Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (300)

Search Parameters:
Keywords = fire-retardant performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 21927 KiB  
Article
Assessing the Potential of PlanetScope Imagery for Iron Oxide Detection in Antimony Exploration
by Douglas Santos, Joana Cardoso-Fernandes, Alexandre Lima and Ana Claúdia Teodoro
Remote Sens. 2025, 17(14), 2511; https://doi.org/10.3390/rs17142511 - 18 Jul 2025
Viewed by 797
Abstract
The increasing demand for critical raw materials, such as antimony—a semimetal with strategic relevance in fire-retardant applications, electronic components, and national security—has made the identification of European sources essential for the European Union’s strategic autonomy. Remote sensing offers a valuable tool for detecting [...] Read more.
The increasing demand for critical raw materials, such as antimony—a semimetal with strategic relevance in fire-retardant applications, electronic components, and national security—has made the identification of European sources essential for the European Union’s strategic autonomy. Remote sensing offers a valuable tool for detecting alteration minerals associated with subsurface gold and antimony deposits that reach the surface. However, the coarse spatial resolution of the most freely available satellite data remains a limiting factor. The PlanetScope satellite constellation presents a promising low-cost alternative for the academic community, providing 3 m spatial resolution and eight spectral bands. In this study, we evaluated PlanetScope’s capacity to detect Fe3+-bearing iron oxides—key indicators of hydrothermal alteration—by applying targeted band ratios (BRs) in northern Portugal. A comparative analysis was conducted to validate its performance using established BRs from Sentinel-2, ASTER, and Landsat 9. The results were assessed through relative comparison methods, enabling both quantitative and qualitative evaluation of the spectral similarity among sensors. Spatial patterns were analyzed, and points of interest were identified and subsequently validated through fieldwork. Our findings demonstrate that PlanetScope is a viable option for mineral exploration applications, capable of detecting iron oxide anomalies associated with alteration zones while offering finer spatial detail than most freely accessible satellites. Full article
(This article belongs to the Special Issue Advances in Remote Sensing Used in Mineral Exploration)
Show Figures

Figure 1

14 pages, 1928 KiB  
Article
Thermal and Flammability Analysis of Polyurethane Foams with Solid and Liquid Flame Retardants: Comparative Study
by Dorota Głowacz-Czerwonka, Patrycja Zakrzewska, Beata Zygmunt-Kowalska and Iwona Zarzyka
Polymers 2025, 17(14), 1977; https://doi.org/10.3390/polym17141977 - 18 Jul 2025
Viewed by 280
Abstract
The thermal properties and flammability of rigid polyurethane foams (RPUFs) containing various flame retardants, including solid (melamine, expanded graphite (EG), Exolit OP 935, ammonium polyphosphate (APP)) and liquid (Roflam B7, Roflam PLO) types, added at 30 wt.% and 60 wt.% by weight have [...] Read more.
The thermal properties and flammability of rigid polyurethane foams (RPUFs) containing various flame retardants, including solid (melamine, expanded graphite (EG), Exolit OP 935, ammonium polyphosphate (APP)) and liquid (Roflam B7, Roflam PLO) types, added at 30 wt.% and 60 wt.% by weight have been evaluated. Thermogravimetric analysis (TGA) demonstrated enhanced thermal stability, with the maximum 10% weight loss temperature (292 °C, +34 °C vs. reference) observed for foams containing 60 wt.% Exolit OP 935 and APP. The limiting oxygen index (LOI) test demonstrated the optimal performance for 30 wt.% APP and melamine (26.4 vol.% vs. 18.7 vol.% reference). In the UL-94 test, Exolit OP 935 and APP achieved a V-0 rating. The 60 wt.% Exolit with an EG blend also demonstrated a substantial reduction in heat release rate. These findings underscore the cooperative effects of hybrid flame retardants, thereby supporting their utilization in fire-safe RPUFs for construction and transport. Full article
Show Figures

