Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = fire station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1907 KiB  
Review
Research Progress on Risk Prevention and Control Technology for Lithium-Ion Battery Energy Storage Power Stations: A Review
by Weihang Pan
Batteries 2025, 11(8), 301; https://doi.org/10.3390/batteries11080301 - 6 Aug 2025
Abstract
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control [...] Read more.
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control program. This paper focuses on the fire characteristics and thermal runaway mechanism of lithium-ion battery energy storage power stations, analyzing the current situation of their risk prevention and control technology across the dimensions of monitoring and early warning technology, thermal management technology, and fire protection technology, and comparing and analyzing the characteristics of each technology from multiple angles. Building on this analysis, this paper summarizes the limitations of the existing technologies and puts forward prospective development paths, including the development of multi-parameter coupled monitoring and warning technology, integrated and intelligent thermal management technology, clean and efficient extinguishing agents, and dynamic fire suppression strategies, aiming to provide solid theoretical support and technical guidance for the precise risk prevention and control of lithium-ion battery storage power stations. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Graphical abstract

29 pages, 4469 KiB  
Article
Assessment of Large Forest Fires in the Canary Islands and Their Relationship with Subsidence Thermal Inversion and Atmospheric Conditions
by Jordan Correa and Pedro Dorta
Geographies 2025, 5(3), 37; https://doi.org/10.3390/geographies5030037 - 1 Aug 2025
Viewed by 208
Abstract
The prevailing environmental conditions before and during the 28 Large Forest Fires (LFFs) that have occurred in the Canary Islands since 1983 are analyzed. These conditions are often associated with episodes characterized by the advection of continental tropical air masses originating from the [...] Read more.
The prevailing environmental conditions before and during the 28 Large Forest Fires (LFFs) that have occurred in the Canary Islands since 1983 are analyzed. These conditions are often associated with episodes characterized by the advection of continental tropical air masses originating from the Sahara, which frequently result in intense heatwaves. During the onset of the LFFs, the base of the subsidence thermal inversion layer—separating a lower layer of cool, moist air from an upper layer of warm, dry air—is typically located at an altitude of around 350 m above sea level, approximately 600 m below the usual average. Understanding these Saharan air advection events is crucial, as they significantly alter the vertical thermal structure of the atmosphere and create highly conducive conditions for wildfire ignition and spread in the forested mid- and high-altitude zones of the archipelago. Analysis of meteorological records from various weather stations reveals that the average maximum temperature on the first day of fire ignition is 30.3 °C, with mean temperatures of 27.4 °C during the preceding week and 28.9 °C throughout the fire activity period. Relative humidity on the ignition days averages 24.3%, remaining at around 30% during the active phase of the fires. No significant correlation has been found between dry or wet years and the occurrence of LFFs, which have been recorded across years with widely varying precipitation levels. Full article
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 190
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

11 pages, 2348 KiB  
Article
Study on Smoke Flow and Temperature Distribution Patterns in Fires at Deeply Buried Subway Stations
by Huailin Yan, Heng Liu, Yongchang Zhao and Zirui Bian
Fire 2025, 8(8), 296; https://doi.org/10.3390/fire8080296 - 28 Jul 2025
Viewed by 387
Abstract
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of [...] Read more.
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of different fire source powers and smoke extraction system states. Through the set up of multiple sets of comparative test conditions, the study focused on analyzing the influence mechanism of the operation (on/off) of the smoke extraction system on smoke spread characteristics and temperature field distribution. The results indicate that under the condition where the smoke extraction system is turned off, the smoke exhibits typical stratified spread characteristics driven by thermal buoyancy, with the temperature rising significantly as the vertical height increases. When the smoke extraction system is activated, the horizontal airflow generated by mechanical smoke extraction significantly alters the flame morphology (with an inclination angle exceeding 45°), effectively extracting and discharging the hot smoke and leading to a more uniform temperature distribution within the space. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

13 pages, 5599 KiB  
Article
Full-Scale Experimental Study on the Combustion Characteristics of a Fuel Island in a High-Speed Railway Station
by Wenbin Wei, Jiaming Zhao, Cheng Zhang, Yanlong Li and Saiya Feng
Fire 2025, 8(8), 291; https://doi.org/10.3390/fire8080291 - 24 Jul 2025
Viewed by 460
Abstract
This study aims to provide a reference for the fire protection design and fire emergency response strategies for fuel islands in high-speed railway stations and other transportation buildings. By using an industrial calorimeter, this paper analyzes the combustion characteristics of a fuel island. [...] Read more.
This study aims to provide a reference for the fire protection design and fire emergency response strategies for fuel islands in high-speed railway stations and other transportation buildings. By using an industrial calorimeter, this paper analyzes the combustion characteristics of a fuel island. For the fuel island setup in this test, the fuel island fire development cycle was relatively long, and the maximum fire source heat release rate reached 4615 kW. Before the fire source heat release rate reaches the maximum peak, the HRR curve slowly fluctuates and grows within the first 260 s after ignition. Within the time range of 260 s to 440 s, the fire growth rate resembled that of a t2 medium-speed fire, and within the time range of 400 s to 619 s, it more closely aligned with a t2 fast fire. It is generally suggested that the growth curve of t2 fast fire could be used for the numerical simulation of fuel island fires. The 1 h fire separation method adopted in this paper demonstrated a good fire barrier effect throughout the combustion process. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

22 pages, 1534 KiB  
Article
Predictability of Air Pollutants Based on Detrended Fluctuation Analysis: Ekibastuz Сoal-Mining Center in Northeastern Kazakhstan
by Oleksandr Kuchanskyi, Andrii Biloshchytskyi, Yurii Andrashko, Alexandr Neftissov, Svitlana Biloshchytska and Sergiy Bronin
Urban Sci. 2025, 9(7), 273; https://doi.org/10.3390/urbansci9070273 - 16 Jul 2025
Viewed by 614
Abstract
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating [...] Read more.
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating the predictability index. This type of statistical pre-forecast analysis is essential for developing accurate forecasting models for such time series. The effectiveness of air quality monitoring systems largely depends on the precision of these forecasts. The Ekibastuz coal-mining center, which houses one of the largest coal-fired power stations in Kazakhstan and the world, with a capacity of about 4000 MW, was chosen as an example for the study. Data for the period from 1 March 2023 to 31 December 2024 were collected and analyzed at the Ekibastuz coal-fired power station. During the specified period, 14 indicators (67,527 observations) were collected at 10 min intervals, including mass concentrations of CO, NO, NO2, SO2, PM2.5, and PM10, as well as current mass consumption of CO, NO, NO2, SO2, dust, and NOx. The detrended fluctuation analysis of a time series of air pollution indicators was used to calculate the Hurst exponent and identify long-term memory. Changes in the Hurst exponent in regards to dynamics were also investigated, and a predictability index was calculated to monitor emissions of pollutants in the air. Long-term memory is recorded in the structure of all the time series of air pollution indicators. Dynamic analysis of the Hurst exponent confirmed persistent time series characteristics, with an average Hurst exponent of about 0.7. Identifying the time series plots for which the Hurst exponent is falling (analysis of the indicator of dynamics), along with the predictability index, is a sign of an increase in the influence of random factors on the time series. This is a sign of changes in the dynamics of the pollutant release concentrations and may indicate possible excess emissions that need to be controlled. Calculating the dynamic changes in the Hurst exponent for the emission time series made it possible to identify two distinct clusters corresponding to periods of persistence and randomness in the operation of the coal-fired power station. The study shows that evaluating the predictability index helps fine-tune the parameters of time series forecasting models, which is crucial for developing reliable air pollution monitoring systems. The results obtained in this study allow us to conclude that the method of trended fluctuation analysis can be the basis for creating an indicator of the level of air pollution, which allows us to quickly respond to possible deviations from the established standards. Environmental services can use the results to build reliable monitoring systems for air pollution from coal combustion emissions, especially near populated areas. Full article
Show Figures

Figure 1

24 pages, 3171 KiB  
Article
Hydroclimatic Trends and Land Use Changes in the Continental Part of the Gambia River Basin: Implications for Water Resources
by Matty Kah, Cheikh Faye, Mamadou Lamine Mbaye, Nicaise Yalo and Lischeid Gunnar
Water 2025, 17(14), 2075; https://doi.org/10.3390/w17142075 - 11 Jul 2025
Viewed by 388
Abstract
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes [...] Read more.
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes (1988, 2002, and 2022) within the Continental Reach of the Gambia River Basin (CGRB). Trend analyses of the Standardized Precipitation-Evapotranspiration Index (SPEI) at 12-month and 24-month scales, along with river discharge at the Simenti station, reveal a shift from dry conditions to wetter phases post-2008, marked by significant increases in rainfall and discharge variability. LULC analysis revealed significant transformations in the basin. LULC analysis highlights significant transformations within the basin. Forest and savanna areas decreased by 20.57 and 4.48%, respectively, between 1988 and 2002, largely due to human activities such as agricultural expansion and deforestation for charcoal production. Post-2002, forest cover recovered from 32.36 to 36.27%, coinciding with the wetter conditions after 2008, suggesting that climatic shifts promoted vegetation regrowth. Spatial analysis further highlights an increase in bowe and steppe areas, especially in the north, indicating land degradation linked to human land use practices. Bowe areas, marked by impermeable laterite outcrops, and steppe areas with sparse herbaceous cover result from overgrazing and soil degradation, exacerbated by the region’s drier phases. A notable decrease in burned areas from 2.03 to 0.23% suggests improvements in fire management practices, reducing fire frequency, which is also supported by wetter conditions post-2008. Agricultural land and bare soils expanded by 14%, from 2.77 to 3.07%, primarily in the northern and central regions, likely driven by both population pressures and climatic shifts. Correlations between precipitation and land cover changes indicate that wetter conditions facilitated forest regrowth, while drier conditions exacerbated land degradation, with human activities such as deforestation and agricultural expansion potentially amplifying the impact of climatic shifts. These results demonstrate that while climatic shifts played a role in driving vegetation recovery, human activities were key in shaping land use patterns, impacting both precipitation and stream discharge, particularly due to agricultural practices and land degradation. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

13 pages, 2240 KiB  
Article
Multi-Annual Dendroclimatic Patterns for the Desert National Wildlife Refuge, Southern Nevada, USA
by Franco Biondi and James Roberts
Forests 2025, 16(7), 1142; https://doi.org/10.3390/f16071142 - 10 Jul 2025
Viewed by 321
Abstract
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) forests in the western United States have experienced reduced fire frequency since Euro-American settlement, usually because of successful fire suppression policies and even without such human impacts at remote sites in the Great Basin [...] Read more.
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) forests in the western United States have experienced reduced fire frequency since Euro-American settlement, usually because of successful fire suppression policies and even without such human impacts at remote sites in the Great Basin and Mojave Deserts. In an effort to improve our understanding of long-term environmental dynamics in sky-island ecosystems, we developed tree-ring chronologies from ponderosa pines located in the Sheep Mountain Range of southern Nevada, inside the Desert National Wildlife Refuge (DNWR). After comparing those dendrochronological records with other ones available for the south-central Great Basin, we analyzed their climatic response using station-recorded monthly precipitation and air temperature data from 1950 to 2024. The main climatic signal was December through May total precipitation, which was then reconstructed at annual resolution over the past five centuries, from 1490 to 2011 CE. The mean episode duration was 2.6 years, and the maximum drought duration was 11 years (1924–1934; the “Dust Bowl” period), while the longest episode, 19 years (1905–1923), is known throughout North America as the “early 1900s pluvial”. By quantifying multi-annual dry and wet episodes, the period since DNWR establishment was placed in a long-term dendroclimatic framework, allowing us to estimate the potential drought resilience of its unique, tree-dominated environments. Full article
(This article belongs to the Special Issue Environmental Signals in Tree Rings)
Show Figures

Figure 1

17 pages, 986 KiB  
Article
Safety-Oriented Coordinated Operation Algorithms for Natural Gas Pipeline Networks and Gas-Fired Power Generation Facilities
by Xinyi Wang, Feng Wang, Qin Bie, Wenlong Jia, Yong Jiang, Ying Liu, Yuanyuan Tian, Yuxin Zheng and Jie Sun
Processes 2025, 13(7), 2184; https://doi.org/10.3390/pr13072184 - 8 Jul 2025
Viewed by 241
Abstract
The natural gas pipeline network transmission system involved in the coordinated operation of pipeline networks and gas-fired power generation facilities is complex. It consists of multiple components, such as gas sources, users, valves, compressor stations, and pipelines. The addition of natural gas-fired power [...] Read more.
The natural gas pipeline network transmission system involved in the coordinated operation of pipeline networks and gas-fired power generation facilities is complex. It consists of multiple components, such as gas sources, users, valves, compressor stations, and pipelines. The addition of natural gas-fired power generation facilities overlaps with the high and low peak periods of civil gas, imposing dual peak-shaving pressures on pipeline networks and requiring more stringent operational control strategies for maintaining system stability. To address the aforementioned issues and improve the overall operating revenues of the system, we proposed the coordinated optimization model of gas-fired power generation facilities, pipeline networks, gas storage, and compressor stations. The optimization algorithm is written using the penalty function method of the Interior Point OPTimizer (IPOPT) solver. Meanwhile, the basic parameters of the system’s pipeline networks, users, gas storage, natural gas-fired power generation facilities, compressors, and electricity prices were input into the solver. The research results reveal that the algorithm ensures solution accuracy while accounting for computational efficiency and practical applicability. The algorithm can be used to effectively calculate the ideal coordinated operation solution, significantly improve the operating revenues of the system, and achieve safe, stable, coordinated, and efficient operation of the system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 3586 KiB  
Article
Safety Analysis of Partial Downward Fire Evacuation Mode in Underground Metro Stations Based on Integrated Assessment of Harmful Factors
by Heng Yu, Yijing Huang and Haiyan He
Systems 2025, 13(7), 549; https://doi.org/10.3390/systems13070549 - 7 Jul 2025
Viewed by 327
Abstract
Underground metro stations are integral to urban transit infrastructure, and ensuring their safety during fire emergencies is crucial. This study proposes a novel evacuation strategy for underground metro stations wherein a segment of evacuees descends to the platform level via train, while the [...] Read more.
Underground metro stations are integral to urban transit infrastructure, and ensuring their safety during fire emergencies is crucial. This study proposes a novel evacuation strategy for underground metro stations wherein a segment of evacuees descends to the platform level via train, while the remaining individuals evacuate upward to the ground level through station exits. A novel safety assessment methodology is established to evaluate fire evacuation efficacy, incorporating the cumulative effects of smoke, elevated temperatures, carbon dioxide, and reduced oxygen levels. Employing an actual underground metro station in Guangzhou, China, as a case study, fire and evacuation models were developed to compare the traditional upward evacuation method with the proposed partial downward evacuation strategy. The analysis reveals that both evacuation strategies are effective under the assessed fire scenario. However, the partial downward evacuation is completed more swiftly—in 385.5 s compared to 494.8 s for upward evacuation—thereby mitigating smoke inhalation risks, as the smoke height remains above the critical threshold of 1.8 m for a longer duration than observed in the upward evacuation scenario. Simulations further indicate that neither high temperatures nor carbon monoxide concentrations reach hazardous levels in either evacuation mode, ensuring evacuee safety. The study concludes that, with appropriate training arrangements and under specific fire and evacuation conditions, the partial downward evacuation strategy is safer and more efficient than upward evacuation. Full article
Show Figures

Figure 1

17 pages, 4478 KiB  
Article
Numerical Study on Smoke Characteristics in Ultra-Long Tunnels with Multi-Train Fire Scenarios
by Jiaming Zhao, Cheng Zhang, Saiya Feng, Shiyi Chen, Guanhong He, Yanlong Li, Zhisheng Xu and Wenbin Wei
Fire 2025, 8(7), 265; https://doi.org/10.3390/fire8070265 - 3 Jul 2025
Viewed by 506
Abstract
Metropolitan city express line tunnels are fully enclosed and often span long distances between stations, allowing multiple trains within a single interval. Traditional segmented ventilation ensures only one train per section, but ultra-long tunnels with shaftless designs introduce new challenges under fire conditions. [...] Read more.
Metropolitan city express line tunnels are fully enclosed and often span long distances between stations, allowing multiple trains within a single interval. Traditional segmented ventilation ensures only one train per section, but ultra-long tunnels with shaftless designs introduce new challenges under fire conditions. This study investigates smoke behavior in an ultra-long inter-district tunnel during multi-train blockage scenarios. A numerical model evaluates the effects of train spacing, fire source location, and receding spacing on smoke back-layering, temperature distribution, and flow velocity. Results indicate that when train spacing exceeds 200 m and longitudinal wind speed is above 1.2 m/s, the impact of train spacing on smoke back-layering becomes negligible. Larger train spacing increases back-layering under constant wind speed, while higher wind speeds reduce it. Fire source location and evacuation spacing affect the extent and pattern of smoke spread and high-temperature zones, especially under reverse ventilation conditions. These findings provide quantitative insights into fire-induced smoke dynamics in ultra-long tunnels, offering theoretical support for optimizing ventilation control and evacuation strategies in urban express systems. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

19 pages, 2791 KiB  
Article
Combining Open-Source Machine Learning and Publicly Available Aerial Data (NAIP and NEON) to Achieve High-Resolution High-Accuracy Remote Sensing of Grass–Shrub–Tree Mosaics
by Brynn Noble and Zak Ratajczak
Remote Sens. 2025, 17(13), 2224; https://doi.org/10.3390/rs17132224 - 28 Jun 2025
Viewed by 627
Abstract
Woody plant encroachment (WPE) is transforming grasslands globally, yet accurately mapping this process remains challenging. State-funded, publicly available high-resolution aerial imagery offers a potential solution, including the USDA’s National Agriculture Imagery Program (NAIP) and NSF’s National Ecological Observatory Network (NEON) Aerial Observation Platform [...] Read more.
Woody plant encroachment (WPE) is transforming grasslands globally, yet accurately mapping this process remains challenging. State-funded, publicly available high-resolution aerial imagery offers a potential solution, including the USDA’s National Agriculture Imagery Program (NAIP) and NSF’s National Ecological Observatory Network (NEON) Aerial Observation Platform (AOP). We evaluated the accuracy of land cover classification using NAIP, NEON, and both sources combined. We compared two machine learning models—support vector machines and random forests—implemented in R using large training and evaluation data sets. Our study site, Konza Prairie Biological Station, is a long-term experiment in which variable fire and grazing have created mosaics of herbaceous plants, shrubs, deciduous trees, and evergreen trees (Juniperus virginiana). All models achieved high overall accuracy (>90%), with NEON slightly outperforming NAIP. NAIP underperformed in detecting evergreen trees (52–78% vs. 83–86% accuracy with NEON). NEON models relied on LiDAR-based canopy height data, whereas NAIP relied on multispectral bands. Combining data from both platforms yielded the best results, with 97.7% overall accuracy. Vegetation indices contributed little to model accuracy, including NDVI (normalized digital vegetation index) and EVI (enhanced vegetation index). Both machine learning methods achieved similar accuracy. Our results demonstrate that free, high-resolution imagery and open-source tools can enable accurate, high-resolution, landscape-scale WPE monitoring. Broader adoption of such approaches could substantially improve the monitoring and management of grassland biodiversity, ecosystem function, ecosystem services, and environmental resilience. Full article
Show Figures

Figure 1

23 pages, 5049 KiB  
Article
Data-Driven Health Status Assessment of Fire Protection IoT Devices in Converter Stations
by Yubiao Huang, Tao Sun, Yifeng Cheng, Jiaqing Zhang, Zhibing Yang and Tan Yang
Fire 2025, 8(7), 251; https://doi.org/10.3390/fire8070251 - 27 Jun 2025
Viewed by 302
Abstract
To enhance fire safety in converter stations, this study focuses on detecting abnormal data and potential faults in fire protection Internet of Things (IoT) devices, which are networked sensors monitoring parameters such as temperature, smoke, and water tank levels. A data quality evaluation [...] Read more.
To enhance fire safety in converter stations, this study focuses on detecting abnormal data and potential faults in fire protection Internet of Things (IoT) devices, which are networked sensors monitoring parameters such as temperature, smoke, and water tank levels. A data quality evaluation model is proposed, covering both validity and timeliness. For validity assessment, a transformer-based time series reconstruction method is used, and anomaly thresholds are determined using the peaks over threshold (POT) approach from extreme value theory. The experimental results show that this method identifies anomalies in fire telemetry data more accurately than traditional models. Based on the objective evaluation method and clustering, an interpretable health assessment model is developed. Compared with conventional distance-based approaches, the proposed method better captures differences between features and more effectively evaluates the reliability of fire protection systems. This work contributes to improving early fire risk detection and building more reliable fire monitoring and emergency response systems. Full article
Show Figures

Figure 1

18 pages, 4244 KiB  
Article
Fire and Logging Decrease Soil CO2 Efflux in Siberian Central Taiga Forests
by Elena A. Kukavskaya, Alexey V. Panov, Anastasia V. Makhnykina and Pavel Y. Groisman
Forests 2025, 16(7), 1057; https://doi.org/10.3390/f16071057 - 25 Jun 2025
Viewed by 267
Abstract
Extensive wildfires and logging have affected the Russian boreal forests in recent decades. Scots pine (Pinus sylvestris L.) forests are widespread in Russia and are one of the most disturbed tree species in Siberia. However, the effects of disturbance on soil CO [...] Read more.
Extensive wildfires and logging have affected the Russian boreal forests in recent decades. Scots pine (Pinus sylvestris L.) forests are widespread in Russia and are one of the most disturbed tree species in Siberia. However, the effects of disturbance on soil CO2 efflux in the vast Siberian forests are still poorly understood. We used the LI 8100A infrared gas analyzer to study changes in soil CO2 efflux into the atmosphere in mature Scots pine forests in the Siberian central taiga five–six years following fires and logging. Measurements of soil CO2 efflux rates were performed on sites where automatic weather stations have been continuously operational since 2022, which gives us temporal patterns of meteorological fluctuations across forests with different disturbance histories. We found significant differences in soil efflux rates depending on the site and disturbance characteristics. In the undisturbed dry lichen-dominated forest, CO2 efflux was 4.8 ± 2.1 µmol m−2 s−1, while in the wet moss-dominated forest it was 2.3 ± 1.3 µmol m−2 s−1, with soil efflux in Sphagnum sp. being twofold of that in feather moss. Both fire and logging significantly reduced CO2 efflux, with a smaller reduction in soil CO2 efflux observed in the moss-dominated plots (5%–40%) compared to the lichen-dominated plots (36%–55%). The soil efflux rate increased exponentially with increasing topsoil temperatures in lichen-dominated Scots pine sites, with disturbed plots showing less dependence compared to undisturbed forest. In the wet moss-dominated Scots pine forest, we found no significant dependence of soil efflux on temperature for all disturbance types. We also found a positive moderate relationship between soil efflux and forest floor depth in both lichen- and moss-dominated Scots pine forests across all the plots studied. Our findings advance the understanding of the effects of fire and logging on the carbon cycle and highlight the importance of accounting for disturbance factors in Earth system models due to changing climate and anthropogenic patterns. Full article
Show Figures

Figure 1

35 pages, 10135 KiB  
Article
Constitutive Model for Plain and Steel-Fibre-Reinforced Lightweight Aggregate Concrete Under Direct Tension and Pull-Out
by Hasanain K. Al-Naimi and Ali A. Abbas
Fibers 2025, 13(7), 84; https://doi.org/10.3390/fib13070084 - 23 Jun 2025
Viewed by 436
Abstract
In the present study, a programme of experimental investigations was carried out to examine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash [...] Read more.
In the present study, a programme of experimental investigations was carried out to examine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash (PFA), which is a by-product of coal-fired electricity power stations. Steel fibres were used with different aspect ratios and hooked ends with single, double and triple bends corresponding to 3D, 4D and 5D types of DRAMIX steel fibres, respectively. Key parameters such as the concrete compressive strength flck, fibre volume fraction Vf, number of bends nb, embedded length LE and inclination angle ϴf were considered. The fibres were added at volume fractions Vf of 1% and 2% to cover the practical range, and a direct tensile test was carried out using a purpose-built pull-out test developed as part of the present study. Thus, the tensile mechanical properties were established, and a generic constitutive tensile stress–crack width σ-ω model for both plain and fibrous lightweight concrete was created and validated against experimental data from the present study and from previous research found in the literature (including RILEM uniaxial tests) involving different types of lightweight aggregates, concrete strengths and steel fibres. It was concluded that the higher the number of bends nb and the higher the volume fraction Vf and concrete strength flck, the stronger the fibre–matrix interfacial bond and thus the more pronounced the enhancement provided by the fibres to the uniaxial tensile residual strength and ductility in the form of work and fracture energy. A fibre optimisation study was also carried out, and design recommendations are provided. Full article
Show Figures

Figure 1

Back to TopTop