardant products. Full article
(This article belongs to the Special Issue Engineered Coatings for a Sustainable Future)
Show Figures

Graphical abstract

17 pages, 7447 KiB  
Article
Research on the Mechanical Properties of Fiber-Reinforced Bamboo Board and Numerical Simulation Analysis of the Structural Mechanical Properties of Products
by Huilong Wang and Baoshi Jiang
Appl. Sci. 2025, 15(10), 5288; https://doi.org/10.3390/app15105288 - 9 May 2025
Viewed by 463
Abstract
Bamboo is a fast-growing biomass material with excellent performance, making it a preferred choice for the development of green and low-carbon building materials. However, challenges such as combustibility and difficulties in processing and utilization persist. In this study, bamboo chips are wrapped in [...] Read more.
Bamboo is a fast-growing biomass material with excellent performance, making it a preferred choice for the development of green and low-carbon building materials. However, challenges such as combustibility and difficulties in processing and utilization persist. In this study, bamboo chips are wrapped in fiberglass cloth and cemented with magnesium oxychloride cement (MOC) to develop green, environmentally friendly, flame-retardant, and carbon-storing bamboo-based composite panels. Firstly, the optimal ratio of the inorganic adhesive MOC was systematically investigated, and flue gas desulfurization gypsum (FG) was added to enhance its water resistance. The flexural strengths of the composite board in the direction of the bamboo fiber and that perpendicular to it were found to be 15.71 MPa and 34.64 MPa, respectively. Secondly, numerical simulations were conducted alongside plate experiments, analyzing the floor and wall made from the boards. The results indicate that since the fiber-reinforced bamboo board as a lightweight wall can meet the requirements for a two-story building, it does not satisfy safety standards as a floor slab due to the higher loads. Despite this limitation, the fiber-reinforced bamboo board shows promising application prospects as a green and low-carbon alternative. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 11345 KiB  
Article
Obtaining Polyacrylonitrile Carbon Nanofibers by Electrospinning for Their Application as Flame-Retardant Materials
by Elizaveta Mokhova, Mariia Gordienko, Natalia Menshutina, Ksenia Serkina and Igor Avetissov
Polymers 2025, 17(9), 1255; https://doi.org/10.3390/polym17091255 - 5 May 2025
Cited by 1 | Viewed by 692
Abstract
The article describes obtaining polyacrylonitrile (PAN) nanofibers by electrospinning on a setup developed at the Mendeleev University of Chemical Technology of Russia (MUCTR). A technique for producing PAN-based carbon nanofibers (CNFs) and PAN-based CNFs modified with titanium oxide (TiO2) is presented. [...] Read more.
The article describes obtaining polyacrylonitrile (PAN) nanofibers by electrospinning on a setup developed at the Mendeleev University of Chemical Technology of Russia (MUCTR). A technique for producing PAN-based carbon nanofibers (CNFs) and PAN-based CNFs modified with titanium oxide (TiO2) is presented. The article presents a comprehensive study of the characteristics of PAN-based nanofibers and CNFs, including an analysis of the external structure of the fibers, the dependence of fiber diameters on the viscosity of the initial solutions, the effect of temperature treatment on the functional groups of PAN, elemental analysis, and flame-retardant properties. It was found that the fiber diameter and its external structure strongly depend on the viscosity of the initial solutions; an increase in viscosity leads to a linear increase in the fiber diameter. Preliminary temperature treatment at 250 °C helps stabilize PAN nanofibers and prevents their melting at the carbonization stage. The differential scanning calorimetry results allowed us to determine the presence of peaks for the initial PAN nanofibers, indicating an exothermic process in the temperature range of 290–320 °C. The peak height decreased with increasing TiO2 concentration in the samples. For CNF samples of different compositions, the endothermic effect prevailed in the temperature range of 400–700 °C, indicating the possible flame-retardant properties of these materials. The limiting oxygen index (LOI) was calculated based on the thermogravimetric analysis results. The highest LOI values were obtained for CNFs based on PAN without adding TiO2 nanoparticles and CNFs modified with TiO2 (3 wt.%). The resulting CNF-based nonwovens can be recommended for use in heat-protective clothing, flame-retardant mattresses, and flame-retardant suits for the military. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

