Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = fine natural sand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2139 KiB  
Article
Reclaimed Municipal Wastewater Sand as a Viable Aggregate in Cement Mortars: Alkaline Treatment, Performance, Assessment, and Circular Construction Applications
by Beata Łaźniewska-Piekarczyk and Monika Jolanta Czop
Processes 2025, 13(8), 2463; https://doi.org/10.3390/pr13082463 - 4 Aug 2025
Viewed by 193
Abstract
This study evaluates the potential use of reclaimed sand from municipal wastewater treatment plants (WWTP), categorized as waste under code 19 08 02, as a full substitute for natural sand in cement mortars. The sand was subjected to alkaline pretreatment using sodium hydroxide [...] Read more.
This study evaluates the potential use of reclaimed sand from municipal wastewater treatment plants (WWTP), categorized as waste under code 19 08 02, as a full substitute for natural sand in cement mortars. The sand was subjected to alkaline pretreatment using sodium hydroxide (NaOH) at concentrations of 0.5%, 1% and 2% to reduce organic impurities and improve surface cleanliness. All mortar mixes were prepared using CEM I 42.5 R as the binder, maintaining a constant water-to-cement ratio of 0.5. Mechanical testing revealed that mortars produced with 100% WWTP-derived sand, pretreated with 0.5% NaOH, achieved a mean compressive strength of 51.9 MPa and flexural strength of 5.63 MPa after 28 days, nearly equivalent to reference mortars with standardized construction sand (52.7 MPa and 6.64 MPa, respectively). In contrast, untreated WWTP sand resulted in a significant performance reduction, with compressive strength averaging 30.0 MPa and flexural strength ranging from 2.55 to 2.93 MPa. The results demonstrate that low-alkaline pretreatment—particularly with 0.5% NaOH—allows for the effective reuse of WWTP waste sand (code 19 08 02) in cement mortars based on CEM I 42.5 R, achieving performance comparable to conventional materials. Although higher concentrations, such as 2% NaOH, are commonly recommended or required by standards for the removal of organic matter from fine aggregates, the results suggest that lower concentrations (e.g., 0.5%) may offer a better balance between cleaning effectiveness and mechanical performance. Nevertheless, 2% NaOH remains the obligatory reference level in some standard testing protocols for fine aggregate purification. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

15 pages, 2865 KiB  
Article
Mitigation of Alkali–Silica Reactivity of Greywacke Aggregate in Concrete for Sustainable Pavements
by Kinga Dziedzic, Aneta Brachaczek, Dominik Nowicki and Michał A. Glinicki
Sustainability 2025, 17(15), 6825; https://doi.org/10.3390/su17156825 - 27 Jul 2025
Viewed by 379
Abstract
Quality requirements for mineral aggregate for concrete used to construct pavement for busy highways are high because of the fatigue traffic loads and environmental exposure. The use of local aggregate for infrastructure projects could result in important sustainability improvements, provided that the concrete’s [...] Read more.
Quality requirements for mineral aggregate for concrete used to construct pavement for busy highways are high because of the fatigue traffic loads and environmental exposure. The use of local aggregate for infrastructure projects could result in important sustainability improvements, provided that the concrete’s durability is assured. The objective of this study was to identify the potential alkaline reactivity of local greywacke aggregate and select appropriate mitigation measures against the alkali–silica reaction. Experimental tests on concrete specimens were performed using the miniature concrete prism test at 60 °C. Mixtures of coarse greywacke aggregate up to 12.5 mm with natural fine aggregate of different potential reactivity were evaluated in respect to the expansion, compressive strength, and elastic modulus of the concrete. Two preventive measures were studied—the use of metakaolin and slag-blended cement. A moderate reactivity potential of the greywacke aggregate was found, and the influence of reactive quartz sand on the expansion and instability of the mechanical properties of concrete was evaluated. Both crystalline and amorphous alkali–silica reaction products were detected in the cracks of the greywacke aggregate. Efficient expansion mitigation was obtained for the replacement of 15% of Portland cement by metakaolin or the use of CEM III/A cement with the slag content of 52%, even if greywacke aggregate was blended with moderately reactive quartz sand. It resulted in a relative reduction in expansion by 85–96%. The elastic modulus deterioration was less than 10%, confirming an increased stability of the elastic properties of concrete. Full article
(This article belongs to the Special Issue Sustainability of Pavement Engineering and Road Materials)
Show Figures

