Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,901)

Search Parameters:
Keywords = fire cause

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 3649 KiB  
Article
Towards Smart Wildfire Prevention: Development of a LoRa-Based IoT Node for Environmental Hazard Detection
by Luis Miguel Pires, Vitor Fialho, Tiago Pécurto and André Madeira
Designs 2025, 9(4), 91; https://doi.org/10.3390/designs9040091 (registering DOI) - 5 Aug 2025
Abstract
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet [...] Read more.
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet of Things (IoT) industry, developing solutions for the early detection of fires is of critical importance. This paper proposes a low-cost network based on Long-Range (LoRa) technology to autonomously assess the level of fire risk and the presence of a fire in rural areas. The system consists of several LoRa nodes with sensors to measure environmental variables such as temperature, humidity, carbon monoxide, air quality, and wind speed. The data collected is sent to a central gateway, where it is stored, processed, and later sent to a website for graphical visualization of the results. In this paper, a survey of the requirements of the devices and sensors that compose the system was made. After this survey, a market study of the available sensors was carried out, ending with a comparison between the sensors to determine which ones met the objectives. Using the chosen sensors, a study was made of possible power solutions for this prototype, considering the expected conditions of use. The system was tested in a real environment, and the results demonstrate that it is possible to cover a circular area with a radius of 2 km using a single gateway. Our system is prepared to trigger fire hazard alarms when, for example, the signals for relative humidity, ambient temperature, and wind speed are below or equal to 30%, above or equal to 30 °C, and above or equal to 30 m/s, respectively (commonly known as the 30-30-30 rule). Full article
11 pages, 715 KiB  
Article
One Health Approach to Trypanosoma cruzi: Serological and Molecular Detection in Owners and Dogs Living on Oceanic Islands and Seashore Mainland of Southern Brazil
by Júlia Iracema Moura Pacheco, Louise Bach Kmetiuk, Melissa Farias, Gustavo Gonçalves, Aaronson Ramathan Freitas, Leandro Meneguelli Biondo, Cristielin Alves de Paula, Ruana Renostro Delai, Cláudia Turra Pimpão, João Henrique Perotta, Rogério Giuffrida, Vamilton Alvares Santarém, Helio Langoni, Fabiano Borges Figueiredo, Alexander Welker Biondo and Ivan Roque de Barros Filho
Trop. Med. Infect. Dis. 2025, 10(8), 220; https://doi.org/10.3390/tropicalmed10080220 - 2 Aug 2025
Viewed by 223
Abstract
Via a One Health approach, this study concomitantly assessed the susceptibility of humans and dogs to Trypanosoma cruzi infections on three islands and in two mainland seashore areas of southern Brazil. Human serum samples were tested using an enzyme-linked immunosorbent assay (ELISA) to [...] Read more.
Via a One Health approach, this study concomitantly assessed the susceptibility of humans and dogs to Trypanosoma cruzi infections on three islands and in two mainland seashore areas of southern Brazil. Human serum samples were tested using an enzyme-linked immunosorbent assay (ELISA) to detect anti-T. cruzi antibodies, while dog serum samples were tested using indirect fluorescent antibodies in an immunofluorescence assay (IFA). Seropositive human and dog individuals were also tested using quantitative polymerase chain reaction (qPCR) in corresponding blood samples. Overall, 2/304 (0.6%) human and 1/292 dog samples tested seropositive for T. cruzi by ELISA and IFA, respectively, and these cases were also molecularly positive for T. cruzi by qPCR. Although a relatively low positivity rate was observed herein, these cases were likely autochthonous, and the individuals may have been infected as a consequence of isolated events of disturbance in the natural peridomicile areas nearby. Such a disturbance could come in the form of a fire or deforestation event, which can cause stress and parasitemia in wild reservoirs and, consequently, lead to positive triatomines. In conclusion, T. cruzi monitoring should always be conducted in suspicious areas to ensure a Chagas disease-free status over time. Further studies should also consider entomological and wildlife surveillance to fully capture the transmission and spread of T. cruzi on islands and in seashore mainland areas of Brazil and other endemic countries. Full article
(This article belongs to the Section One Health)
Show Figures