23 pages, 5590 KiB  
Article
Pushing the Limits of Thermal Resistance in Nanocomposites: A Comparative Study of Carbon Black and Nanotube Modifications
by Johannes Bibinger, Sebastian Eibl, Hans-Joachim Gudladt, Bernhard Schartel and Philipp Höfer
Nanomaterials 2025, 15(7), 546; https://doi.org/10.3390/nano15070546 - 3 Apr 2025
Cited by 1 | Viewed by 586
Abstract
Enhancing the thermal resistance of carbon fiber-reinforced polymers (CFRPs) with flame retardants or coatings often leads to increased weight and reduced mechanical integrity. To address these challenges, this study introduces an innovative approach for developing nanocomposites using carbon-based nanoparticles, while preserving the structural [...] Read more.
Enhancing the thermal resistance of carbon fiber-reinforced polymers (CFRPs) with flame retardants or coatings often leads to increased weight and reduced mechanical integrity. To address these challenges, this study introduces an innovative approach for developing nanocomposites using carbon-based nanoparticles, while preserving the structural lightweight properties. For this, carbon black particles (CBPs) up to 10% and carbon nanotubes (CNTs) up to 1.5% were incorporated into the RTM6/G939 composite material. The obtained samples were then analyzed for their properties and heat resistance under one-sided thermal loading at a heat flux of 50 kW/m2. Results demonstrate that integrating these particles improves heat conduction without compromising the material’s inherent advantages. As a result, thermo-induced damage and the resulting loss of mechanical strength are delayed by 17% with CBPs and 7% with CNTs compared to the unmodified material. Thereby, the thermal behavior can be accurately modeled by a straightforward approach, using calibrated, effective measurements of the nanoparticles in the polymer matrix rather than relying on theoretical assumptions. This approach thus provides a promising methode to characterize and improve thermal resistance without significant trade-offs. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

13 pages, 5166 KiB  
Article
Multifunctional Aramid Nanofiber/MXene/Aramid Fiber Composite Fabric with Outstanding EMI Shielding Performance
by Qianyi Wang, Ying Wang, Changmei Sun, Ying Zhang, Rongjun Qu and Yunxia Shen
Coatings 2025, 15(3), 354; https://doi.org/10.3390/coatings15030354 - 19 Mar 2025
Cited by 1 | Viewed by 661
Abstract
Developing aramid fiber (AF) with electromagnetic interference (EMI) shielding properties is of significant importance for expanding their applications in the military, aerospace, and industrial sectors. Current research on the EMI shielding properties of AF often encounters challenges such as structural damage to the [...] Read more.
Developing aramid fiber (AF) with electromagnetic interference (EMI) shielding properties is of significant importance for expanding their applications in the military, aerospace, and industrial sectors. Current research on the EMI shielding properties of AF often encounters challenges such as structural damage to the fibers and inadequate shielding performance. In this study, we used vacuum-assisted filtration technology to sequentially deposit aramid nanofiber (ANF) and MXene onto the surface of AF fabric, thus preparing ANF/MXene/AF composite fabric. MXene, with its large specific surface area and excellent electrical conductivity, was used in conjunction with ANF, which acts as an intermediate layer to effectively filter MXene and improve the interfacial adhesion between the MXene and AF. The results showed that, under the combined effects of reflection and absorption, the A20M40 sample achieved an average EMI SE of 78.1 dB in the X-band, meeting the EMI shielding requirements for both civilian and military applications. Additionally, the ANF/MXene/AF composite fabric exhibited excellent electrothermal conversion performance (surface temperature reached 120 °C within 32 s under 5 V) and photothermal performance (surface temperature reached 85 °C after 145 s of exposure to 1500 W/m2 light intensity). Furthermore, the flame-retardant performance of the ANF/MXene/AF composite fabric was significantly enhanced compared to the pure AF fabric due to the physical barrier effect of MXene. Full article
Show Figures

