Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (254)

Search Parameters:
Keywords = fine dust particle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8419 KB  
Article
Performance of Sulfate-Activated Self-Compacting Concrete with High-Volume GGBS–Fly Ash and Steel Slag Aggregates
by Nurshafarina Jasme, Kim Hung Mo, Farid Wajdi Akashah and Chee Ban Cheah
Constr. Mater. 2025, 5(4), 91; https://doi.org/10.3390/constrmater5040091 - 16 Dec 2025
Viewed by 125
Abstract
The development of sustainable self-compacting concrete (SCC) requires alternative binders that minimise ordinary Portland cement (OPC) consumption while ensuring long-term performance. This study investigates sulfate-activated SCC (SA SCC) incorporating high volumes of industrial by-products, whereby 72% ground granulated blast furnace slag (GGBS) and [...] Read more.
The development of sustainable self-compacting concrete (SCC) requires alternative binders that minimise ordinary Portland cement (OPC) consumption while ensuring long-term performance. This study investigates sulfate-activated SCC (SA SCC) incorporating high volumes of industrial by-products, whereby 72% ground granulated blast furnace slag (GGBS) and 18% fly ash (FA) were activated with varying proportions of OPC and gypsum. Quarry dust was used as a fine aggregate, while granite and electric arc furnace (EAF) slag served as coarse aggregates. Among all formulations, the binder containing 72% GGBS, 18% FA, 4% OPC, and 6% gypsum was identified as the optimum composition, providing superior mechanical performance across all curing durations. This mix achieved slump flow within the EFNARC SF2 class (700–725 mm), compressive strength exceeding 50 MPa at 270 days, and flexural strength up to 20% higher than OPC SCC. Drying shrinkage values remained below Eurocode 2 and ASTM C157 limits, while EAF slag increased density, but slightly worsened shrinkage compared to granite mixes. Microstructural analysis (SEM-EDX) confirmed that strength development was governed by discrete C-S-H and C-A-S-H gels surrounding unreacted binder particles, forming a dense interlocked matrix. The results demonstrate that sulfate activation with a 4% OPC + 6% gypsum blend enables the production of high-performance SCC with 94–98% industrial by-products, reducing OPC dependency and environmental impact. This work offers a practical pathway for low-carbon SCC. Full article
Show Figures

Figure 1

26 pages, 7466 KB  
Article
Investigation of Air Quality and Particle Emission During Wet Granite Edge Finishing on Machine Tool with Half-Beveled and Ogee Profile Tools
by Wael Mateur, Victor Songmene, Ali Bahloul, Mohamed Nejib Saidi and Jules Kouam
J. Manuf. Mater. Process. 2025, 9(12), 397; https://doi.org/10.3390/jmmp9120397 - 1 Dec 2025
Viewed by 350
Abstract
Granite wet edge finishing is widely adopted to improve surface durability and aesthetics while reducing dust dispersion compared to dry processes. However, even under flooded lubrication, fine particles (FP, 0.5–20 µm) and ultrafine particles (UFP, <100 nm) containing crystalline silica are emitted, posing [...] Read more.
Granite wet edge finishing is widely adopted to improve surface durability and aesthetics while reducing dust dispersion compared to dry processes. However, even under flooded lubrication, fine particles (FP, 0.5–20 µm) and ultrafine particles (UFP, <100 nm) containing crystalline silica are emitted, posing health risks such as silicosis and pulmonary or cardiovascular diseases. This study investigates particle emissions during CNC edge finishing of black (containing 0% quartz) and white granites (containing 41% quartz) using two industrially relevant profile tools: Half-Beveled (HB) and Ogee (OG). A full factorial design evaluated the effects of granite type, tool geometry, abrasive grit size, spindle speed, and feed rate. Particle concentrations were measured with Aerodynamic and Scanning Mobility Particle Sizers. Results show that spindle speed (N) is the dominant factor, explaining up to 92% of variance in emissions, whereas feed rate (Vf) played a minor role. Tool geometry had a pronounced effect on UFP release: sharp-edged geometries (HB) promoted localized micro-fracturing and higher emissions, while curved geometries (OG) distributed stresses and reduced particle detachment. White granite generated higher mass emissions due to its high quartz content, while black granite exhibited more stable emission behavior. These findings highlight the dual necessity of optimizing cutting kinematics and selecting appropriate tool profiles to balance surface quality and occupational health in granite processing. Full article
Show Figures

Figure 1

19 pages, 4853 KB  
Article
Evaluation of Particle Size of Wood Dust from Tropical Wood Species by Laser Diffraction and Sieve Analysis
by Eva Mračková, Lukáš Adamčík and Richard Kminiak
Forests 2025, 16(12), 1790; https://doi.org/10.3390/f16121790 - 28 Nov 2025
Viewed by 243
Abstract
This study investigates particle size distribution and fine dust generation from sanding six tropical wood species (Red Meranti, Iroko, Zebrano, Bubinga, Ipe, and Wenge) using sieve analysis and laser diffraction. The wood species produced different dust particles, primarily influenced by wood density. Bubinga, [...] Read more.
This study investigates particle size distribution and fine dust generation from sanding six tropical wood species (Red Meranti, Iroko, Zebrano, Bubinga, Ipe, and Wenge) using sieve analysis and laser diffraction. The wood species produced different dust particles, primarily influenced by wood density. Bubinga, Zebrano, and Wenge generated the highest proportion of particles in the 125–250 μm range, while Ipe and Iroko produced more dust in the 63–125 μm fraction. Low-density Red Meranti formed the greatest share of coarse particles (10.54% over 549.5 μm), whereas high-density Ipe generated the largest proportion of respirable dust, including PM10 (8.80%), PM2.5 (2.93%), and PM1 (0.88%). Statistical analysis confirmed a significant effect of density on both coarse and fine dust fractions, with finer particles increasing consistently as density increased. Laser diffraction showed ultrafine particles down to approximately 0.7 μm in all species except Red Meranti. Microscopy confirmed elongated fibrous fragments, particularly in Wenge and Red Meranti. Overall, denser tropical hardwoods exhibited greater potential to produce hazardous fine dust during sanding, posing health risks and explosion hazards. These findings emphasize the need for effective dust extraction and high-efficiency respiratory protection and contribute to improved understanding of dust formation mechanisms in tropical wood processing. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

26 pages, 28301 KB  
Article
Small but Notable Influence of Numerical Diffusion on Super Coarse Dust Sedimentation: Insights from UNO3 vs. Upwind Schemes
by Eleni Drakaki, Sotirios Mallios, Carlos Perez García-Pando, Petros Katsafados and Vassilis Amiridis
Atmosphere 2025, 16(9), 1086; https://doi.org/10.3390/atmos16091086 - 15 Sep 2025
Viewed by 549
Abstract
Mineral dust plays a vital role in the Earth’s climate system, influencing radiation, cloud formation, biogeochemical cycles, and air quality. Accurately simulating dust transport in atmospheric models remains challenging, particularly for coarse and super-coarse particles, which are often underrepresented due to limitations in [...] Read more.
Mineral dust plays a vital role in the Earth’s climate system, influencing radiation, cloud formation, biogeochemical cycles, and air quality. Accurately simulating dust transport in atmospheric models remains challenging, particularly for coarse and super-coarse particles, which are often underrepresented due to limitations in model physics and numerical treatment. Observations have shown that particles larger than 20 μm can remain airborne longer than expected, suggesting that standard gravitational settling formulations may be insufficient. One potential contributor to this discrepancy is the numerical diffusion introduced by advection schemes used to model sedimentation processes. In this study, we compare the commonly used first-order upwind advection scheme, which is highly diffusive, to a third-order scheme (UNO3) that reduces numerical diffusion while maintaining computational efficiency. Using 2-D sensitivity tests, we show that UNO3 retains up to 50% more dust mass for the coarsest particles compared to the default scheme, although overall dust lifetime shows little change. In 3-D simulations of the ASKOS 2022 dust campaign, both schemes reproduced similar large-scale dust patterns, with UNO3 yielding slightly lower dust. Overall, domain-averaged dust load differences remain small (less than 2%), with minor decreases in fine dust ~3% and slight increases in coarse dust ~2%, indicating that reducing numerical diffusion modestly enhances the presence of larger particles. Near the surface, UNO3 produces a ~4% increase in dust concentration, with local differences up to 50 μg/m3. These results highlight that while numerical diffusion does affect dust transport—especially for super-coarse fractions—its impact is relatively small compared to the larger underestimation of super-coarse dust commonly observed in models compared to measurements. Addressing the fundamental physics of super-coarse dust emission and lofting may therefore be a higher priority for improving dust model fidelity than further refining advection numerics. Future studies may also consider implementing more computationally intensive schemes, such as the Prather scheme, to further minimize numerical diffusion where highly accurate size-resolved transport is critical. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

18 pages, 8702 KB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 - 2 Aug 2025
Cited by 2 | Viewed by 1380
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

19 pages, 6409 KB  
Article
Recycling Quarry Dust as a Supplementary Cementitious Material for Cemented Paste Backfill
by Yingying Zhang, Kaifeng Wang, Zhengkun Shi and Shiyu Zhang
Minerals 2025, 15(8), 817; https://doi.org/10.3390/min15080817 - 1 Aug 2025
Cited by 1 | Viewed by 2736
Abstract
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration [...] Read more.
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration process and workability of CPB containing QD/MQD. The experimental results show that quartz, clinochlore and amphibole components react with CaO to form reactive dicalcium silicate (C2S) and amorphous glass phases, promoting pozzolanic reactivity in MQD. QD promotes early aluminocarbonate (Mc) formation through CaCO3-derived CO32− release but shifts to hemicarboaluminate (Hc) dominance at 28 d. MQD releases active Al3+/Si4+ due to calcination and deconstruction, significantly increasing the amount of ettringite (AFt) in the later stage. With the synergistic effect of coarse–fine particle gradation, MQD-type fresh backfill can achieve a 161 mm flow spread at 20% replacement. Even if this replacement rate reaches 50%, a strength of 19.87 MPa can still be maintained for 28 days. The good workability and low carbon footprint of MQD-type backfill provide theoretical support for—and technical paths toward—QD recycling and the development of low-carbon building materials. Full article
Show Figures

Figure 1

20 pages, 11386 KB  
Article
Real-Time Source Dynamics of PM2.5 During Winter Haze Episodes Resolved by SPAMS: A Case Study in Yinchuan, Northwest China
by Huihui Du, Tantan Tan, Jiaying Pan, Meng Xu, Aidong Liu and Yanpeng Li
Sustainability 2025, 17(14), 6627; https://doi.org/10.3390/su17146627 - 20 Jul 2025
Viewed by 1105
Abstract
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry [...] Read more.
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry (SPAMS) to investigate PM2.5 sources and dynamics during winter haze episodes in Yinchuan, Northwest China. Results showed that the average PM2.5 concentration was 57 μg·m−3, peaking at 218 μg·m−3. PM2.5 was dominated by organic carbon (OC, 17.3%), mixed carbonaceous particles (ECOC, 17.0%), and elemental carbon (EC, 14.3%). The primary sources were coal combustion (26.4%), fugitive dust (25.8%), and vehicle emissions (19.1%). Residential coal burning dominated coal emissions (80.9%), highlighting inefficient decentralized heating. Source contributions showed distinct diurnal patterns: coal combustion peaked nocturnally (29.3% at 09:00) due to heating and inversions, fugitive dust rose at night (28.6% at 19:00) from construction and low winds, and vehicle emissions aligned with traffic (17.5% at 07:00). Haze episodes were driven by synergistic increases in local coal (+4.0%), dust (+2.7%), and vehicle (+2.1%) emissions, compounded by regional transport (10.1–36.7%) of aged particles from northwestern zones. Fugitive dust correlated with sulfur dioxide (SO2) and ozone (O3) (p < 0.01), suggesting roles as carriers and reactive interfaces. Findings confirm local emission dominance with spatiotemporal heterogeneity and regional transport influence. SPAMS effectively resolved short-term pollution dynamics, providing critical insights for targeted air quality management in arid regions. Full article
Show Figures

Figure 1

33 pages, 1593 KB  
Review
Bio-Coal Briquetting as a Potential Sustainable Valorization Strategy for Fine Coal: A South African Perspective in a Global Context
by Veshara Ramdas, Sesethu Gift Njokweni, Parsons Letsoalo, Solly Motaung and Santosh Omrajah Ramchuran
Energies 2025, 18(14), 3746; https://doi.org/10.3390/en18143746 - 15 Jul 2025
Cited by 2 | Viewed by 1779
Abstract
The generation of fine coal particles during mining and processing presents significant environmental and logistical challenges, particularly in coal-dependent, developing countries like South Africa (SA). This review critically evaluates the technical viability of fine coal briquetting as a sustainable waste-to-energy solution within a [...] Read more.
The generation of fine coal particles during mining and processing presents significant environmental and logistical challenges, particularly in coal-dependent, developing countries like South Africa (SA). This review critically evaluates the technical viability of fine coal briquetting as a sustainable waste-to-energy solution within a SA context, while drawing from global best practices and comparative benchmarks. It examines abundant feedstocks that can be used for valorization strategies, including fine coal and agricultural biomass residues. Furthermore, binder types, manufacturing parameters, and quality optimization strategies that influence briquette performance are assessed. The co-densification of fine coal with biomass offers a means to enhance combustion efficiency, reduce dust emissions, and convert low-value waste into a high-calorific, manageable fuel. Attention is also given to briquette testing standards (i.e., South African Bureau of Standards, ASTM International, and International Organization of Standardization) and end-use applications across domestic, industrial, and off-grid settings. Moreover, the review explores socio-economic implications, including rural job creation, energy poverty alleviation, and the potential role of briquetting in SA’s ‘Just Energy Transition’ (JET). This paper uniquely integrates technical analysis with policy relevance, rural energy needs, and practical challenges specific to South Africa, while offering a structured framework for bio-coal briquetting adoption in developing countries. While technical and economic barriers remain, such as binder costs and feedstock variability, the integration of briquetting into circular economy frameworks represents a promising path toward cleaner, decentralized energy and coal waste valorization. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

15 pages, 4502 KB  
Article
Research on the Distribution and Escape Characteristics of Dust at the Blasting Pile in an Open-Pit Mining Area
by Yong Cao, Xiaoliang Jiao, Rong Liu, Haoran Wang, Yi He, Jie Chen, Xiang Lu and Huangqing Zhang
Geosciences 2025, 15(7), 238; https://doi.org/10.3390/geosciences15070238 - 20 Jun 2025
Cited by 1 | Viewed by 901
Abstract
In open-pit mines, substantial amounts of dust are generated at various stages. Due to the long duration, repeated mechanical disturbance, and large volume of material handled during the shoveling and loading of blasting piles, this stage is recognized as one of the primary [...] Read more.
In open-pit mines, substantial amounts of dust are generated at various stages. Due to the long duration, repeated mechanical disturbance, and large volume of material handled during the shoveling and loading of blasting piles, this stage is recognized as one of the primary contributors to overall dust emissions in open-pit mining operations. The objective of this study is to investigate the spatial dispersion characteristics of dust at blasting piles and evaluate the influence of wind direction on dust migration and escape behavior. This study uses a full-scale numerical model to analyze the airflow and dust migration characteristics at blasting piles under different wind directions. Simulation results show that dust particles of different sizes exhibit distinct dispersion patterns: large particles settle near the source, medium particles migrate a moderate distance, and fine particles (PM2.5 and PM10) travel further and are more likely to escape from the pit. The leeward slope and pit bottom are identified as critical zones of dust accumulation and escape. Under both dump-side and stope-side wind conditions, respirable dust (d < 5 μm) accounts for more than 50% of the escaped particles, posing potential health risks to workers. These findings establish a scientific basis for targeted dust suppression strategies, supporting safer and more sustainable mine site management. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

15 pages, 2677 KB  
Article
Vertical Stratification of Dust and Anthropogenic Aerosols and Their Seasonal Impact on Radiative Forcing in Semi-Arid Northwest China
by Xin Gong, Ruizhao Zhang, Xiaoling Sun, Delong Xiu, Jiandong Mao, Hu Zhao and Zhimin Rao
Atmosphere 2025, 16(6), 718; https://doi.org/10.3390/atmos16060718 - 13 Jun 2025
Viewed by 869
Abstract
Aerosol optical properties and radiative forcing critically influence Earth’s climate, particularly in semi-arid regions. This study investigates these properties in Yinchuan, Northwest China, focusing on aerosol optical depth (AOD), single-scattering albedo (SSA), Ångström Index, and direct radiative forcing (DRF) using 2023 CE-318 sun [...] Read more.
Aerosol optical properties and radiative forcing critically influence Earth’s climate, particularly in semi-arid regions. This study investigates these properties in Yinchuan, Northwest China, focusing on aerosol optical depth (AOD), single-scattering albedo (SSA), Ångström Index, and direct radiative forcing (DRF) using 2023 CE-318 sun photometer data, HYSPLIT trajectory analysis, and the SBDART model. Spring AOD peaks at 0.58 ± 0.15 (500 nm) due to desert dust, with coarse-mode particles dominating, while summer SSA reaches 0.94, driven by fine-mode aerosols. Internal mixing of dust and anthropogenic aerosols significantly alters DRF through enhanced absorption, with spring surface DRF at −101 ± 22W m−2 indicating strong cooling and internal mixing increasing atmospheric DRF to 52.25W m−2. These findings elucidate dust–anthropogenic interactions’ impact on optical properties and radiative forcing, offering critical observations for semi-arid climate research. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

13 pages, 1253 KB  
Article
Modeling Air Pollution in Metropolitan Lima: A Statistical and Artificial Neural Network Approach
by Miguel Angel Solis Teran, Felipe Leite Coelho da Silva, Elías A. Torres Armas, Natalí Carbo-Bustinza and Javier Linkolk López-Gonzales
Environments 2025, 12(6), 196; https://doi.org/10.3390/environments12060196 - 10 Jun 2025
Cited by 1 | Viewed by 1642
Abstract
Particulate matter is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 is a pollutant composed of particles smaller than 10 µm. These particles are harmful to the respiratory system. The air quality in the region [...] Read more.
Particulate matter is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 is a pollutant composed of particles smaller than 10 µm. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru has been investigated in recent years. In this context, statistical analyses of PM10 data with forecast models can contribute to planning actions that can improve air quality. The objective of this work is to perform a statistical analysis of the available PM10 data and evaluate the quality of time series classical models and neural networks for short-term forecasting. This study demonstrates that classical time series models, particularly ARIMA and SSA, achieve lower average forecast errors than LSTM across stations SMP, CRB, and ATE. This finding suggests that for data with seasonal patterns and relatively short time series, traditional models may be more efficient and robust. Although neural networks have the potential to capture more complex relationships and long-term dependencies, their performance may be limited by hyperparameter settings and intrinsic data characteristics. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

33 pages, 3134 KB  
Article
Physical–Statistical Characterization of PM10 and PM2.5 Concentrations and Atmospheric Transport Events in the Azores During 2024
by Maria Gabriela Meirelles and Helena Cristina Vasconcelos
Earth 2025, 6(2), 54; https://doi.org/10.3390/earth6020054 - 6 Jun 2025
Cited by 1 | Viewed by 3253
Abstract
This study presented a comprehensive physical–statistical analysis of atmospheric particulate matter (PM10 and PM2.5) and trace gases (SO2 and O3) over Faial Island in the Azores archipelago during 2024. We collected real-time data at the Espalhafatos rural [...] Read more.
This study presented a comprehensive physical–statistical analysis of atmospheric particulate matter (PM10 and PM2.5) and trace gases (SO2 and O3) over Faial Island in the Azores archipelago during 2024. We collected real-time data at the Espalhafatos rural background station, covering 35,137 observations per pollutant, with 15 min intervals. Descriptive statistics, probability distribution fitting (Normal, Lognormal, Weibull, Gamma), and correlation analyses were employed to characterize pollutant dynamics and identify extreme pollution episodes. The results revealed that PM2.5 (fine particles) concentrations are best modeled by a Lognormal distribution, while PM10 concentrations fit a Gamma distribution, highlighting the presence of heavy-tailed, positively skewed behavior in both cases. Seasonal and episodic variability was significant, with multiple Saharan dust transport events contributing to PM exceedances, particularly during winter and spring months. These events, confirmed by CAMS and SKIRON dust dispersion models, affected not only southern Europe but also the Northeast Atlantic, including the Azores region. Weak to moderate correlations were observed between PM concentrations and meteorological variables, indicating complex interactions influenced by atmospheric stability and long-range transport processes. Linear regression analyses between SO2 and O3, and between SO2 and PM2.5, showed statistically significant but low-explanatory relationships, suggesting that other meteorological and chemical factors play a dominant role. This result highlights the importance of developing air quality policies that address both local emissions and long-range transport phenomena. They support the implementation of early warning systems and health risk assessments based on probabilistic modeling of particulate matter concentrations, even in remote Atlantic locations such as the Azores. Full article
Show Figures

Figure 1

14 pages, 1502 KB  
Article
Relationships Among Atmospheric Suspended Particulates with Different Sizes: A Case Study of Chongqing City
by Yan Gui and Haiyang Wang
Atmosphere 2025, 16(5), 609; https://doi.org/10.3390/atmos16050609 - 17 May 2025
Viewed by 689
Abstract
The current study predicts that there would be scaling relationships among atmospheric suspended particulate materials (PMs) with different diameters. Through sampling the particulate materials concentration over different types of land use in municipal areas in Chongqing, analyzing the respective data of the independent [...] Read more.
The current study predicts that there would be scaling relationships among atmospheric suspended particulate materials (PMs) with different diameters. Through sampling the particulate materials concentration over different types of land use in municipal areas in Chongqing, analyzing the respective data of the independent concentrations of particulate materials varying in sizes, and testing the predictions, it is found that: (1) there are generally a negative relationships between falling dust of large particulate size (diameter > 10 μm) and floating dust of small ones (diameter ≤ 10 μm); (2) there are positive correlations among the fine particulate materials varying in sizes of iPM10, iPM2.5, and iPM1; (3) there is a disproportionately increase between the particulate materials varying in sizes compared to the respective control; (4) there is a declining-and-rising tendency between the particulate materials reduction rate and the increase in particulate materials along a particulate-size-decline gradient. The results of this study may contribute to understanding the law of the interactions of particulate materials with different particle sizes in the atmosphere and lay a theoretical foundation for the elimination of the atmospheric suspended pollutants. Full article
(This article belongs to the Special Issue Recent Advances in Urban Climate)
Show Figures

Figure 1

19 pages, 11697 KB  
Article
Evaluating Policy Interventions for Air Quality During a National Sports Event with Machine Learning and Causal Framework
by Jing Guo, Ruixin Xu, Bowen Liu, Mengdi Kong, Yue Yang, Zongbo Shi, Ruiqin Zhang and Yuqing Dai
Atmosphere 2025, 16(5), 557; https://doi.org/10.3390/atmos16050557 - 7 May 2025
Viewed by 1389
Abstract
Short-term control measures are often implemented during major events to improve air quality and protect public health. In preparation for the 11th National Traditional Games of Ethnic Minorities of China (denoted as “NMG”), held from 8 to 16 September 2019 in Zhengzhou, China, [...] Read more.
Short-term control measures are often implemented during major events to improve air quality and protect public health. In preparation for the 11th National Traditional Games of Ethnic Minorities of China (denoted as “NMG”), held from 8 to 16 September 2019 in Zhengzhou, China, the authorities introduced several air pollution control measures, including traffic restrictions and dust control. In the study presented herein, we applied automated machine learning-based weather normalisation combined with an augmented synthetic control method (ASCM) to evaluate the effectiveness of these interventions. Our results show that the impacts of the NMG control measures were not uniform, varying significantly across pollutants and monitoring stations. On average, nitrogen dioxide (NO2) concentrations decreased by 8.6% and those of coarse particles (PM10) decreased by 3.0%. However, the interventions had little overall effect on fine particles (PM2.5), despite clear reductions observed at the traffic site, where NO2 and PM2.5 levels decreased by 7.2 and 5.2 μg m−3, respectively. These reductions accounted for 56.3% of the NMG policy’s effect on NO2 concentration and 73.2% of its effect on PM2.5 concentration at the traffic site. Notably, the control measures led to an increase in ozone (O3) concentrations. Our results demonstrate the moderate effect of the short-term NMG intervention, emphasising the necessity for holistic strategies that address pollutant interactions, such as nitrogen oxides (NOX) and volatile organic compounds (VOCs), as well as location-specific variability to achieve sustained air quality improvements. Full article
Show Figures

Figure 1

13 pages, 958 KB  
Article
Geotechnical Experimental Study of Phosphogypsum for Use in Quarry Reclamation
by Alexandros I. Theocharis, George Gaidajis and Ioannis E. Zevgolis
Minerals 2025, 15(5), 477; https://doi.org/10.3390/min15050477 - 1 May 2025
Viewed by 969
Abstract
This study presents the geotechnical evaluation of phosphogypsum, a byproduct of phosphate fertilizer production. The objective is to assess the suitability of phosphogypsum or its mixtures with natural materials as a technically viable and environmentally responsible backfill material for the restoration of closed [...] Read more.
This study presents the geotechnical evaluation of phosphogypsum, a byproduct of phosphate fertilizer production. The objective is to assess the suitability of phosphogypsum or its mixtures with natural materials as a technically viable and environmentally responsible backfill material for the restoration of closed and abandoned quarries. This study adds to the scarce existing literature on the use of phosphogypsum for quarry reclamation and further investigates the behavior of phosphogypsum mixtures incorporating clay and marble dust. A comprehensive experimental program was conducted to evaluate typical geotechnical properties, i.e., grain size distribution, Atterberg limits, compaction characteristics, permeability, compressibility, and shear strength. The results indicate that phosphogypsum is fine grained, low in plasticity, and exhibits relatively high permeability and compressibility, which limits its application as a deep fill material. The addition of clay increased the liquid and plastic limits but had a limited positive effect on strength and compressibility. In contrast, mixtures with marble dust improved particle gradation, reduced permeability, and enhanced compaction behavior without significantly increasing plasticity or settlements. Notably, the most promising mixture of phosphogypsum with a modest proportion of marble dust demonstrates improved shear strength and reduced hydraulic conductivity, making it suitable for use in the upper layers of quarry fills. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

Back to TopTop