Figure 1

19 pages, 6665 KiB  
Article
Enhanced Flame Retardancy of Silica Fume-Based Geopolymer Composite Coatings Through In Situ-Formed Boron Phosphate from Doped Zinc Phytate and Boric Acid
by Yachao Wang, Yufei Qu, Chuanzhen Wang and Juan Dou
Minerals 2025, 15(7), 735; https://doi.org/10.3390/min15070735 - 14 Jul 2025
Viewed by 182
Abstract
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping [...] Read more.
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping boric acid (BA), zinc phytate (ZnPA), and melamine (MEL). The results of a cone calorimeter demonstrated that appropriate ZnPA and BA significantly enhanced its flame retardancy, evidenced by the peak heat release rate (p-HRR) decreasing from 268.78 to 118.72 kW·m−2, the fire performance index (FPI) increasing from 0.59 to 2.83 s·m2·kW−1, and the flame retardancy index increasing from 1.00 to 8.48, respectively. Meanwhile, the in situ-formed boron phosphate (BPO4) facilitated the residual resilience of the fire-barrier layer. Furthermore, the pyrolysis kinetics indicated that the three-level chemical reactions governed the pyrolysis of the coatings. BPO4 made the pyrolysis Eα climb from 94.28 (P5) to 127.08 (B3) kJ·mol−1 with temperatures of 731–940 °C, corresponding to improved thermal stability. Consequently, this study explored the synergistic flame-retardant mechanism of silica fume-based geopolymer coatings doped with ZnPA, BA, and MEL, providing an efficient strategy for the high-value-added recycling utilization of silica fume. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

26 pages, 3013 KiB  
Review
Intumescent Coatings and Their Applications in the Oil and Gas Industry: Formulations and Use of Numerical Models
by Taher Hafiz, James Covello, Gary E. Wnek, Abdulkareem Melaiye, Yen Wei and Jiujiang Ji
Polymers 2025, 17(14), 1923; https://doi.org/10.3390/polym17141923 - 11 Jul 2025
Viewed by 444
Abstract
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to [...] Read more.
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to heat, thereby reducing heat transfer and delaying structural failure. This review article provides an overview of recent developments in the effectiveness of ICs in mitigating fire risks, enhancing structural resilience, and reducing environmental impacts within the oil and gas industry. The literature surveyed shows that analytical techniques, such as thermogravimetric analysis, scanning electron microscopy, and large-scale fire testing, have been used to evaluate the thermal insulation performances of the coatings. The results indicate significant temperature reductions on protected steel surfaces that extend critical failure times under hydrocarbon fire conditions. Recent advancements in nano-enhanced and bio-derived ICs have also improved thermal stability and mechanical durability. Furthermore, numerical modeling based on heat transfer, mass conservation, and kinetic equations aids in optimizing formulations for real-world applications. Nevertheless, challenges remain in terms of standardizing modeling frameworks and enhancing the environmental sustainability of ICs. This review highlights the progress made and the opportunities for continuous advances and innovation in IC technologies to meet the ever-evolving challenges and complexities in oil and gas industry operations. Consequently, the need to enhance fire protection by utilizing a combination of tools improves predictive modeling and supports regulatory compliance in high-risk industrial environments. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

18 pages, 4009 KiB  
Article
Impact of Thermo-Oxidative Aging on Flame Retardancy of Melamine Formaldehyde Particle Boards: Processes and Performance Degradation Analysis
by Shiyue Ling, Yanni Zhang, Dan Yang, Luoxin Huang and Yuchen Zhang
Fire 2025, 8(7), 274; https://doi.org/10.3390/fire8070274 - 11 Jul 2025
Viewed by 428
Abstract
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the [...] Read more.
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the impact of thermo-oxidative aging on the flame retardancy of MFPBs. The morphological evolution, surface composition, and flame-retardant characteristics of aged MFPBs were examined via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), limiting oxygen index (LOI), and cone calorimeter (CCT). The results indicate that thermo-oxidative aging (60 °C, 1440 h) markedly reduces the activation energy (E, by 17.05%), pre-exponential factor (A, by 68.52%), LOI value (by 4%, from 27.5 to 26.4), and time to ignition (TTI, by 17.1%, from 41 s to 34 s) while augmenting the peak mass loss rate (MHRR, by 4.7%) and peak heat release rate (pHRR, by 20.1%). Subsequent investigation indicates that aging impairs the char layer structure on MFPB surfaces, hastens the migration and degradation of melamine formaldehyde resin (MFR), and alters the dynamic equilibrium between “MFR surface enrichment” and “thermal decomposition”. The identified degradation thresholds and failure mechanisms provide essential parameters for developing aging-resistant fireproof composites, meeting the pressing demands of building safety requirements and sustainable material design. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

19 pages, 3827 KiB  
Article
Pyrolysis Kinetics and Gas Evolution of Flame-Retardant PVC and PE: A TG-FTIR-GC/MS Study
by Wen-Wei Su, Yang Li, Peng-Rui Man, Ya-Wen Sheng and Jian Wang
Fire 2025, 8(7), 262; https://doi.org/10.3390/fire8070262 - 30 Jun 2025
Viewed by 482
Abstract
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene [...] Read more.
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene (PE) insulation materials using advanced TG-FTIR-GC/MS techniques. Distinct pyrolysis stages were identified through thermogravimetric analysis (TGA) at heating rates of 10–40 K/min, while the KAS model-free method and Málek fitting function quantified activation energies and reaction mechanisms. Results revealed that flame-retardant PVC undergoes two major stages: (1) dehydrochlorination, characterized by the rapid release of HCl and low activation energy, and (2) main-chain scission, producing aromatic compounds that contribute to fire toxicity. In contrast, flame-retardant PE demonstrates a more stable pyrolysis process dominated by random chain scission and the formation of a dense char layer, significantly enhancing its flame-retardant performance. FTIR and GC/MS analyses further highlighted distinct gas evolution behaviors: PVC primarily generates HCl and aromatic hydrocarbons, whereas PE releases olefins and alkanes with significantly lower toxicity. Additionally, the application of a classification and regression tree (CART) model accurately predicted mass loss behavior under various heating rates, achieving exceptional fitting accuracy (R2 > 0.98). This study provides critical insights into the pyrolysis mechanisms of flame-retardant cable insulation and offers a robust data framework for optimizing fire modeling and improving material design. Full article
Show Figures

Figure 1

50 pages, 8944 KiB  
Review
Fire-Resistant Coatings: Advances in Flame-Retardant Technologies, Sustainable Approaches, and Industrial Implementation
by Rutu Patel, Mayankkumar L. Chaudhary, Yashkumar N. Patel, Kinal Chaudhari and Ram K. Gupta
Polymers 2025, 17(13), 1814; https://doi.org/10.3390/polym17131814 - 29 Jun 2025
Viewed by 1534
Abstract
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of [...] Read more.
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of traditional halogenated and non-halogenated flame retardants (FRs), this article progresses to cover nitrogen-, phosphorus-, and hybrid-based systems. The synthesis methods, structure–property relationships, and fire suppression mechanisms are critically discussed. A particular focus is placed on bio-based and waterborne formulations that align with green chemistry principles, such as tannic acid (TA), phytic acid (PA), lignin, and deep eutectic solvents (DESs). Furthermore, the integration of nanomaterials and smart functionalities into fire-resistant coatings has demonstrated promising improvements in thermal stability, char formation, and smoke suppression. Applications in real-world contexts, ranging from wood and textiles to electronics and automotive interiors, highlight the commercial relevance of these developments. This review also addresses current challenges such as long-term durability, environmental impacts, and the standardization of performance testing. Ultimately, this article offers a roadmap for developing safer, sustainable, and multifunctional fire-resistant coatings for future materials engineering. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

34 pages, 8870 KiB  
Review
Advances in Graphene-Based Flame-Retardant for Polystyrene Applications: Synthesis, Mechanisms, and Future Perspectives
by Mutawakkil Isah, Farrukh Shehzad and Mamdouh A. Al-Harthi
Polymers 2025, 17(13), 1811; https://doi.org/10.3390/polym17131811 - 29 Jun 2025
Viewed by 670
Abstract
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. [...] Read more.
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. However, despite these advantages, challenges such as agglomeration, high thermal conductivity, poor interfacial compatibility, and processing limitations hinder their full-scale adoption in building insulation and other applications. This review presents an in-depth analysis of recent progress in graphene-enhanced flame-retardant systems for polystyrene applications, focusing on synthesis methods, flame-retardant mechanisms, and material performance. It also discusses strategies to address these challenges, such as surface functionalization, hybrid flame-retardant formulations, optimized graphene loading, and improved dispersion techniques. Furthermore, future research directions are proposed to enhance the effectiveness and commercial viability of graphene-based flame-retardant polystyrene composites. Overcoming these challenges is essential for high-performance, eco-friendly, flame-retardant materials on a larger scale. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 2882 KiB  
Article
Synergistic Enhancement of Fire Retardancy and Mechanical Performance in Silicone Foams Using Halogen-Free Fillers
by Seong-Jun Park, Tae-Soon Kwon, Hee-Joong Sim, Yeon-Gyo Seo, Kyungwho Choi and Hong-Lae Jang
Fire 2025, 8(7), 243; https://doi.org/10.3390/fire8070243 - 23 Jun 2025
Viewed by 367
Abstract
This study explores the flame retardancy and structural behavior of silicone foam composites filled with halogen-free flame retardants, aiming to evaluate their feasibility for use in mass transportation applications. Silicone foam specimens incorporating magnesium hydroxide and expandable graphite were prepared and compared with [...] Read more.
This study explores the flame retardancy and structural behavior of silicone foam composites filled with halogen-free flame retardants, aiming to evaluate their feasibility for use in mass transportation applications. Silicone foam specimens incorporating magnesium hydroxide and expandable graphite were prepared and compared with unfilled silicone foam under both static and dynamic loading conditions. Uniaxial compression and simple shear tests were conducted to assess mechanical behavior, and a second-order Ogden model was employed to represent hyperelasticity in the finite element analysis. Fire performance was evaluated using cone calorimeter tests in accordance with ISO 5660-1. The results showed a 53.6% reduction in peak heat release rate (PHRR) and a 48.1% decrease in MARHE upon the addition of flame retardants, satisfying relevant fire safety standards. Although the addition of fillers increased the compressive stiffness and reduced rebound resilience, static comfort indices remained within acceptable ranges. These findings confirm that halogen-free filled silicone foams exhibit significantly enhanced fire retardancy while maintaining sufficient mechanical integrity and seating comfort, demonstrating their potential as eco-friendly alternatives to conventional polyurethane foams in large-scale transportation applications. Full article
Show Figures

Graphical abstract

18 pages, 4962 KiB  
Article
Durability Assessment of Eco-Friendly Intumescent Coatings Based on Cork and Waste Glass Fillers for Naval Fire Safety
by Elpida Piperopoulos, Giuseppe Scionti, Mario Atria, Luigi Calabrese, Antonino Valenza and Edoardo Proverbio
Polymers 2025, 17(12), 1659; https://doi.org/10.3390/polym17121659 - 15 Jun 2025
Viewed by 481
Abstract
This research assessed novel, eco-friendly intumescent coatings utilizing cork and recycled glass as sustainable alternatives to synthetic fire retardants, aiming to reduce environmental impact while maintaining robust fire performance. Coatings underwent up to 600 h of UV light exposure for durability assessment, followed [...] Read more.
This research assessed novel, eco-friendly intumescent coatings utilizing cork and recycled glass as sustainable alternatives to synthetic fire retardants, aiming to reduce environmental impact while maintaining robust fire performance. Coatings underwent up to 600 h of UV light exposure for durability assessment, followed by chemo-physical characterization. Fire exposure tests evaluated in-situ char formation and foaming. All functionalized coatings exhibited suitable intumescent behavior, forming protective char layers even after extensive UV aging. Microscopic analysis showed good additive integration, while FTIR spectroscopy revealed UV-induced chemical changes. Fire resistance tests confirmed the superior performance of functionalized coatings over the commercial reference. The AP-IC system demonstrated the best intumescence, achieving significantly lower maximum temperatures (e.g., 167.3 °C for AP-IC-600) and heating rates. Crucially, the sustainable RG-IC and CK-IC batches showed promising intumescent properties, even improving with UV exposure. Notably, the foamed cross-sectional area of the aged RG-IC samples doubled compared to their unaged counterparts, reaching a maximum temperature of 166.9 °C. These findings highlight the potential of eco-friendly hybrid coatings to enhance fire safety, particularly in critical sectors like naval engineering, aligning with circular economy principles and the growing demand for sustainable, high-performance materials. Full article
(This article belongs to the Special Issue Recent Advances in Flame-Retardant Polymeric Materials)
Show Figures

Figure 1

19 pages, 3737 KiB  
Article
Phosphorus–Silicon Additive Increases the Mechanical and Fire Resistance of Epoxy Resins
by Zhe Wang, Shuaijun Guo, Wenwen Yu and Xiaohong Liang
Materials 2025, 18(12), 2753; https://doi.org/10.3390/ma18122753 - 12 Jun 2025
Viewed by 418
Abstract
Epoxy resins are limited by their flammability and brittleness. In this study, a phosphorus- and silicon-based additive was synthesized to improve fire resistance and mechanical performance. The incorporation of just 1 wt% phosphorus from this additive into epoxy resin achieved a limiting oxygen [...] Read more.
Epoxy resins are limited by their flammability and brittleness. In this study, a phosphorus- and silicon-based additive was synthesized to improve fire resistance and mechanical performance. The incorporation of just 1 wt% phosphorus from this additive into epoxy resin achieved a limiting oxygen index of 33% and a V-0 fire rating. The modified epoxy exhibited a 52.43% reduction in the peak heat release rate and a 35.70% decrease in total smoke production compared to the unmodified resin, demonstrating enhanced heat resistance and smoke suppression. Notably, the modified epoxy thermoset displayed superior mechanical properties, with tensile and impact strengths increasing by 48.41% and 130%, respectively. This research presents a promising approach for developing high-performance epoxy resins with improved flame retardancy, smoke suppression, and mechanical strength. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

17 pages, 1885 KiB  
Article
Thermal Insulation Performance of Epoxy-Based Intumescent Coatings: Influence of Temperature-Induced Porosity Evolution on Heat Transfer Resistance
by Taher Hafiz, James Covello, Gary E. Wnek, Stephen Hostler, Edrissa Gassama, Yen Wei and Jiujiang Ji
Polymers 2025, 17(11), 1426; https://doi.org/10.3390/polym17111426 - 22 May 2025
Cited by 1 | Viewed by 533
Abstract
This study investigated the thermal performance of reduced super intumescent (RSI) coating, focusing on the correlation between porosity evolution and thermal conductivity under elevated temperature conditions. Porosity development was quantified using scanning electron microscopy (SEM) combined with MATLAB-based image analysis, achieving a maximum [...] Read more.
This study investigated the thermal performance of reduced super intumescent (RSI) coating, focusing on the correlation between porosity evolution and thermal conductivity under elevated temperature conditions. Porosity development was quantified using scanning electron microscopy (SEM) combined with MATLAB-based image analysis, achieving a maximum porosity of 62% after 60 min of exposure. Thermal degradation was characterized using thermogravimetric analysis (TGA), which recorded a mass loss of 35% between 250 °C and 400 °C, capturing the decomposition kinetics and correlating degradation stages with char formation. Fire protection efficiency was evaluated by employing heat flow meter tests (thermal conductivity reduced from 0.15 W/mK to 0.05 W/mK), methane torch experiments (backside temperature increase delayed by up to 50% compared to uncoated steel), and COMSOL-based heat transfer simulations. The results revealed that the RSI coating’s thermal conductivity decreased as its porosity increased, enhancing its insulation effectiveness. Additionally, the formation of a thermally stable char layer at 400 °C significantly reduced heat transfer to the metal substrate by 66%. These findings support the optimization of bio-derived fire-retardant coatings for passive fire protection applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 19309 KiB  
Article
Morphology-Engineered CeO2 as a Synergistic Flame Retardant in Polypropylene/Intumescent Systems: Mechanisms and Performance Enhancement
by Bangmin Li, Wayne Hsu, Tingyi Zheng, Yincai Wu, Shenglong Wang, Fenglong Lin, Lijun Song and Xianfa Rao
Molecules 2025, 30(10), 2102; https://doi.org/10.3390/molecules30102102 - 9 May 2025
Viewed by 466
Abstract
This study systematically examines the effect of the morphology of cerium oxide (CeO2) on the flame retardancy, thermal stability, and mechanical properties of polypropylene composites with intumescent flame retardant (PP/IFR). Layer-CeO2 (L-CeO2) outperforms Particulate-CeO2 (P-CeO2) [...] Read more.
This study systematically examines the effect of the morphology of cerium oxide (CeO2) on the flame retardancy, thermal stability, and mechanical properties of polypropylene composites with intumescent flame retardant (PP/IFR). Layer-CeO2 (L-CeO2) outperforms Particulate-CeO2 (P-CeO2) in enhancing the flame retardancy of PP/IFR composites, showing higher limiting oxygen index (LOI) and greater reductions in the total heat release rate (THR) and total smoke production (TSR). The substitution of 1% IFR with 1% L-CeO2 significantly increased the LOI from 29.4% to 32.6%, while reducing the THR and TSR by 38.9% and 74.3%, respectively. L-CeO2 incorporation improves thermal stability, increasing the residual char yield to 8.53% at 800 °C under air (vs. 3.87% for PP/IFR). Additionally, L-CeO2 improved the mechanical properties of the composites, increasing tensile strength and rigidity. The synergistic flame-retardant mechanism is hypothesized to involve CeO2 catalyzing the formation of a P-O-C crosslinked network in the carbon layer, leading to a denser carbon structure and improved flame-retardant performance in the PP/IFR composites. These findings demonstrate the efficacy of L-CeO2 as a flame-retardant synergist, providing a foundation for developing fire-safe polymeric materials. Full article
(This article belongs to the Special Issue Recent Advances in Flame Retardant Polymeric Materials, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 3402 KiB  
Article
Aerial Fire Fighting Operational Statistics (2024): Very Large/Large Air Tankers
by Lance Sherry and Mandar Chaudhari
Fire 2025, 8(4), 160; https://doi.org/10.3390/fire8040160 - 21 Apr 2025
Cited by 1 | Viewed by 2528
Abstract
Wildfires, a natural part of the wildland life cycle, are experiencing a decades-long trend of increased frequency, duration, and magnitude, resulting in increased risk of fatalities and property damage. Fire suppression methods are adapting accordingly, including the increased use of aerial firefighting. Aerial [...] Read more.
Wildfires, a natural part of the wildland life cycle, are experiencing a decades-long trend of increased frequency, duration, and magnitude, resulting in increased risk of fatalities and property damage. Fire suppression methods are adapting accordingly, including the increased use of aerial firefighting. Aerial firefighting, conducted in coordination with ground crews, provides real-time reconnaissance of a wildfire and performs strategic drops of retardant to contain and/or suppress the fire. These flight operations require airport and air traffic control infrastructure. The purpose of this report is to provide statistics on the U.S. aerial firefighting fleet, flight operations, and airport utilization and equipment in 2024. This information, which is not readily available, may be of use to airport planners, air navigation service providers, and policy makers. Thirty-four (34) Very Large/Large Air Tankers (VLAT/LATs) were under contract with the United States Forest Service (USFS) Multiple Award Task Order Contracts (MATOCs) in 2024. The aircraft, ranging in age from 27 to 57 years, performed 11,219 retardant drop and reposition flights. Flights operated on 88% of the days with an average of 35 flights per day and a maximum of 200 flights per day. The number of flights per aircraft across the fleet was not uniform (average 288 flights, max 465 flights). Consistent with firefighting practices, the flights operated under Visual Flight Rules (VFR), mostly in the afternoons, with an average retardant drop flight duration of 34 min. Two hundred and seven (207) airports supported at least one departure, with 14 airports supporting 50% of the departures. Eighty-six (86%) percent of the airports were towered and 84% had precision approach procedures. All but two military airports were public airports that are part of the National Plan for Integrated Airport System (NPIAS) and eligible for Airport Improvement Plan (AIP) funding. Runway length and weight bearing are limitations at several airports. Furthermore, operations are no longer limited to airports west of the Rockies, with increased operations in the mid-west and east coast. Full article
Show Figures