Figure 1

21 pages, 28470 KiB  
Article
Preparation and Characterization of Submicrometer and Nanometer Cellulose Fiber with Biogenic SiO2
by Yakoub Touati, Dora Kroisová, Rawaa Yahya and Štěpánka Dvořáčková
Polymers 2025, 17(6), 761; https://doi.org/10.3390/polym17060761 - 13 Mar 2025
Viewed by 796
Abstract
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods [...] Read more.
This study aims to explore the feasibility of producing submicrometer and nanometer cellulose fibers derived from rice husk treated with a novel method which selectively eliminate hemicellulose and lignin, while maintaining the integrity of the cellulosic and silica constituents. Three distinct processing methods are tested to extract the nanocellulose, namely hand milling, ball milling, and wet milling using a high-shear wet media mill from Masuko Sangyo Co., Ltd., Kawaguchi-city, Japan. A range of analytical methods, including Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA), are utilized to characterize the morphology, elemental composition, thermal stability, and chemical properties of the samples. The study revealed that among the tested methods, only wet milling successfully produced cellulose nanofibrils and silica nanoparticles, forming a biogenic organic–inorganic nanohybrid system. The nanofibers had lengths in the range of 120 nm and below, while the nanoparticles were in the tens of nanometers. The silica nanoparticles were found to adhere to the cellulose nanofibrils, forming a biogenic organic–inorganic nanohybrid system, with potential applications across diverse fields, including biomedical (drug delivery, biosensing, bone regeneration, and wound healing), cosmetic (skin and dental care), technical (insulating aerogels, flame retardants, and UV-absorbing pigments), and food applications (dietary supplements, thickeners). Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

17 pages, 7524 KiB  
Article
Bicomponent Electrospinning of PVDF-Based Nanofiber Membranes for Air Filtration and Oil–Water Separation
by Tianxue Feng, Lin Fu, Zhimei Mu, Wenhui Wei, Wenwen Li, Xiu Liang, Liang Ma, Yitian Wu, Xiaoyu Wang, Tao Wu, Meng Gao, Guanchen Xu and Xingshuang Zhang
Polymers 2025, 17(5), 703; https://doi.org/10.3390/polym17050703 - 6 Mar 2025
Cited by 2 | Viewed by 1489
Abstract
Particulate matter (PM) and water pollution have posed serious hazards to human health. Nanofiber membranes (NFMs) have emerged as promising candidates for the elimination of PMs and the separation of oil–water mixtures. In this study, a polyvinylidene difluoride (PVDF)-based nanofiber membrane with an [...] Read more.
Particulate matter (PM) and water pollution have posed serious hazards to human health. Nanofiber membranes (NFMs) have emerged as promising candidates for the elimination of PMs and the separation of oil–water mixtures. In this study, a polyvinylidene difluoride (PVDF)-based nanofiber membrane with an average diameter of approximately 150 nm was prepared via a double-nozzle electrospinning technology, demonstrating high-efficiency PM filtration and oil–water separation. The finer fiber diameter not only enhances PM filtration efficiency but also reduces air resistance. The high-voltage electric field and mechanical stretching during electrospinning promote high crystallization of β-phase PVDF. Additionally, the electrostatic charges generated on the surface of β-phase PVDF facilitate the adsorption of PM from the atmosphere. The introduction of polydopamine (PDA) in PVDF produces abundant adsorption sites, enabling outstanding filtration performance. PVDF-PVDF/PDA NFMs can achieve remarkable PM0.3 filtration efficiency (99.967%) while maintaining a low pressure drop (144 Pa). PVDF-PVDF/PDA NFMs are hydrophobic, and its water contact angle (WCA) is 125.9°. It also shows excellent resistance to both acidic and alkaline environments, along with notable flame retardancy, as it can self-extinguish within 3 s. This nanofiber membrane holds significant promise for applications in personal protection, indoor air filtration, oily wastewater treatment, and environmental protection. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop