Relationships Among Atmospheric Suspended Particulates with Different Sizes: A Case Study of Chongqing City
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. The Sampling Methods
- (1)
- Sampling sites and quadrat setting
- (2)
- The sampling method for plant community and the arrangement of monitoring points
2.3. Measurements for PMs Concentration
2.4. Land Use Types
2.5. Data Treatments
- (1)
- Independent concentration: we defined a new independent concentration, respectively, for TSP, PM10, PM2.5, and PM1 in this study, considering the concentration measured by the instrument is the total amount, including sub-sized particulates, which was inconsistent with our topics about examining the correlations among size-dependent classes of PMs. So, the independent concentrations referred exclusively to the ones of PMs within one-size-classed particulates and were named as iTSP, iPM10, iPM2.5, and iPM1 in the monitoring points and as ciTSP, ciPM10, ciPM2.5, and ciPM1 in control, respectively. Specifically, the total TSP with all sub-particulates at monitoring points and control was named as tTSP and ctTSP, respectively.
- (2)
- Reduction rate: reduction rate (RR) to iPMs was the proportion of the difference of particulate concentration between the sample monitoring point and the control point in a specific site. The calculation formula was RR = [(V1 − V2)/V2] × 100%. In the formula, RR was the reduction rate of a monitoring point, V1 was the iPM concentration at the monitoring point (μg/m3), and V2 was the ciPM concentration at the control (μg/m3).
2.6. Data Analyses
3. Results
3.1. The Composition of in iPM Sizes in the Atmosphere
3.2. Relationships Among iPMs and Among ciPMs Concentration
3.3. The Scaling Relationships of iPMs vs. ciPMs at Different Size Levels
3.4. The Relationships Between iPM_RR and ciPM
4. Discussion
4.1. The Size Composition of PMs and Its Significance
4.2. The Tradeoff Between Falling and Floating Dusts
4.3. The Scaling Relationship of iPMs vs. ciPMs
4.4. The Positive Feedback Relations Between Fine Particulates with Different Sizes
4.5. Relationship Between Reduction Rate and ciPM Concentration with Different Particulate Sizes
5. Conclusions
- (1)
- Changing land use types have been shown to be ineffective in controlling the concentration of inhalable particulate matter (PM) in urban areas. The study reveals no significant differences in PM concentrations or their mutual constraints across various land use types. Consequently, merely increasing green space ratios is insufficient for urban air pollution control. Instead, effective pollution source management is essential to curb the spread and deterioration of urban air pollution.
- (2)
- This study elucidates the complex interactions among particulate matter of different sizes. A vicious cycle mechanism exists where an increase in one size of PM can exacerbate the concentration of other sizes. However, there are also beneficial mechanisms that can be harnessed for urban pollution control, such as enhancing the concentration of larger-sized PMs to adsorb and settle smaller-sized particles, thereby contributing to improved air quality. Of course, the above conclusion is merely based on the current observational studies, which lack corresponding experimental verification. This is also the work that we will undertake in the future.
- (3)
- Open spaces, with their extensive area and land coverage, demonstrate a more pronounced role in reducing particulate matter, particularly in mitigating smaller-sized PMs. Therefore, when addressing air pollution dominated by smaller-sized PMs, leveraging the advantageous mechanisms of open spaces can significantly enhance pollution control efforts.
- (4)
- Through a combination of field measurements and data analysis, this study clarifies the interactions among particulate matter of varying sizes in the atmosphere. These findings provide precise and actionable strategies for urban pollution control and offer a robust methodological framework for global air pollution research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Season | Land Type | Site Category | iTSP (μg/m3) | ciTSP (μg/m3) | iTSP RR (%) | iPM10 (μg/m3) | ciPM10 (μg/m3) | iPM10 RR (%) | iPM2.5 (μg/m3) | ciPM2.5 (μg/m3) | iPM2.5 RR (%) | iPM1 (μg/m3) | ciPM1 (μg/m3) | iPM1 RR (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | semi-natural | FL | 49.00 ± 12.36 | 44.00 ± 15.24 | 0.11 ± 0.59 | 27.35 ± 10.87 | 39.28 ± 15.21 | −0.30 ± 0.39 | 22.52 ± 6.85 | 32.27 ± 13.28 | −0.30 ± 0.26 | 26.63 ± 8.33 | 27.15 ± 10.25 | −0.02 ± 0.32 |
S | semi-natural | FL | 37.40 ± 7.29 | 61.00 ± 10.35 | −0.39 ± 0.23 | 15.80 ± 5.64 | 18.57 ± 8.64 | −0.15 ± 0.15 | 17.74 ± 4.62 | 21.58 ± 8.33 | −0.18 ± 0.12 | 10.36 ± 5.96 | 11.15 ± 6.12 | −0.07 ± 0.21 |
Sp | semi-natural | FL | 57.60 ± 10.21 | 65.30 ± 12.99 | −0.12 ± 0.43 | 28.92 ± 9.23 | 24.75 ± 10.33 | 0.17 ± 0.32 | 27.68 ± 8.31 | 36.56 ± 11.64 | −0.24 ± 0.23 | 24.6 ± 6.34 | 25.89 ± 8.47 | −0.05 ± 0.43 |
W | semi-natural | FL | 33.90 ± 15.29 | 41.10 ± 19.32 | −0.18 ± 0.73 | 54.68 ± 13.5 | 64.51 ± 17.33 | −0.15 ± 0.51 | 48.15 ± 14.69 | 46.77 ± 17.25 | 0.03 ± 0.42 | 35.47 ± 13.70 | 36.12 ± 11.98 | −0.02 ± 0.57 |
F | broad-leaved evergreens | FL | 29.20 ± 11.68 | 54.50 ± 21.8 | −0.46 ± 0.49 | 26.34 ± 9.25 | 25.75 ± 8.50 | 0.02 ± 0.33 | 22.74 ± 6.08 | 35.30 ± 12.33 | −0.36 ± 0.21 | 27.12 ± 9.01 | 27.15 ± 10.25 | 0.00 ± 0.29 |
S | broad-leaved evergreens | FL | 30.10 ± 9.03 | 61.00 ± 27.45 | −0.51 ± 0.26 | 12.89 ± 4.89 | 18.57 ± 7.43 | −0.31 ± 0.12 | 17.55 ± 4.61 | 21.58 ± 7.69 | −0.19 ± 0.16 | 11.36 ± 5.82 | 11.15 ± 6.12 | 0.02 ± 0.20 |
Sp | broad-leaved evergreens | FL | 46.90 ± 16.41 | 57.80 ± 19.07 | −0.19 ± 0.31 | 35.11 ± 12.33 | 42.38 ± 14.12 | −0.17 ± 0.29 | 27.20 ± 8.06 | 30.43 ± 9.84 | −0.11 ± 0.22 | 24.19 ± 6.03 | 25.89 ± 8.47 | −0.07 ± 0.39 |
W | broad-leaved evergreens | FL | 30.40 ± 14.59 | 51.10 ± 22.93 | −0.41 ± 0.68 | 55.07 ± 15.21 | 64.51 ± 21.29 | −0.15 ± 0.48 | 46.90 ± 13.78 | 46.77 ± 16.92 | 0.00 ± 0.45 | 36.33 ± 13.87 | 36.12 ± 11.98 | 0.01 ± 0.52 |
F | road | UBL | 47.20 ± 16.14 | 44.00 ± 13.2 | 0.07 ± 0.37 | 34.84 ± 12.19 | 42.28 ± 15.22 | −0.18 ± 0.42 | 22.38 ± 6.49 | 29.27 ± 8.20 | −0.24 ± 0.29 | 27.98 ± 7.75 | 27.15 ± 6.98 | 0.03 ± 0.33 |
S | road | UBL | 39.40 ± 15.73 | 61.00 ± 24.4 | −0.35 ± 0.56 | 20.41 ± 8.16 | 18.57 ± 7.43 | 0.10 ± 0.47 | 19.14 ± 7.66 | 21.58 ± 8.63 | −0.11 ± 0.45 | 11.25 ± 5.84 | 11.15 ± 5.96 | 0.01 ± 0.12 |
Sp | road | UBL | 55.50 ± 13.87 | 65.30 ± 16.33 | −0.15 ± 0.12 | 31.14 ± 7.79 | 24.75 ± 6.19 | 0.26 ± 0.14 | 31.84 ± 7.96 | 36.56 ± 9.14 | −0.13 ± 0.09 | 24.32 ± 6.91 | 25.89 ± 7.26 | −0.06 ± 0.31 |
W | road | UBL | 34.60 ± 13.84 | 41.10 ± 13.44 | −0.16 ± 0.42 | 62.17 ± 18.65 | 64.51 ± 22.58 | −0.04 ± 0.25 | 49.26 ± 16.85 | 46.77 ± 15.43 | 0.05 ± 0.27 | 35.47 ± 12.08 | 36.12 ± 12.46 | −0.02 ± 0.27 |
F | industry | UBL | 43.70 ± 15.98 | 44.00 ± 13.2 | −0.01 ± 0.36 | 36.21 ± 11.98 | 42.28 ± 15.22 | −0.14 ± 0.39 | 20.03 ± 5.98 | 29.27 ± 8.20 | −0.32 ± 0.27 | 30.16 ± 7.05 | 27.15 ± 6.98 | 0.11 ± 0.29 |
S | industry | UBL | 34.60 ± 13.56 | 61.00 ± 24.4 | −0.43 ± 0.55 | 20.49 ± 8.15 | 18.57 ± 7.43 | 0.10 ± 0.42 | 20.67 ± 8.72 | 21.58 ± 8.63 | −0.04 ± 0.45 | 10.54 ± 4.98 | 11.15 ± 5.96 | −0.05 ± 0.34 |
Sp | industry | UBL | 51.50 ± 11.87 | 65.30 ± 16.33 | −0.21 ± 0.23 | 30.84 ± 7.01 | 24.75 ± 6.19 | 0.25 ± 0.11 | 34.04 ± 9.10 | 36.56 ± 9.14 | −0.07 ± 0.19 | 24.32 ± 7.03 | 25.89 ± 7.26 | −0.06 ± 0.21 |
W | industry | UBL | 31.00 ± 12.43 | 41.10 ± 13.44 | −0.25 ± 0.46 | 63.51 ± 17.55 | 64.51 ± 22.58 | −0.02 ± 0.24 | 46.83 ± 14.96 | 46.77 ± 15.43 | 0.00 ± 0.39 | 37.96 ± 12.64 | 36.12 ± 12.46 | 0.05 ± 0.33 |
F | public utilities | UBL | 45.00 ± 15.31 | 44.00 ± 13.2 | 0.02 ± 0.29 | 26.01 ± 7.65 | 42.28 ± 15.22 | −0.38 ± 0.33 | 24.17 ± 6.87 | 29.27 ± 8.20 | −0.17 ± 0.23 | 26.12 ± 6.59 | 27.15 ± 6.98 | −0.04 ± 0.19 |
S | public utilities | UBL | 31.30 ± 12.46 | 61.00 ± 24.4 | −0.49 ± 0.51 | 16.93 ± 5.59 | 18.57 ± 7.43 | −0.09 ± 0.46 | 18.96 ± 9.16 | 21.58 ± 8.63 | −0.12 ± 0.37 | 10.71 ± 5.01 | 11.15 ± 5.96 | −0.04 ± 0.34 |
Sp | public utilities | UBL | 43.70 ± 9.87 | 65.30 ± 16.33 | −0.33 ± 0.31 | 30.75 ± 7.54 | 24.75 ± 6.19 | 0.24 ± 0.12 | 29.34 ± 6.19 | 36.56 ± 9.14 | −0.20 ± 0.12 | 24.61 ± 7.34 | 25.89 ± 7.26 | −0.05 ± 0.21 |
W | public utilities | UBL | 25.30 ± 10.09 | 41.10 ± 13.44 | −0.38 ± 0.42 | 60.39 ± 16.73 | 64.51 ± 22.58 | −0.06 ± 0.24 | 46.45 ± 13.96 | 46.77 ± 15.43 | −0.01 ± 0.36 | 35.76 ± 11.96 | 36.12 ± 12.46 | −0.01 ± 0.31 |
F | garden | GL | 47.70 ± 15.91 | 44.00 ± 13.2 | 0.08 ± 0.32 | 25.96 ± 7.05 | 42.28 ± 15.22 | −0.39 ± 0.31 | 20.52 ± 5.47 | 29.27 ± 8.20 | −0.30 ± 0.21 | 25.42 ± 7.01 | 27.15 ± 6.98 | −0.06 ± 0.24 |
S | garden | GL | 34.50 ± 11.43 | 61.00 ± 24.4 | −0.43 ± 0.49 | 18.63 ± 6.63 | 18.57 ± 7.43 | 0.00 ± 0.48 | 14.01 ± 8.65 | 21.58 ± 8.63 | −0.35 ± 0.35 | 9.56 ± 5.47 | 11.15 ± 5.96 | −0.14 ± 0.38 |
Sp | garden | GL | 44.00 ± 9.12 | 65.30 ± 16.33 | −0.33 ± 0.11 | 33.14 ± 7.54 | 24.75 ± 6.19 | 0.34 ± 0.13 | 24.09 ± 5.46 | 36.56 ± 9.14 | −0.34 ± 0.09 | 24.17 ± 7.68 | 25.89 ± 7.26 | −0.07 ± 0.12 |
W | garden | GL | 32.50 ± 7.21 | 41.10 ± 13.44 | −0.21 ± 0.27 | 53.25 ± 14.21 | 64.51 ± 22.58 | −0.17 ± 0.27 | 44.36 ± 14.12 | 46.77 ± 15.43 | −0.05 ± 0.29 | 35.09 ± 10.96 | 36.12 ± 12.46 | −0.03 ± 0.28 |
F | cornifer-broad mixed | FL | 28.70 ± 12.65 | 54.50 ± 21.8 | −0.47 ± 0.51 | 29.31 ± 11.06 | 25.75 ± 8.50 | 0.14 ± 0.41 | 23.07 ± 7.87 | 35.30 ± 12.33 | −0.35 ± 0.19 | 26.12 ± 8.65 | 27.15 ± 10.25 | −0.04 ± 0.29 |
S | cornifer-broad mixed | FL | 35.30 ± 11.25 | 61.00 ± 27.45 | −0.42 ± 0.29 | 10.08 ± 4.09 | 18.57 ± 7.43 | −0.46 ± 0.21 | 16.41 ± 4.03 | 21.58 ± 7.69 | −0.24 ± 0.15 | 10.71 ± 4.12 | 11.15 ± 6.12 | −0.04 ± 0.31 |
Sp | cornifer-broad mixed | FL | 50.20 ± 18.43 | 57.80 ± 19.07 | −0.13 ± 0.64 | 34.82 ± 11.31 | 42.38 ± 14.12 | −0.18 ± 0.32 | 26.17 ± 7.59 | 30.43 ± 9.84 | −0.14 ± 0.23 | 24.61 ± 7.88 | 25.89 ± 8.47 | −0.05 ± 0.42 |
W | cornifer-broad mixed | FL | 30.90 ± 14.98 | 51.10 ± 22.93 | −0.40 ± 0.45 | 60.44 ± 18.36 | 64.51 ± 21.29 | −0.06 ± 0.18 | 46.40 ± 14.56 | 46.77 ± 16.92 | −0.01 ± 0.42 | 35.76 ± 13.29 | 36.12 ± 11.98 | −0.01 ± 0.50 |
F | residential | UBL | 49.50 ± 16.11 | 44.00 ± 13.2 | 0.13 ± 0.25 | 25.46 ± 7.34 | 42.28 ± 15.22 | −0.40 ± 0.26 | 21.82 ± 8.65 | 29.27 ± 8.20 | −0.25 ± 0.23 | 27.12 ± 7.19 | 27.15 ± 6.98 | 0.00 ± 0.22 |
S | residential | UBL | 35.70 ± 11.21 | 61.00 ± 24.4 | −0.41 ± 0.42 | 17.17 ± 6.98 | 18.57 ± 7.43 | −0.08 ± 0.47 | 16.27 ± 6.34 | 21.58 ± 8.63 | −0.25 ± 0.41 | 11.36 ± 5.76 | 11.15 ± 5.96 | 0.02 ± 0.39 |
Sp | residential | UBL | 49.70 ± 10.78 | 65.30 ± 16.33 | −0.24 ± 0.09 | 31.56 ± 7.08 | 24.75 ± 6.19 | 0.28 ± 0.11 | 27.35 ± 7.12 | 36.56 ± 9.14 | −0.25 ± 0.13 | 24.19 ± 7.63 | 25.89 ± 7.26 | −0.07 ± 0.21 |
W | residential | UBL | 31.40 ± 8.15 | 41.10 ± 13.44 | −0.24 ± 0.31 | 57.34 ± 15.21 | 64.51 ± 22.58 | −0.11 ± 0.29 | 45.03 ± 12.96 | 46.77 ± 15.43 | −0.04 ± 0.30 | 36.33 ± 12.65 | 36.12 ± 12.46 | 0.01 ± 0.34 |
F | deciduous forest | FL | 43.80 ± 20.14 | 54.50 ± 21.8 | −0.20 ± 0.33 | 25.18 ± 5.22 | 25.75 ± 8.50 | −0.02 ± 0.33 | 22.14 ± 8.05 | 35.30 ± 12.33 | −0.37 ± 0.23 | 27.98 ± 8.02 | 27.15 ± 10.25 | 0.03 ± 0.23 |
S | deciduous forest | FL | 49.10 ± 15.21 | 61.00 ± 27.45 | −0.20 ± 0.21 | 17.26 ± 6.32 | 18.57 ± 7.43 | −0.07 ± 0.19 | 17.69 ± 5.43 | 21.58 ± 7.69 | −0.18 ± 0.15 | 11.25 ± 5.36 | 11.15 ± 6.12 | 0.01 ± 0.36 |
Sp | deciduous forest | FL | 65.50 ± 28.16 | 57.80 ± 19.07 | 0.13 ± 0.50 | 30.64 ± 12.08 | 42.38 ± 14.12 | −0.28 ± 0.25 | 29.24 ± 8.97 | 30.43 ± 9.84 | −0.04 ± 0.28 | 24.32 ± 8.01 | 25.89 ± 8.47 | −0.06 ± 0.48 |
W | deciduous forest | FL | 29.60 ± 12.75 | 51.10 ± 22.93 | −0.42 ± 0.46 | 65.14 ± 19.36 | 64.51 ± 21.29 | 0.01 ± 0.45 | 49.09 ± 15.61 | 46.77 ± 16.92 | 0.05 ± 0.52 | 35.47 ± 12.94 | 36.12 ± 11.98 | −0.02 ± 0.52 |
F | planted forest | FL | 48.80 ± 19.52 | 44.00 ± 15.24 | 0.11 ± 0.97 | 25.69 ± 11.25 | 39.28 ± 15.21 | −0.35 ± 0.32 | 26.52 ± 7.65 | 32.27 ± 13.28 | −0.18 ± 0.33 | 27.09 ± 10.23 | 27.15 ± 10.25 | 0.00 ± 0.12 |
S | planted forest | FL | 38.00 ± 12.54 | 61.00 ± 10.35 | −0.38 ± 0.54 | 16.28 ± 4.15 | 18.57 ± 8.64 | −0.12 ± 0.17 | 20.59 ± 5.12 | 21.58 ± 8.33 | −0.05 ± 0.24 | 10.83 ± 6.12 | 11.15 ± 6.12 | −0.03 ± 0.32 |
Sp | planted forest | FL | 59.20 ± 19.54 | 65.30 ± 12.99 | −0.09 ± 0.63 | 27.95 ± 7.63 | 24.75 ± 10.33 | 0.13 ± 0.29 | 32.57 ± 10.98 | 36.56 ± 11.64 | −0.11 ± 0.36 | 23.08 ± 5.97 | 25.89 ± 8.47 | −0.11 ± 0.64 |
W | planted forest | FL | 35.00 ± 14.21 | 41.10 ± 19.32 | −0.15 ± 0.81 | 57.99 ± 12.92 | 64.51 ± 17.33 | −0.10 ± 0.57 | 50.51 ± 15.27 | 46.77 ± 17.25 | 0.08 ± 0.58 | 35.4 ± 12.43 | 36.12 ± 11.98 | −0.02 ± 0.61 |
F | grassland with sparse trees | GL | 37.50 ± 17.27 | 54.50 ± 21.8 | −0.31 ± 0.38 | 30.70 ± 7.69 | 25.75 ± 8.50 | 0.19 ± 0.27 | 21.72 ± 7.98 | 35.30 ± 12.33 | −0.38 ± 0.26 | 27.98 ± 8.06 | 27.15 ± 10.25 | 0.03 ± 0.29 |
S | grassland with sparse trees | GL | 44.90 ± 19.23 | 61.00 ± 27.45 | −0.26 ± 0.25 | 21.10 ± 5.33 | 18.57 ± 7.43 | 0.14 ± 0.31 | 18.15 ± 5.99 | 21.58 ± 7.69 | −0.16 ± 0.20 | 10.25 ± 4.99 | 11.15 ± 6.12 | −0.08 ± 0.33 |
Sp | grassland with sparse trees | GL | 66.00 ± 24.85 | 57.80 ± 19.07 | 0.14 ± 0.17 | 29.70 ± 8.64 | 42.38 ± 14.12 | −0.30 ± 0.29 | 29.81 ± 8.65 | 30.43 ± 9.84 | −0.02 ± 0.32 | 24.79 ± 7.89 | 25.89 ± 8.47 | −0.04 ± 0.47 |
W | grassland with sparse trees | GL | 25.00 ± 11.94 | 51.10 ± 22.93 | −0.51 ± 0.52 | 65.70 ± 19.25 | 64.51 ± 21.29 | 0.02 ± 0.18 | 50.43 ± 15.33 | 46.77 ± 16.92 | 0.08 ± 0.53 | 34.47 ± 11.24 | 36.12 ± 11.98 | −0.05 ± 0.58 |
F | cornifers | FL | 31.50 ± 13.22 | 54.50 ± 21.8 | −0.42 ± 0.29 | 32.16 ± 7.91 | 25.75 ± 8.50 | 0.25 ± 0.31 | 21.52 ± 8.32 | 35.30 ± 12.33 | −0.39 ± 0.23 | 25.42 ± 8.98 | 27.15 ± 10.25 | −0.06 ± 0.27 |
S | cornifers | FL | 50.20 ± 20.17 | 61.00 ± 27.45 | −0.18 ± 0.21 | 9.93 ± 4.12 | 18.57 ± 7.43 | −0.47 ± 0.17 | 17.01 ± 5.31 | 21.58 ± 7.69 | −0.21 ± 0.19 | 9.56 ± 4.21 | 11.15 ± 6.12 | −0.14 ± 0.33 |
Sp | cornifers | FL | 61.10 ± 23.65 | 57.80 ± 19.07 | 0.06 ± 0.12 | 34.04 ± 11.67 | 42.38 ± 14.12 | −0.20 ± 0.20 | 24.09 ± 6.98 | 30.43 ± 9.84 | −0.21 ± 0.28 | 24.17 ± 7.46 | 25.89 ± 8.47 | −0.07 ± 0.49 |
W | cornifers | FL | 26.10 ± 10.87 | 51.10 ± 22.93 | −0.49 ± 0.47 | 59.85 ± 19.33 | 64.51 ± 21.29 | −0.07 ± 0.42 | 45.36 ± 14.03 | 46.77 ± 16.92 | −0.03 ± 0.39 | 35.09 ± 12.96 | 36.12 ± 11.98 | −0.03 ± 0.56 |
F | natural | FL | 46.80 ± 15.37 | 44.00 ± 15.24 | 0.06 ± 0.48 | 26.90 ± 10.05 | 39.28 ± 15.21 | −0.32 ± 0.29 | 19.93 ± 6.61 | 32.27 ± 13.28 | −0.38 ± 0.25 | 25.27 ± 10.33 | 27.15 ± 10.25 | −0.07 ± 0.21 |
S | natural | FL | 35.80 ± 10.54 | 61.00 ± 10.35 | −0.41 ± 0.21 | 13.90 ± 3.97 | 18.57 ± 8.64 | −0.25 ± 0.13 | 16.14 ± 3.95 | 21.58 ± 8.33 | −0.25 ± 0.20 | 9.46 ± 4.21 | 11.15 ± 6.12 | −0.15 ± 0.29 |
Sp | natural | FL | 45.40 ± 12.69 | 65.30 ± 12.99 | −0.30 ± 0.39 | 28.56 ± 7.98 | 24.75 ± 10.33 | 0.15 ± 0.19 | 24.26 ± 7.21 | 36.56 ± 11.64 | −0.34 ± 0.34 | 24.68 ± 5.59 | 25.89 ± 8.47 | −0.05 ± 0.45 |
W | natural | FL | 49.00 ± 12.36 | 44.00 ± 15.24 | 0.11 ± 0.59 | 27.35 ± 10.87 | 39.28 ± 15.21 | −0.30 ± 0.39 | 22.52 ± 6.85 | 32.27 ± 13.28 | −0.30 ± 0.26 | 26.63 ± 8.33 | 27.15 ± 10.25 | −0.02 ± 0.32 |
References
- Zhang, X.; Zhang, S.; Lu, J.; Li, R.; Lin, X.; Gao, W. Isotopic characteristics and sources of suspended particulate organic matter in a reservoir of Chinese desert grassland areas: The influence of dry and wet seasons and the role of atmospheric deposition. Environ. Sci. Pollut. Res. 2023, 30, 39042–39054. [Google Scholar] [CrossRef]
- Wang, W.; He, Q.; Gao, K.; Zhang, M.; Yuan, Y. Spatiotemporal Trends and Influencing Factors of PM2.5 Concentration in Eastern China from 2001 to 2018 Using Satellite-Derived High-Resolution Data. Atmosphere 2022, 13, 1352. [Google Scholar] [CrossRef]
- Usman, F.; Zeb, B.; Alam, K.; Valipour, M.; Ditta, A.; Sorooshian, A.; Roy, R.; Ahmad, I.; Iqbal, R. Exploring the Mass Concentration of Particulate Matter and Its Relationship with Meteorological Parameters in the Hindu-Kush Range. Atmosphere 2022, 13, 1628. [Google Scholar] [CrossRef]
- Song, T.; Feng, M.; Song, D.; Liu, S.; Tan, Q.; Wang, Y.; Luo, Y.; Chen, X.; Yang, F. Comparative Analysis of Secondary Organic Aerosol Formation during PM2.5 Pollution and Complex Pollution of PM2.5 and O3 in Chengdu, China. Atmosphere 2022, 13, 1834. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, N.; Sharma, S.; Jangra, V.; Mehandia, S.; Kumar, S.; Kumar, P. Assessment of Fine Particulate Matter for Port City of Eastern Peninsular India Using Gradient Boosting Machine Learning Model. Atmosphere 2022, 13, 743. [Google Scholar] [CrossRef]
- Baltensperger, U. Spiers Memorial Lecture Introductory lecture: Chemistry in the urban atmosphere. Faraday Discuss. 2016, 189, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Wesener, A. Feeling and interpreting the changing streetscape: Capturing experiences of urban atmospheres in Cuba street, Wellington. Emot. Space Soc. 2024, 52, 101027. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, X.; Cai, R.; Li, X.; Li, Y.; Yin, R.; Li, D.; Yan, C.; Liu, Y.; He, K.; et al. Resolving Atmospheric Oxygenated Organic Molecules in Urban Beijing Using Online Ultrahigh-Resolution Chemical Ionization Mass Spectrometry. Environ. Sci. Technol. 2024, 58, 17777–17785. [Google Scholar] [CrossRef]
- Hoffman, S.; Jasinski, R. The Use of Multilayer Perceptrons to Model PM2.5 Concentrations at Air Monitoring Stations in Poland. Atmosphere 2023, 14, 96. [Google Scholar] [CrossRef]
- Gao, C.; Liu, M. The Impact of Local Environment and Neighboring Pollution on the Spatial Variation of Particulate Matter in Chinese Mainland. Atmosphere 2023, 14, 186. [Google Scholar] [CrossRef]
- GB3095-1996; Environmental Air Quality Standard’ promulgated. Environmental Protection Department: Beijing, China, 1996.
- Li, Y.; Zhang, Z.; Xing, Y. Long-Term Change Analysis of PM2.5 and Ozone Pollution in China’s Most Polluted Region during 2015–2020. Atmosphere 2022, 13, 104. [Google Scholar] [CrossRef]
- Osbourne, A.; Cante, F. Convivial atmotechnics: Animating atmospheres of togetherness and indeterminacy in Kingston and Abidjan. Environ. Plan. D Soc. Space. 2025. [Google Scholar] [CrossRef]
- Kosmopoulos, G.; Salamalikis, V.; Matrali, A.; Pandis, S.N.; Kazantzidis, A. Insights about the Sources of PM2.5 in an Urban Area from Measurements of a Low-Cost Sensor Network. Atmosphere 2022, 13, 440. [Google Scholar] [CrossRef]
- Paiva, D. The paradox of atmosphere: Tourism, heritage, and urban liveability. Ann. Tour. Res. 2023, 101, 103600. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Surapipith, V.; Macatangay, R.C. Projection of the Near-Future PM2.5 in Northern Peninsular Southeast Asia under RCP8.5. Atmosphere 2022, 13, 305. [Google Scholar] [CrossRef]
- Bautista, A.; Velasco, F.; Guzmán, S.; de la Fuente, D.; Cayuela, F.; Morcillo, M. Corrosion behavior of powder metallurgical stainless steels in urban and marine environments. Rev. De Metal. 2006, 42, 175–184. [Google Scholar] [CrossRef]
- Bui, Q.T.; Nguyen, D.L.; Bui, T.H. Seasonal Characteristics of Atmospheric PM2.5 in an Urban Area of Vietnam and the Influence of Regional Fire Activities. Atmosphere 2022, 13, 1911. [Google Scholar] [CrossRef]
- Bullo, M.; Lakkis, G.; Pustilnik, M.; Bonfiglio, J.I.; Di Pasquale, R.; Gonzalez, L.M.; Gonzalez-Aleman, G.; Lamas, M.C.; Salvia, A.; Langsam, M.; et al. The Relationship between PM2.5 and Health Vulnerability in Argentina in 2010. Atmosphere 2023, 14, 1662. [Google Scholar] [CrossRef]
- Eronen, M. Aesthetic atmospheres and their affordances in urban squares. J. Place Manag. Dev. 2024, 17, 257–275. [Google Scholar] [CrossRef]
- Gao, X.; Ruan, Z.; Liu, J.; Chen, Q.; Yuan, Y. Analysis of Atmospheric Pollutants and Meteorological Factors on PM2.5 Concentration and Temporal Variations in Harbin. Atmosphere 2022, 13, 1426. [Google Scholar] [CrossRef]
- Han, S.; Um, J. Scavenging Efficiency Based on Long-Term Characteristics of Precipitation and Particulate Matters in Seoul, Korea. Atmos. -Korea 2023, 33, 367–385. [Google Scholar] [CrossRef]
- Reed, D.E.; Lei, C.; Baule, W.; Shirkey, G.; Chen, J.; Czajkowski, K.P.; Ouyang, Z. Impacts of an urban density gradient on land-atmosphere turbulent heat fluxes across seasonal timescales. Theor. Appl. Clim. 2024, 155, 8557–8566. [Google Scholar] [CrossRef]
- Kobzeva, T.V.; Dultseva, G.G.; Dubtsov, S.N.; Stekleneva, M.E. Natural and Anthropogenic Sources of Organic Aerosol in the Atmosphere: Kinetics and Mechanism of Formation in the Forest-steppe Zone of West Siberia. Atmos. Ocean. Opt. 2024, 37, 614–619. [Google Scholar] [CrossRef]
- El Hajj, O.; Hartness, S.W.; Vandergrift, G.W.; Park, Y.; Glenn, C.K.; Anosike, A.; Webb, A.R.; Dewey, N.S.; Doner, A.C.; Cheng, Z.; et al. Alkylperoxy radicals are responsible for the formation of oxygenated primary organic aerosol. Sci. Adv. 2023, 9, eadj2832. [Google Scholar] [CrossRef] [PubMed]
- Talu, C. ‘The Effect of London’: Urban Atmospheres and Alice Meynell’s London Impressions. Emot. Hist. Cult. Soc. 2022, 6, 96–116. [Google Scholar] [CrossRef]
- Li, J.; Deqing, Z.; Liang, J.; Guo, T.; Yao, J.; Liu, W. Combustion aerosols and suspended dust with controlled processes in Lhasa: Elemental analysis and size distribution characteristics. J. Environ. Sci. 2023, 148, 591–601. [Google Scholar] [CrossRef]
- CJJT85-2002; Standard of Urban Green Space Classification. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2002.
- Abusaada, H.; Elshater, A.; Elrahman, A.S.A. Articulating assemblage theory for salient urban atmospheres in children’s environments. Ain Shams Eng. J. 2021, 12, 2331–2343. [Google Scholar] [CrossRef]
- Liu, S.; Han, Y.; Wang, P.; Zhang, G.J.; Wang, B.; Wang, Y. More Heavy Precipitation in World Urban Regions Captured Through a Two-Way Subgrid Land-Atmosphere Coupling Framework in the NCAR CESM2. Geophys. Res. Lett. 2024, 51, e2024GL108747. [Google Scholar] [CrossRef]
- Litvintsev, K.Y.; Dekterev, A.A.; Meshkova, V.D.; Filimonov, S.A. Influence of radiation on the formation of wind and temperature regimes in urban environment. Thermophys. Aeromechanics 2023, 30, 683–694. [Google Scholar] [CrossRef]
- Lin, J.; Wang, X.; Lin, G. Performance and atmosphere in urban public spaces: Street music in Guangzhou, China. Geogr. Res. 2024, 62, 279–292. [Google Scholar] [CrossRef]
- Kataoka, H.; Tanaka, K.; Tazuya-Murayama, K.; Yamashita, T.; Nishikawa, J.-I. Effects of Coarse and Fine Atmospheric Particulate Matter on a Mast Cell Line. Yakugaku Zasshi-J. Pharm. Soc. Jpn. 2023, 143, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Kondratyeva, E.V.; Vitkina, T.I. Effects of atmospheric suspended particulate matter on the immune system. Russ. Open Med J. 2024, 13, e0103. [Google Scholar] [CrossRef]
- Belgacemi, R.; Baptista, B.R.; Justeau, G.; Toigo, M.; Frauenpreis, A.; Yilmaz, R.; Der Vartanian, A.; Cazaunau, M.; Pangui, E.; Bergé, A.; et al. Complex urban atmosphere alters alveolar stem cells niche properties and drives lung fibrosis. Am. J. Physiol. Cell. Mol. Physiol. 2023, 325, L447–L459. [Google Scholar] [CrossRef] [PubMed]
- Di Croce, N.; Bild, E. How do urban policies shape atmosphere? A multimethod inquiry of the sonic environment. Urban Res. Pr. 2024, 17, 416–437. [Google Scholar] [CrossRef]
- Huo, M.; Yamashita, K.; Chen, F.; Sato, K. Spatial-Temporal Variation in Health Impact Attributable to PM2.5 and Ozone Pollution in the Beijing Metropolitan Region of China. Atmosphere 2022, 13, 1813. [Google Scholar] [CrossRef]
- Jiao, X.; Dong, Z.; Baccolo, G.; Qin, X.; Wei, T.; Di, J.; Shao, Y. Quantifying uranium radio-isotope ratios in riverine suspended particulate matter: Insights into natural and anthropogenic influences in the glacial-fed river system of the NE Tibetan Plateau. J. Hazard. Mater. 2024, 461, 132725. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, Y.; Wang, H. Relationships Among Atmospheric Suspended Particulates with Different Sizes: A Case Study of Chongqing City. Atmosphere 2025, 16, 609. https://doi.org/10.3390/atmos16050609
Gui Y, Wang H. Relationships Among Atmospheric Suspended Particulates with Different Sizes: A Case Study of Chongqing City. Atmosphere. 2025; 16(5):609. https://doi.org/10.3390/atmos16050609
Chicago/Turabian StyleGui, Yan, and Haiyang Wang. 2025. "Relationships Among Atmospheric Suspended Particulates with Different Sizes: A Case Study of Chongqing City" Atmosphere 16, no. 5: 609. https://doi.org/10.3390/atmos16050609
APA StyleGui, Y., & Wang, H. (2025). Relationships Among Atmospheric Suspended Particulates with Different Sizes: A Case Study of Chongqing City. Atmosphere, 16(5), 609. https://doi.org/10.3390/atmos16050609