Figure 1

24 pages, 3123 KiB  
Article
Investigation of the Effects of Water-to-Cement Ratios on Concrete with Varying Fine Expanded Perlite Aggregate Content
by Mortada Sabeh Whwah, Hajir A Al-Hussainy, Anmar Dulaimi, Luís Filipe Almeida Bernardo and Tiago Pinto Ribeiro
J. Compos. Sci. 2025, 9(8), 390; https://doi.org/10.3390/jcs9080390 - 24 Jul 2025
Viewed by 425
Abstract
This study investigates the influence of varying water-to-cement (W/C) ratios and fine aggregate compositions on the performance of concrete incorporating expanded perlite aggregate (EPA) as a lightweight alternative to natural sand. A total of eighteen concrete mixes were produced, each with different W/C [...] Read more.
This study investigates the influence of varying water-to-cement (W/C) ratios and fine aggregate compositions on the performance of concrete incorporating expanded perlite aggregate (EPA) as a lightweight alternative to natural sand. A total of eighteen concrete mixes were produced, each with different W/C ratios and fine-to-coarse aggregate (FA/CA) ratios, and evaluated for workability, compressive strength, flexural and tensile strength, water absorption, density, and thermal conductivity. Perlite was used to fully replace natural sand in half of the mixes, allowing a direct assessment of its effects across low-, medium-, and high-strength concrete formulations. The results demonstrate that EPA can improve workability and reduce both density and thermal conductivity, with variable impacts on mechanical performance depending on the W/C and FA/CA ratios. Notably, higher cement contents enhanced the internal curing effect of perlite, while lower-strength mixes experienced a reduction in compressive strength when perlite was used. These findings suggest that expanded perlite can be effectively applied in structural and non-structural concrete with optimized mix designs, supporting the development of lightweight, thermally efficient concretes. Mixture W16-100%EPS was considered the ideal mix because its compressive strength at the age of 65 days 44.2 MPa and the reduction in compressive strength compared to the reference mix 14% and the reduction in density 5.4% compared with the reference mix and the reduction in thermal conductivity 14% compared with the reference mix. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

10 pages, 2087 KiB  
Proceeding Paper
Terrain-Based Parameter Optimization for Zero Velocity Update Inertial Navigation Solutions
by Taylor Knuth and Paul Groves
Eng. Proc. 2025, 88(1), 67; https://doi.org/10.3390/engproc2025088067 - 18 Jul 2025
Viewed by 345
Abstract
This paper demonstrates the benefits of adapting Zero Velocity Update (ZVU) algorithms in foot-mounted pedestrian inertial navigation by finely tuning the algorithm to account for the type of terrain over which the pedestrian travels. Conventional ZVU algorithms for foot-mounted inertial navigation are designed [...] Read more.
This paper demonstrates the benefits of adapting Zero Velocity Update (ZVU) algorithms in foot-mounted pedestrian inertial navigation by finely tuning the algorithm to account for the type of terrain over which the pedestrian travels. Conventional ZVU algorithms for foot-mounted inertial navigation are designed for indoor use and do not account for differences from various terrains. Different terrains affect the natural pedestrian gait and how zero velocity intervals (ZVIs) are identified. By tuning the algorithm to account for accelerometer and gyroscope magnitude and walking cycle duration across four terrains (concrete, grass, pebbles and sand), the accuracy is improved up to 31.04%, dependent on the terrain, and is viable for outdoor use. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