Figure 1

17 pages, 7837 KiB  
Article
Advanced Phosphorus–Protein Hybrid Coatings for Fire Safety of Cotton Fabrics, Developed Through the Layer-by-Layer Assembly Technique
by Xuqi Yang, Xiaolu Li, Wenwen Guo, Abbas Mohammadi, Marjan Enetezar Shabestari, Rui Li, Shuyi Zhang and Ehsan Naderi Kalali
Polymers 2025, 17(7), 945; https://doi.org/10.3390/polym17070945 - 31 Mar 2025
Viewed by 541
Abstract
An advanced, eco-friendly, and fully bio-based flame retardant (FR) system has been created and applied to the cellulose structure of the cotton fabric through a layer-by-layer coating method. This study examines the flame-retardant mechanism of protein-based and phosphorus-containing coatings to improve fire resistance. [...] Read more.
An advanced, eco-friendly, and fully bio-based flame retardant (FR) system has been created and applied to the cellulose structure of the cotton fabric through a layer-by-layer coating method. This study examines the flame-retardant mechanism of protein-based and phosphorus-containing coatings to improve fire resistance. During combustion, the phosphate groups (−PO₄2−) in phosphorus containing flame retardant layers interact with the amino groups (–NH2) of protein, forming ester bonds, which results in the generation of a crosslinked network between the amino groups and the phosphate groups. This structure greatly enhances the thermal stability of the residual char, hence improving fire resistance. Cone calorimeter and flammability tests show significant improvements in fire safety, including lower peak heat release rates, reduced smoke production, and higher char residue, all contributing to better flame-retardant performance. pHRR, THR, and TSP of the flame-retarded cotton fabric demonstrated 25, 54, and 72% reduction, respectively. These findings suggest that LbL-assembled protein–phosphorus-based coatings provide a promising, sustainable solution for creating efficient flame-retardant materials. Full article
Show Figures

Graphical abstract

Back to TopTop