Figure 1

32 pages, 10052 KiB  
Article
A Study on Large Electric Vehicle Fires in a Tunnel: Use of a Fire Dynamics Simulator (FDS)
by Roberto Dessì, Daniel Fruhwirt and Davide Papurello
Processes 2025, 13(8), 2435; https://doi.org/10.3390/pr13082435 - 31 Jul 2025
Viewed by 311
Abstract
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use [...] Read more.
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use of batteries with no direct and local emissions. However, accidents of battery electric vehicles pose new challenges, such as thermal runaway. Such accidents can be serious and, in some cases, may result in uncontrolled overheating that causes the battery pack to spontaneously ignite. In particular, the most dangerous vehicles are heavy goods vehicles (HGVs), as they release a large amount of energy that generate high temperatures, poor visibility, and respiratory damage. This study aims to determine the potential consequences of large BEV fires in road tunnels using computational fluid dynamics (CFD). Furthermore, a comparison between a BEV and an ICEV fire shows the differences related to the thermal and the toxic impact. Furthermore, the adoption of a longitudinal ventilation system in the tunnel helped to mitigate the BEV fire risk, keeping a safer environment for tunnel users and rescue services through adequate smoke control. Full article
Show Figures

Figure 1

26 pages, 3012 KiB  
Perspective
The Palisades Fire of Los Angeles: Lessons to Be Learned
by Vytenis Babrauskas
Fire 2025, 8(8), 303; https://doi.org/10.3390/fire8080303 - 31 Jul 2025
Viewed by 158
Abstract
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which [...] Read more.
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which took place close to the 1961 fire location. Disastrous WUI fires are, unfortunately, an anticipatable occurrence in many U.S. cities. A number of issues identified earlier remained the same. Some were largely solved, while other new ones have emerged. The paper examines the Palisades Fire of January, 2025 in this context. In the intervening decades, the population of the city grew substantially. But firefighting resources did not keep pace. Very likely, the single-most-important factor in causing the 2025 disasters is that the Los Angeles Fire Department operational vehicle count shrank to 1/5 of what it was in 1961 (per capita). This is likely why critical delays were experienced in the initial attack on the Palisades Fire, leading to a runaway conflagration. Two other crucial issues were the management of vegetation and the adequacy of water supplies. On both these issues, the Palisades Fire revealed serious problems. A problem which arose after 1961 involves the unintended consequences of environmental legislation. Communities will continue to be devastated by wildfires unless adequate vegetation management is accomplished. Yet, environmental regulations are focused on maintaining the status quo, often making vegetation management difficult or ineffective. House survival during a wildfire is strongly affected by whether good vegetation management practices and good building practices (“ignition-resistant” construction features) have been implemented. The latter have not been mandatory for housing built prior to 2008, and the vast majority of houses in the area predated such building code requirements. California has also suffered from a highly counterproductive stance on insurance regulation. This has resulted in some residents not having property insurance, due to the inhospitable operating conditions for insurance firms in the state. Because of the historical precedent, the details in this paper focus on the Palisades Fire; however, many of the lessons learned apply to managing fires in all WUI areas. Policy recommendations are offered, which could help to reduce the potential for future conflagrations. Full article
Show Figures

Figure 1

30 pages, 7196 KiB  
Article
Forensic and Cause-and-Effect Analysis of Fire Safety in the Republic of Serbia: An Approach Based on Data Mining
by Nikola Mitrović, Vladica S. Stojanović, Mihailo Jovanović and Dragan Mladjan
Fire 2025, 8(8), 302; https://doi.org/10.3390/fire8080302 - 31 Jul 2025
Viewed by 240
Abstract
The manuscript examines the cause-and-effect relationships of fires in the Republic of Serbia over a fifteen-year period, primarily from the aspect of human safety. For this purpose, numerical variables describing the number of injuries and deaths in fires were introduced, on which various [...] Read more.
The manuscript examines the cause-and-effect relationships of fires in the Republic of Serbia over a fifteen-year period, primarily from the aspect of human safety. For this purpose, numerical variables describing the number of injuries and deaths in fires were introduced, on which various analysis and modeling techniques were implemented, which can be viewed in the context of data mining (DM). First, for both observed variables, stochastic modeling of their temporal dynamics was analyzed, and subsequently, cluster analysis of the values of these variables was performed using two different methods. Finally, by interpreting these variables as outputs (objectives) for the classification problem, several decision trees were formed that describe the influence and relationship of different fire causes on situations in which injuries or human casualties occur or not. In that way, several different types of fires have been identified, including rare but deadly incidents that require urgent preventive measures. Key risk factors such as fire cause, location, season, etc., have been found to significantly influence human casualties. These findings provide practical insights for improving fire protection policies and emergency response. Through such a comprehensive analysis, it is believed that some important results have been obtained that precisely describe the specific relationships between the causes and consequences of fires occurring in the Republic of Serbia. Full article
(This article belongs to the Special Issue Fire Safety and Sustainability)
Show Figures

Figure 1

28 pages, 6962 KiB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Viewed by 240
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

38 pages, 21337 KiB  
Article
Full-Scale Experimental Analysis of the Behavior of Electric Vehicle Fires and the Effectiveness of Extinguishing Methods
by Ana Olona and Luis Castejon
Fire 2025, 8(8), 301; https://doi.org/10.3390/fire8080301 - 29 Jul 2025
Viewed by 345
Abstract
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely [...] Read more.
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely in this type of fire. This study carried out two full-scale fire experiments on electric vehicles to investigate response strategies to electric vehicle fires caused by thermal runaway. Centro Zaragoza provided technical advice for these tests, so that they could be carried out safely, controlling the risks. This advice has allowed Centro Zaragoza to analyze different response strategies to the fires in electric vehicles caused by thermal runaway. On the other hand, the propagation patterns of thermal runaway fires in electric vehicles were investigated. The early-phase effectiveness of fire blankets and other extinguishing measures was tested, and the temperature distributions inside the vehicle and the type of fire generated were measured. The results showed that fire blankets successfully extinguished flames by cutting off the oxygen supply. These findings contribute to the development of effective strategies for responding to electric vehicle fires, enabling the establishment of good practice for fire suppression in electric vehicles and their batteries. Full article
Show Figures

Figure 1

20 pages, 3528 KiB  
Article
Impact of a Summer Wildfire Episode on Air Quality in a Rural Area Near the Adriatic Coast
by Suzana Sopčić, Ranka Godec, Helena Prskalo and Gordana Pehnec
Fire 2025, 8(8), 299; https://doi.org/10.3390/fire8080299 - 28 Jul 2025
Viewed by 408
Abstract
This study aimed to investigate the effect of wildfire episodes on air quality in terms of particulate matter (PM) and carbonaceous compound concentration in ambient air, and to assess deviations from typical annual patterns. The sampling was performed at a rural background site [...] Read more.
This study aimed to investigate the effect of wildfire episodes on air quality in terms of particulate matter (PM) and carbonaceous compound concentration in ambient air, and to assess deviations from typical annual patterns. The sampling was performed at a rural background site near the Adriatic coast in Croatia through 2024. To better understand contributions caused by fire events, the levels of organic carbon (OC), elemental carbon (EC), black carbon (BC), pyrolytic carbon (PyrC), optical carbon (OptC), water-soluble organic carbon (WSOC), levoglucosan (LG), mannosan (MNS), and galactosan (GA) were determined in PM10 and PM2.5 fractions (particles smaller than 10 µm and 2.5 µm, respectively). The annual mean concentrations of PM10 and PM2.5 were 14 µg/m3 and 8 µg/m3, respectively. During the fire episode, the PM2.5 mass contribution to the total PM10 mass exceeded 65%. Total carbon (TC) and OC increased by a factor of 7, EC and BC by 12, PyrC by 8, and WSOC by 12. The concentration of LG reached 1.219 μg/m3 in the PM10 fractions and 0.954 μg/m3 in the PM2.5 fractions, representing a 200-fold increase during the fire episode. Meteorological data were integrated to assess atmospheric conditions during the fire episode, and the specific ratios between fire-related compounds were analyzed. Full article
Show Figures

Figure 1

17 pages, 1747 KiB  
Article
Human Mediation of Wildfires and Its Representation in Terrestrial Ecosystem Models
by Jiang Zhu, Hui Tang, Keyan Fang, Frode Stordal, Anders Bryn, Min Gao and Xiaodong Liu
Fire 2025, 8(8), 297; https://doi.org/10.3390/fire8080297 - 28 Jul 2025
Viewed by 408
Abstract
Increasing wildfires are causing global concerns about ecosystem functioning and services. Although some wildfires are caused by natural ignitions, it is also important to understand how human ignitions and human-related factors can contribute to wildfires. While dynamic global vegetation models (DGVMs) have incorporated [...] Read more.
Increasing wildfires are causing global concerns about ecosystem functioning and services. Although some wildfires are caused by natural ignitions, it is also important to understand how human ignitions and human-related factors can contribute to wildfires. While dynamic global vegetation models (DGVMs) have incorporated fire-related modules to simulate wildfires and their impacts, few models have fully considered various human-related factors causing human ignitions. Using global examples, this study aims to identify key factors associated with human impacts on wildfires and provides suggestions for enhancing model simulations. The main categories explored in this paper are human behavior and activities, socioeconomic background, policy, laws, regulations, and cultural and traditional activities, all of which can influence wildfires. Employing an integrated and interdisciplinary assessment approach, this study evaluates existing DGVMs and provides suggestions for their improvement. Full article
(This article belongs to the Special Issue Forest Fuel Treatment and Fire Risk Assessment, 2nd Edition)
Show Figures

Figure 1

23 pages, 20415 KiB  
Article
FireNet-KD: Swin Transformer-Based Wildfire Detection with Multi-Source Knowledge Distillation
by Naveed Ahmad, Mariam Akbar, Eman H. Alkhammash and Mona M. Jamjoom
Fire 2025, 8(8), 295; https://doi.org/10.3390/fire8080295 - 26 Jul 2025
Viewed by 448
Abstract
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional [...] Read more.
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional techniques for fire detection often experience false alarms and delayed responses in various environmental situations. Therefore, developing robust, intelligent, and real-time detection systems has emerged as a central challenge in remote sensing and computer vision research communities. Despite recent achievements in deep learning, current forest fire detection models still face issues with generalizability, lightweight deployment, and accuracy trade-offs. In order to overcome these limitations, we introduce a novel technique (FireNet-KD) that makes use of knowledge distillation, a method that maps the learning of hard models (teachers) to a light and efficient model (student). We specifically utilize two opposing teacher networks: a Vision Transformer (ViT), which is popular for its global attention and contextual learning ability, and a Convolutional Neural Network (CNN), which is esteemed for its spatial locality and inductive biases. These teacher models instruct the learning of a Swin Transformer-based student model that provides hierarchical feature extraction and computational efficiency through shifted window self-attention, and is thus particularly well suited for scalable forest fire detection. By combining the strengths of ViT and CNN with distillation into the Swin Transformer, the FireNet-KD model outperforms state-of-the-art methods with significant improvements. Experimental results show that the FireNet-KD model obtains a precision of 95.16%, recall of 99.61%, F1-score of 97.34%, and mAP@50 of 97.31%, outperforming the existing models. These results prove the effectiveness of FireNet-KD in improving both detection accuracy and model efficiency for forest fire detection. Full article
Show Figures

Figure 1

29 pages, 4545 KiB  
Article
Characterization of Fresh and Aged Smoke Particles Simultaneously Observed with an ACTRIS Multi-Wavelength Raman Lidar in Potenza, Italy
by Benedetto De Rosa, Aldo Amodeo, Giuseppe D’Amico, Nikolaos Papagiannopoulos, Marco Rosoldi, Igor Veselovskii, Francesco Cardellicchio, Alfredo Falconieri, Pilar Gumà-Claramunt, Teresa Laurita, Michail Mytilinaios, Christina-Anna Papanikolaou, Davide Amodio, Canio Colangelo, Paolo Di Girolamo, Ilaria Gandolfi, Aldo Giunta, Emilio Lapenna, Fabrizio Marra, Rosa Maria Petracca Altieri, Ermann Ripepi, Donato Summa, Michele Volini, Alberto Arienzo and Lucia Monaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(15), 2538; https://doi.org/10.3390/rs17152538 - 22 Jul 2025
Viewed by 335
Abstract
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case [...] Read more.
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case for the evaluation of the impact of aging and transport mechanisms on both the optical and microphysical properties of biomass burning aerosol. The fresh smoke was originated by a local wildfire about 2 km from the measurement site and observed about one hour after its ignition. The other smoke layer was due to a wide wildfire occurring in Canada that, according to backward trajectory analysis, traveled for about 5–6 days before reaching the observatory. Synergetic use of lidar, ceilometer, radar, and microwave radiometer measurements revealed that particles from the local wildfire, located at about 3 km a.s.l., acted as condensation nuclei for cloud formation as a result of high humidity concentrations at this altitude range. Optical characterization of the fresh smoke layer based on Raman lidar measurements provided lidar ratio (LR) values of 46 ± 4 sr and 34 ± 3 sr, at 355 and 532 nm, respectively. The particle linear depolarization ratio (PLDR) at 532 nm was 0.067 ± 0.002, while backscatter-related Ångström exponent (AEβ) values were 1.21 ± 0.03, 1.23 ± 0.03, and 1.22 ± 0.04 in the spectral ranges of 355–532 nm, 355–1064 nm and 532–1064 nm, respectively. Microphysical inversion caused by these intensive optical parameters indicates a low contribution of black carbon (BC) and, despite their small size, particles remained outside the ultrafine range. Moreover, a combined use of CIAO remote sensing and in situ instrumentation shows that the particle properties are affected by humidity variations, thus suggesting a marked particle hygroscopic behavior. In contrast, the smoke plume from the Canadian wildfire traveled at altitudes between 6 and 8 km a.s.l., remaining unaffected by local humidity. Absorption in this case was higher, and, as observed in other aged wildfires, the LR at 532 nm was larger than that at 355 nm. Specifically, the LR at 355 nm was 55 ± 2 sr, while at 532 nm it was 82 ± 3 sr. The AEβ values were 1.77 ± 0.13 and 1.41 ± 0.07 at 355–532 nm and 532–1064 nm, respectively and the PLDR at 532 nm was 0.040 ± 0.003. Microphysical analysis suggests the presence of larger, yet much more absorbent particles. This analysis indicates that both optical and microphysical properties of smoke can vary significantly depending on its origin, persistence, and transport in the atmosphere. These factors that must be carefully incorporated into future climate models, especially considering the frequent occurrences of fire events worldwide. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