13 pages, 2375 KiB  
Communication
Research on the Effect of Calcium Alginate-Red Mud Microspheres on the Performance of Cement Mortar by Partially Replacing Standard Sand
by Ruizhuo Liu, Zibo Lin, Shencheng Fan, Yao Cheng, Yuanyang Li, Jinsheng Li, Haiying Zou, Yongsi Chen, Liting Zheng and Jing Li
Materials 2025, 18(14), 3326; https://doi.org/10.3390/ma18143326 - 15 Jul 2025
Viewed by 281
Abstract
With the depletion of river sand resources and increasing environmental concerns, the development of alternative materials has become an urgent need in the construction industry. Waste concrete and non-waste concrete materials have been widely studied as alternatives to river sand. Although recycled concrete [...] Read more.
With the depletion of river sand resources and increasing environmental concerns, the development of alternative materials has become an urgent need in the construction industry. Waste concrete and non-waste concrete materials have been widely studied as alternatives to river sand. Although recycled concrete fine aggregates are close to natural sand in terms of mechanical properties, their surface cement adheres and affects the performance of cement, whereas non-recycled concrete fine aggregates perform superiorly in terms of ease of use and compressive properties, but there are challenges of supply stability and standardization. Red mud, as an industrial waste, is a potential alternative material due to its stable supply and high alkaline characteristics. In this paper, a new method is proposed for utilizing the cross-linking reaction between sodium alginate and calcium chloride by the calcium alginate-red mud microsphere preparation technique and the surface modification of red mud to enhance its bonding with cement. The experimental results showed that the mechanical properties of CMC-RM-SiO2-2.5% were improved by 13.9% compared with those of the benchmark cement mortar, and the encapsulation of red mud by calcium alginate significantly reduced the transfer of hazardous elements in red mud. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 5414 KiB  
Article
Microstructure and Mechanical Properties of Sustainable Concrete Incorporating Used Foundry Sand and Coal Bottom Ash
by Piotr Smarzewski
Sustainability 2025, 17(13), 5983; https://doi.org/10.3390/su17135983 - 29 Jun 2025
Viewed by 446
Abstract
This study investigates the potential for sustainable concrete production using industrial by-products: used foundry sand (UFS) and coal bottom ash (CBA). These materials were partially substituted for natural aggregates to reduce environmental impact and promote circular economy practices. UFS was used as a [...] Read more.
This study investigates the potential for sustainable concrete production using industrial by-products: used foundry sand (UFS) and coal bottom ash (CBA). These materials were partially substituted for natural aggregates to reduce environmental impact and promote circular economy practices. UFS was used as a replacement for fine aggregate, while both fine and coarse CBA were tested as substitutes for sand and gravel, respectively. The materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) to evaluate their mineralogical and microstructural properties. Six concrete mixtures were prepared with varying replacement levels (up to 70% total aggregate substitution) at a constant water-to-cement ratio of 0.50. Compressive strength tests were conducted at 28 days, supported by microstructural observations. Results showed that high levels of UFS and CBA led to reduced strength, mainly due to weak interfacial bonding and porous ash particles. However, moderate replacement levels (e.g., 20% fine CBA) maintained high strength with good structural integrity. The study concludes that both UFS and CBA can be used effectively in concrete when carefully dosed. The findings support the use of industrial waste in construction, provided that material properties are well understood and replacement levels are optimized. Full article
Show Figures

Figure 1

23 pages, 8462 KiB  
Article
Engineering and Durability Properties of Sustainable Bricks Incorporating Lime Kiln Dust, Ground Granulated Blast Furnace Slag, and Tyre Rubber Wastes
by Joy Ayankop Oke and Hossam Abuel-Naga
Buildings 2025, 15(12), 2079; https://doi.org/10.3390/buildings15122079 - 17 Jun 2025
Viewed by 385
Abstract
This study explores the potential of using sustainable materials in brick manufacturing by designing a novel brick mix in the laboratory, incorporating sand, lime kiln dust (LKD) waste, tyre rubber, and ground granulated blast furnace slag (GGBFS) waste. These cementless bricks blended LKD–GGBFS [...] Read more.
This study explores the potential of using sustainable materials in brick manufacturing by designing a novel brick mix in the laboratory, incorporating sand, lime kiln dust (LKD) waste, tyre rubber, and ground granulated blast furnace slag (GGBFS) waste. These cementless bricks blended LKD–GGBFS wastes as the binder agent and fine crumb rubber from waste tyres as a partial replacement for sand in measured increments of 0%, 5%, and 10% by volume of sand. Ordinary Portland cement (OPC) and fired clay bricks were sourced from the industry, and their properties were compared to those of the laboratory bricks. Tests performed on the industry and laboratory bricks included compressive strength (CS), freeze-thaw (F-T), and water absorption (WA) tests for comparison purposes. Additionally, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed on the bricks to assess the morphological and mineralogical changes responsible for the observed strengths and durability. The CS and WA values of the engineered bricks were 12, 6, and 4 MPa, and 7, 12, and 15%, respectively, for 0, 5, and 10% crumb rubber replacements. The industry bricks’ average CS and WA values were 13 MPa and 8%, respectively. From the results obtained, the green laboratory bricks passed the minimum strength requirements for load-bearing and non-load-bearing bricks, which can be used to construct small houses. Lastly, the engineered bricks demonstrated strength and durability properties comparable to those of the industry-standard bricks, indicating their potential as a sustainable alternative to help divert waste from landfills, reduce the pressure on natural fine sand extraction, and support eco-conscious brick production for a sustainable environment. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 5058 KiB  
Article
Use of Sands from Wastewater Treatment Plants as a Substitute for Natural Aggregate in the Context of a Circular Economy
by Monika Czop, Elwira Zajusz-Zubek and Beata Łaźniewska-Piekarczyk
Sustainability 2025, 17(12), 5471; https://doi.org/10.3390/su17125471 - 13 Jun 2025
Cited by 1 | Viewed by 396
Abstract
In light of the global raw material crisis and the ongoing degradation of the natural environment, this study provides a significant contribution to the advancement of the circular economy in the construction sector. The authors conducted a comprehensive analysis of the feasibility of [...] Read more.
In light of the global raw material crisis and the ongoing degradation of the natural environment, this study provides a significant contribution to the advancement of the circular economy in the construction sector. The authors conducted a comprehensive analysis of the feasibility of using waste sands originating from wastewater treatment plants as substitutes for natural fine aggregates in concrete mixtures. The investigation included the evaluation of the physicochemical, environmental, and mechanical properties of the analyzed waste sands. The results demonstrate a high application potential for sewer cleaning sand (SC), which, in its current form, can be used in non-structural applications. The key advantages of the sand that was examined include a high sand-equivalent value (98.2%), low contents of impurities (LOI < 1.5%), and a favorable chemical composition. Leaching tests for harmful substances, including heavy metals, for both the sand and the mortar samples, did not indicate any significant environmental risk. One principal conclusion of the study is the identification of the possibility of closing the waste life cycle at the wastewater treatment plant stage, which could significantly contribute to the reduction of landfilled waste volumes and operational costs. Full article
Show Figures

Graphical abstract

33 pages, 1600 KiB  
Review
Utilisation of Different Types of Glass Waste as Pozzolanic Additive or Aggregate in Construction Materials
by Karolina Bekerė and Jurgita Malaiškienė
Processes 2025, 13(5), 1613; https://doi.org/10.3390/pr13051613 - 21 May 2025
Viewed by 871
Abstract
Unprocessed glass waste is commonly disposed of in landfills, posing a significant environmental threat worldwide due to its non-biodegradable nature and long decomposition period. The volume of this waste continues to increase annually, driven by increasing consumption of electronic and household devices, as [...] Read more.
Unprocessed glass waste is commonly disposed of in landfills, posing a significant environmental threat worldwide due to its non-biodegradable nature and long decomposition period. The volume of this waste continues to increase annually, driven by increasing consumption of electronic and household devices, as well as the growing popularity and end-of-life disposal of solar panels and other glass products. Therefore, to promote the development of the circular economy and the principles of sustainability, it is necessary to address the problem of reusing this waste. This review article examines the chemical and physical properties of various types of glass waste, including window glass, bottles, solar panels, and glass recovered from discarded electronic and household appliances. It was determined that the most promising and applicable reuse, which does not require high energy consumption, could be in the manufacture of concrete, which is the most developed construction material worldwide. Glass waste can be incorporated into concrete in three different particle sizes according to their function: (a) cement-sized particles, used as a partial binder replacement; (b) sand-sized particles, replacing fine aggregate; and (c) coarse aggregate-sized particles, substituting natural coarse aggregate either partially or fully. The article analyses the impact of glass waste on the properties of concrete or binder, presents controversial results, and provides recommendations for future research. In addition, the advantages and challenges of incorporating glass waste in ceramics and asphalt concrete are highlighted. Full article
(This article belongs to the Special Issue Green Chemistry: From Wastes to Value-Added Products (2nd Edition))
Show Figures

Figure 1

11 pages, 5414 KiB  
Article
Alkali-Activated Slag Repair Mortar for Old Reinforced Concrete Structures Based on Ordinary Portland Cement
by Danutė Vaičiukynienė, Agnė Liudvinavičiūtė, Reda Bistrickaitė, Olha Boiko and Vilimantas Vaičiukynas
Materials 2025, 18(10), 2272; https://doi.org/10.3390/ma18102272 - 14 May 2025
Viewed by 443
Abstract
In this study, alkali-activated mortars were prepared using two different types of fine aggregates: natural sand and biomass bottom ash. These mortars were used as a repair material for structures constructed using old reinforced concrete structures based on Ordinary Portland cement (OPC). Experimental [...] Read more.
In this study, alkali-activated mortars were prepared using two different types of fine aggregates: natural sand and biomass bottom ash. These mortars were used as a repair material for structures constructed using old reinforced concrete structures based on Ordinary Portland cement (OPC). Experimental studies have shown that the alkali-activated slag mortar with biomass bottom ash (BBA) from the bubbling fluid bed meets the repair mortar class R1 according to EN 1504-3. The suitability of such repair mortar is determined by the good adhesion properties of the alkali-activated slag binder to old OPC concrete. The adhesion after 28 days was 0.31 MPa and the samples broke off at the repair matrix. The AAC/BBA repair mortar had a compressive strength of 18.69 MPa, the shrinkage due to drying deformations consisted of 0.1903% after 28 days. Alkali-activated slag mortars are effective in repairing, renewing and rebuilding damaged OPC concrete structures. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

18 pages, 8668 KiB  
Article
The Preparation and Properties of Ultra-High-Performance Concrete with Aeolian Sand: A Lab Study on the Effect of the Curing Method
by Yang Lv, Boyu Zhao, Jie Zhu, Chenhao He, Yunlu Ge, Yuanshuai Wu, Yanchao Zhu, Jianming Dan, Yang Zhou and Xiangguo Li
Materials 2025, 18(9), 2031; https://doi.org/10.3390/ma18092031 - 29 Apr 2025
Viewed by 372
Abstract
The utilization of aeolian sand (AS) as a substitute for river sand (RS) in ultra-high-performance concrete (UHPC) offers a sustainable solution to address natural sand resource shortages while enhancing AS utilization. This study systematically evaluates the influence of AS content (0–100% RS replacement [...] Read more.
The utilization of aeolian sand (AS) as a substitute for river sand (RS) in ultra-high-performance concrete (UHPC) offers a sustainable solution to address natural sand resource shortages while enhancing AS utilization. This study systematically evaluates the influence of AS content (0–100% RS replacement by mass) on the workability, mechanical properties, and microstructure of UHPC under different curing regimes. All mixtures incorporate 0.65% by volume of straight steel fibers to ensure adequate fiber reinforcement. The results reveal that the spherical morphology, smooth surface nature, and fine particle size of AS enhance the matrix fluidity and reduce the early autogenous shrinkage of UHPC. By employing steam curing at 90 °C for 2 d followed by standard curing for 7 d (M3), UHPC samples with a 60% and 80% AS substitution achieve a compressive strength of 132.4 MPa and 130.8 MPa, respectively; a flexural strength exceeding 18 MPa; a porosity below 10%; and a gel pore content exceeding 60%. The steel fiber reinforcement contributes significantly to the flexural performance, with the fiber–matrix interface quality maintained even at high AS replacement levels. These findings highlight the feasibility of AS as an alternative fine aggregate in UHPC. Full article
Show Figures

Graphical abstract

28 pages, 12901 KiB  
Article
Cracking Behavior of Fiber-Reinforced Concrete Beams Made of Waste Sand
by Jacek Domski, Joanna Laskowska-Bury and Anna Dudzińska
Appl. Sci. 2025, 15(9), 4790; https://doi.org/10.3390/app15094790 - 25 Apr 2025
Viewed by 358
Abstract
This report presents the results of cracking tests on concrete beams. The test specimens were created in ten different series. Each series comprised two beams, six cylinders, and twelve cubic samples intended for the determination of strength properties. These samples varied in terms [...] Read more.
This report presents the results of cracking tests on concrete beams. The test specimens were created in ten different series. Each series comprised two beams, six cylinders, and twelve cubic samples intended for the determination of strength properties. These samples varied in terms of the type of concrete mixture (fiber-reinforced fine aggregate concrete and plain concrete), the applied steel fibers (50/0.8 mm and 30/0.55 mm), the longitudinal reinforcement ratio in beams (0.6%, 0.9%, 1.3%, and 1.8%), and the inclusion (or exclusion) of compressed reinforcement and vertical stirrups. The fine aggregate concrete was made from waste sand, which is a byproduct of the hydroclassification process of gravel. The use of this sand in fiber concrete will help reduce the exploitation of natural resources and lower carbon dioxide emissions. Based on four-point beam bending tests, the study experimentally determined cracking moments, crack spacing, and crack width. Additionally, these results were compared with calculations proposed by L. Vandewalle and Domski, as well as with the methods outlined in Eurocode 2. The analyses conducted show that the best agreement between the research results and the calculations was obtained for Domski’s proposal. It follows that the average percentage error was 38.4%, indicating the safe use of this method. Full article
Show Figures

Figure 1

16 pages, 5511 KiB  
Article
Influence and Mechanism of Coal Gangue Sand on the Properties and Microstructure of Shotcrete Mortar
by Yong Cui
Materials 2025, 18(9), 1940; https://doi.org/10.3390/ma18091940 - 24 Apr 2025
Cited by 1 | Viewed by 356
Abstract
Coal gangue, a fine aggregate for the preparation of shotcrete mortar, is a cost-effective approach for the resource utilization of coal gangue. This study employed a mortar setting time tester, electronic universal testing machine, water absorption tester, nitrogen adsorption–desorption instrument (BET), X-ray diffraction [...] Read more.
Coal gangue, a fine aggregate for the preparation of shotcrete mortar, is a cost-effective approach for the resource utilization of coal gangue. This study employed a mortar setting time tester, electronic universal testing machine, water absorption tester, nitrogen adsorption–desorption instrument (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and life cycle assessment (LCA) to investigate the effects and mechanisms of replacing natural sand with coal gangue sand (0–100%) under water-to-binder ratios of 0.4 and 0.55 on the macroscopic properties, microstructure, and environmental impact of shotcrete mortar. The results showed that the porous nature of coal gangue sand increased the porosity of shotcrete mortar and reduced its compressive strength. However, its water absorption effectively decreased the effective water-to-binder ratio, significantly shortening the initial setting time. At a water-to-binder ratio of 0.55, as the replacement ratio of coal gangue sand increased from 0% to 100%, the porosity of shotcrete mortar increased by approximately 30%, the compressive strength decreased by about 40%, and the initial setting time was shortened by 57%. When the water-to-binder ratio was reduced to 0.4 and the replacement ratio of coal gangue sand was 50%, the shotcrete mortar met the application requirements of M20 shotcrete mortar, with an initial setting time of less than 12 min and a compressive strength of over 23 MPa after 28 days of water curing. Microstructural analysis revealed that the absorbed water in coal gangue sand played an internal curing role during cement hardening, improving the compactness of the interfacial transition zone. Environmental assessment results indicated that, under the same strength conditions, the life cycle environmental impact of coal gangue sand shotcrete mortar was approximately 70% lower than that of natural sand shotcrete mortar. This study provides a theoretical basis for the efficient resource utilization of coal gangue and the preparation of low-carbon shotcrete mortar. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

15 pages, 5803 KiB  
Article
Use of Recycled Aggregates in Lime Mortars for Conservation of Historical Buildings
by Menard Kilumile, Marilda Barra, Fatma Mohamed and Diego Aponte
Constr. Mater. 2025, 5(2), 28; https://doi.org/10.3390/constrmater5020028 - 24 Apr 2025
Viewed by 1004
Abstract
The use of recycled burnt clay brick sand (RBS) and recycled concrete sand (RCS) in historical lime-based repair mortars can reduce the environmental impact caused by construction and demolition waste disposal. This study examined the use of fine recycled concrete and recycled brick [...] Read more.
The use of recycled burnt clay brick sand (RBS) and recycled concrete sand (RCS) in historical lime-based repair mortars can reduce the environmental impact caused by construction and demolition waste disposal. This study examined the use of fine recycled concrete and recycled brick aggregates for the production of historical repair mortars using hydraulic lime binder and the influence of the resulting mortars on the performance of historical buildings in reduced scale walls (stacks). Natural-river-sand mortar (NSM) was used as control. Results showed that the recycled-burnt-brick-sand mortar (RBSM) performed better in terms of strength compared to the recycled-concrete sand (RCSM) and the NSM mortars. At the age of 7 and 28 days, the flexural strength of the RBSM and the RCSM was 131% and 44%, respectively, and 300% and 68% above that of the control mortar. The 45-day flexural strength of the NSM and RCSM was similar whilst the RBSM mortar’s strength was 177% higher. The compressive strength followed similar trend. On the other hand, the strength and modulus of elasticity of the stacks were found to be largely influenced by the strength of the brick units. Full article
Show Figures

Figure 1

20 pages, 4341 KiB  
Article
Shear Strength of Concrete Incorporating Recycled Optimized Concrete and Glass Waste Aggregates as Sustainable Construction Materials
by Sabry Fayed, Ayman El-Zohairy, Hani Salim, Ehab A. Mlybari, Rabeea W. Bazuhair and Mohamed Ghalla
Buildings 2025, 15(9), 1420; https://doi.org/10.3390/buildings15091420 - 23 Apr 2025
Viewed by 556
Abstract
While the development of sustainable construction materials, such as green concrete made from glass waste or recycled concrete aggregate, has been extensively researched, much of the existing work has focused narrowly on these two components. This limited scope highlights the need for further [...] Read more.
While the development of sustainable construction materials, such as green concrete made from glass waste or recycled concrete aggregate, has been extensively researched, much of the existing work has focused narrowly on these two components. This limited scope highlights the need for further investigation to comprehensively address their drawbacks and expand the available knowledge base. Moreover, the current study uniquely emphasizes the shear response of green concrete, a critical aspect that has not been previously explored. Push-off shear samples made of green concrete, a mixture of recycled concrete, and glass waste, were built and subjected to direct shear loading testing to investigate shear response. In different proportions (0, 10, 25, 50, and 100%), fine glass aggregate is used in place of river sand. At different ratios (0, 10, 20, and 40%), coarse glass aggregate was substituted for coarse natural aggregate to form four mixtures. Additionally, recycled concrete and coarse glass aggregates were utilized instead of coarse natural aggregates. In the last group, coarse natural aggregate was substituted with recycled concrete aggregates in different proportions (0, 16, 40, and 80%). Measurements were made of the applied shear force and the sliding of the shear transfer plane during the test. The tested mixtures’ failure, shear strength, shear slip, shear stiffness, and shear stress slip correlations were examined. According to the results, all of the samples failed in the shear transfer plane. The shear strength of mixes containing 10, 25, 50, and 100% fine glass was, respectively, 12.8%, 14.7%, 29.5%, and 39% lower than the control combination without fine glass. As the amount of recycled glass and concrete materials grew, so did the shear slip at the shear transfer plane. In recent years, numerous studies have proposed formulas to predict the push-off shear strength of plain concrete, primarily using compressive strength as the key parameter—often without accounting for the influence of infill materials. The present study introduces an improved predictive model that incorporates the contents of recycled concrete aggregate, coarse glass aggregate, or fine glass aggregate as correction factors to enhance accuracy. Full article
(This article belongs to the Special Issue Advances and Applications of Recycled Concrete in Green Building)
Show Figures

Figure 1

Back to TopTop