19 pages, 4037 KiB  
Article
YOLO-MFD: Object Detection for Multi-Scenario Fires
by Fuchuan Mo, Shen Liu, Sitong Wu, Ruiyuan Chen and Tiecheng Song
Information 2025, 16(7), 620; https://doi.org/10.3390/info16070620 - 21 Jul 2025
Viewed by 255
Abstract
Fire refers to a disaster caused by combustion that is uncontrolled in the temporal and spatial dimensions, occurring in diverse complex scenarios where timely and effective detection is crucial. However, existing fire detection methods are often challenged by the deformation of smoke and [...] Read more.
Fire refers to a disaster caused by combustion that is uncontrolled in the temporal and spatial dimensions, occurring in diverse complex scenarios where timely and effective detection is crucial. However, existing fire detection methods are often challenged by the deformation of smoke and flames, resulting in missed detections. It is difficult to accurately extract fire features in complex backgrounds, and there are also significant difficulties in detecting small targets, such as small flames. To address this, this paper proposes a YOLO-Multi-scenario Fire Detector (YOLO-MFD) for multi-scenario fire detection. Firstly, to resolve missed detection caused by deformation of smoke and flames, a Scale Adaptive Perception Module (SAPM) is proposed. Secondly, aiming at the suppression of significant fire features by complex backgrounds, a Feature Adaptive Weighting Module (FAWM) is introduced to enhance the feature representation of fire. Finally, considering the difficulty in detecting small flames, a fine-grained Small Object Feature Extraction Module (SOFEM) is developed. Additionally, given the scarcity of multi-scenario fire datasets, this paper constructs a Multi-scenario Fire Dataset (MFDB). Experimental results on MFDB demonstrate that the proposed YOLO-MFD achieves a good balance between effectiveness and efficiency, achieving good effective fire detection performance across various scenarios. Full article
Show Figures

Figure 1

18 pages, 886 KiB  
Review
Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology
by Yongfei Jin, Yixin Li, Wenyong Liu, Xiaona Yang, Xiaojiao Cheng, Chenyang Qi, Changsheng Li, Jing Hui and Lei Zhang
Processes 2025, 13(7), 2305; https://doi.org/10.3390/pr13072305 - 19 Jul 2025
Viewed by 333
Abstract
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes [...] Read more.
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes previous research results, and based on the principles and research and development progress of existing detection technologies such as the surface temperature measurement method, ground temperature measurement method, wellbore temperature measurement method, and infrared remote sensing detection method, it briefly reviews the application of various detection technologies in engineering practice at this stage and briefly explains the advantages and disadvantages of each application. Research shows that the existing technologies are generally limited by the interference of complex environmental conditions (such as temperature measurement deviations caused by atmospheric turbulence and the influence of rock layer structure on ground temperature conduction) and the implementation difficulties of geophysical methods in mining applications (such as the interference of stray currents in the ground by electromagnetic methods and the fast attenuation speed of waves detected by geological radar methods), resulting in the insufficient accuracy of fire source location and difficulties in identifying concealed fire sources. In response to the above bottlenecks, the ”air–ground integrated” fire source location determination technology that breaks through environmental constraints and the location determination method of a CSC fire source based on a multi-physics coupling mechanism are proposed. By significantly weakening the deficiency in obtaining parameters through a single detection method, a new direction is provided for the detection of coal spontaneous combustion fire sources in the future. Full article
Show Figures

Figure 1

25 pages, 4639 KiB  
Article
Investigation of the Mechanical and Physical Properties of Acidic Pumice Aggregate-Reinforced Lightweight Concrete Under High-Temperature Exposure
by Belkis Elyigit and Cevdet Emin Ekinci
Buildings 2025, 15(14), 2505; https://doi.org/10.3390/buildings15142505 - 17 Jul 2025
Viewed by 319
Abstract
This study examines the mechanical and physical performance of lightweight concretes incorporating acidic pumice aggregate, with a particular focus on their behavior under thermal exposure. Pumice sourced from the Bitlis-Tatvan region was used as a partial replacement for limestone aggregate at volumetric substitution [...] Read more.
This study examines the mechanical and physical performance of lightweight concretes incorporating acidic pumice aggregate, with a particular focus on their behavior under thermal exposure. Pumice sourced from the Bitlis-Tatvan region was used as a partial replacement for limestone aggregate at volumetric substitution levels of 50%, 60%, and 70% (designated LC50, LC60, and LC70, respectively), alongside a conventional control mix (NC). Experimental investigations included flexural and compressive strength tests, capillary water absorption measurements, and mass loss assessments at elevated temperatures (100 °C, 200 °C, and 300 °C). The results indicate that increasing pumice content leads to a significant reduction in mechanical strength, as evidenced by a strong negative correlation (e.g., −0.994 for compressive strength), and results in increased water absorption due to the higher porosity of pumice. Thermal exposure caused more pronounced weight loss in pumice-rich mixtures, primarily attributable to moisture evaporation and the formation of surface voids, particularly in LC60 and LC70 specimens. Although the incorporation of pumice effectively reduces the unit weight of concrete, it compromises both strength and durability, highlighting a critical trade-off between weight reduction and structural performance. Future studies are recommended to quantitatively assess the relationship between compressive and flexural strengths to address current limitations. Additionally, advanced microstructural analyses (e.g., SEM, XRD), fire resistance evaluations at higher temperatures, and the development of hybrid mixes incorporating supplementary cementitious materials (SCMs) should be further explored. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

29 pages, 8327 KiB  
Article
Fire Hazard Risk Grading of Timber Architectural Complexes Based on Fire Spreading Characteristics
by Chong Wang, Zhigang Song, Jian Zhang, Lijiao Liu, Feiyang Zheng and Siqi Cao
Buildings 2025, 15(14), 2472; https://doi.org/10.3390/buildings15142472 - 14 Jul 2025
Viewed by 258
Abstract
Fire spread between buildings is the primary cause of extensive fire damage in traditional village timber structure clusters. Accurately assessing fire spread risk is crucial for the preservation of these architectural ensembles. During the development and conservation of traditional villages, fire risk dynamics [...] Read more.
Fire spread between buildings is the primary cause of extensive fire damage in traditional village timber structure clusters. Accurately assessing fire spread risk is crucial for the preservation of these architectural ensembles. During the development and conservation of traditional villages, fire risk dynamics may shift due to fire-resistant retrofits or layout modifications, necessitating repeated risk reevaluations. To address challenges such as the computational intensity of fire spread simulations, high costs, and data acquisition difficulties, this study proposes a directed graph-based method for fire spread risk analysis and risk level classification in timber structure clusters, accounting for their unique fire propagation characteristics. First, localized fire spread paths and propagation times between nodes (buildings) are determined through fire spread simulations, constructing an adjacency matrix for the directed graph of the building cluster. Path search algorithms then identify the spread range and velocity under specific fire scenarios. Subsequently, a zoned risk assessment model for individual buildings is developed based on critical fire spread loss and velocity, integrating each building’s fire resistance and its probability of exposure to different risk zones to determine the overall cluster’s fire spread risk level. The method is validated using a case study of a typical village in Yunnan Province. Results demonstrate that the approach efficiently computes fire spread characteristics across different scenarios and quantitatively evaluates risk levels, enabling targeted fire safety interventions based on village-specific spread patterns. Case analysis reveals significant variations in fire spread behavior: Village 1, Village 2, and Village 3 exhibit fire resistance indices of 0.59, 0.757, and 0.493, corresponding to high, moderate, and high fire spread risk levels, respectively. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop