Evaluating Policy Interventions for Air Quality During a National Sports Event with Machine Learning and Causal Framework
Abstract
:1. Introduction
2. Methodology
2.1. Quasi-Natural Experimental Designs
2.2. Data Source
2.3. Weather Normalisation
2.4. Augmented Synthetic Control Method
3. Results and Discussion
3.1. Weather-Normalised Concentration Trends
3.2. NMG Policy Impact on Air Quality
3.2.1. NGM Policy Impact on Pollutants
3.2.2. Variations Across Monitoring Stations
3.3. Traffic-Related Air Pollution and Increment Trends
3.3.1. Annual Trend and Pre-NMG vs. During-NMG Traffic Increment Analysis
3.3.2. Diurnal Variations in Traffic Increments
4. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NMG | The 11th National Traditional Games of Ethnic Minorities of China |
ASCM | Augmented synthetic control method |
NO2 | Nitrogen dioxide |
PM10 | Coarse particles |
PM2.5 | Fine particles |
O3 | Ozone |
NOX | Nitrogen oxides |
VOCs | Volatile organic compounds |
RF | Random Forests |
SCM | Synthetic control method |
BAU | Business-as-usual |
NAQM | National air quality monitoring |
BSAQ | Background station for air quality monitoring |
TSAQ | Traffic station for air quality monitoring |
GBM | Gradient boosting machine |
RMSE | Root mean square error |
Pre-NMG | The pre-intervention period from 15 June 2019 to 31 July 2019, prior to the implementation of the NMG policy |
During-NMG | The post-intervention period from 1 August 2019 to 16 September 2019, following the introduction of the NMG policy |
References
- Watanabe, N.; Yan, G.; McLeod, C. The Impact of Sporting Events on Air Pollution: An Empirical Examination of National Football League Games. Sustainability 2023, 15, 5568. [Google Scholar] [CrossRef]
- de Prado Bert, P.; Mercader, E.M.H.; Pujol, J.; Sunyer, J.; Mortamais, M. The effects of air pollution on the brain: A review of studies interfacing environmental epidemiology and neuroimaging. Curr. Environ. Health Rep. 2018, 5, 351–364. [Google Scholar] [CrossRef]
- Laeremans, M.; Dons, E.; Avila-Palencia, I.; Carrasco-Turigas, G.; Orjuela, J.P.; Anaya, E.; Cole-Hunter, T.; De Nazelle, A.; Nieuwenhuijsen, M.; Standaert, A. Short-term effects of physical activity, air pollution and their interaction on the cardiovascular and respiratory system. Environ. Int. 2018, 117, 82–90. [Google Scholar] [CrossRef]
- McCafferty, W.B.; Horvath, S. Air Pollution and Athletic Performance; Thomas Springfield: Springfield, IL, USA, 1981. [Google Scholar]
- Reche, C.; Viana, M.; Van Drooge, B.L.; Fernández, F.J.; Escribano, M.; Castaño-Vinyals, G.; Nieuwenhuijsen, M.; Adami, P.E.; Bermon, S. Athletes’ exposure to air pollution during World Athletics Relays: A pilot study. Sci. Total Environ. 2020, 717, 137161. [Google Scholar] [CrossRef]
- Cusick, M.; Rowland, S.T.; DeFelice, N. Impact of air pollution on running performance. Sci. Rep. 2023, 13, 1832. [Google Scholar] [CrossRef]
- Lee, H.Y.; Kim, H.-J.; Kim, H.J.; Na, G.; Jang, Y.; Kim, S.H.; Kim, N.H.; Kim, H.C.; Park, Y.-J.; Kim, H.C. The impact of ambient air pollution on lung function and respiratory symptoms in elite athletes. Sci. Total Environ. 2023, 855, 158862. [Google Scholar] [CrossRef]
- Li, K.; Chen, L.; White, S.J.; Zheng, X.; Lv, B.; Lin, C.; Bao, Z.; Wu, X.; Gao, X.; Ying, F. Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou. Environ. Pollut. 2018, 232, 42–54. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Wild, O.; Xu, W.; Chen, C.; Fu, P.; Du, W.; Zhou, L.; Zhang, Q.; Han, T. “APEC Blue”: Secondary aerosol reductions from emission controls in Beijing. Sci. Rep. 2016, 6, 20668. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Y.; Wang, Y.; Ou, Y.; Chen, D.; Pei, C.; Huang, Z.; Zhang, Z.; Liu, T.; Luo, S. Evaluating the effectiveness of multiple emission control measures on reducing volatile organic compounds in ambient air based on observational data: A case study during the 2010 Guangzhou Asian Games. Sci. Total Environ. 2020, 723, 138171. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Zhang, J.; He, K.; Wu, Y.; Xu, J. Emission controls and changes in air quality in Guangzhou during the Asian Games. Atmos. Environ. 2013, 76, 81–93. [Google Scholar] [CrossRef]
- Li, S.-W.; Li, H.-B.; Luo, J.; Li, H.-M.; Qian, X.; Liu, M.-M.; Bi, J.; Cui, X.-Y.; Ma, L.Q. Influence of pollution control on lead inhalation bioaccessibility in PM2.5: A case study of 2014 Youth Olympic Games in Nanjing. Environ. Int. 2016, 94, 69–75. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, X.; Zhou, B.; Zhao, Z. Impacts of a mega sporting event on local carbon emissions: A case of the 2014 Nanjing Youth Olympics. China Econ. Rev. 2022, 73, 101782. [Google Scholar] [CrossRef]
- Mao, Y.; Liu, W.; Hu, T.; Shi, M.; Cheng, C.; Zhan, C.; Zhang, L.; Zhang, J.; Sweetman, A.J.; Jones, K.C. Impact of short-term control measures on air quality: A case study during the 7th Military World Games in central China. Environ. Pollut. 2022, 311, 119998. [Google Scholar] [CrossRef]
- Tao, M.; Huang, H.; Chen, N.; Ma, F.; Wang, L.; Chen, L.; Wang, L.; Zhang, L.; Xiang, J.; Kong, H. Contrasting effects of emission control on air pollution in Central China during the 2019 Military World Games based on satellite and ground observations. Atmos. Res. 2021, 259, 105657. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, S.; Chen, X.; Zhang, Y.; Li, M.; Li, Z.; Song, Z.; Li, P.; Zhang, X.; Lichtfouse, E. Large contributions of emission reductions and meteorological conditions to the abatement of PM2.5 in Beijing during the 24th Winter Olympic Games in 2022. J. Environ. Sci. 2024, 136, 172–188. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, Z.; Li, S.; Chen, Z. The Impact of the Beijing Winter Olympic Games on Air Quality in the Beijing–Tianjin–Hebei Region: A Quasi-Natural Experiment Study. Sustainability 2023, 15, 11252. [Google Scholar] [CrossRef]
- Li, L.; Wu, D.; Chang, X.; Tang, Y.; Hua, Y.; Xu, Q.C.; Deng, S.H.; Wang, S.X.; Hao, J.M. Polar organic aerosol tracers in two areas in Beijing-Tianjin-Hebei region: Concentration comparison before and in the sept. Third Parade and sources. Environ. Pollut. 2021, 270, 116108. [Google Scholar] [CrossRef]
- Ren, Y.; Li, H.; Meng, F.; Wang, G.; Zhang, H.; Yang, T.; Li, W.; Ji, Y.; Bi, F.; Wang, X. Impact of emission controls on air quality in Beijing during the 2015 China Victory Day Parade: Implication from organic aerosols. Atmos. Environ. 2019, 198, 207–214. [Google Scholar] [CrossRef]
- Yu, S.J.; Su, F.C.; Yin, S.S.; Wang, S.B.; Xu, R.X.; He, B.; Fan, X.G.; Yuan, M.H.; Zhang, R.Q. Characterization of ambient volatile organic compounds, source apportionment, and the ozone-NOx-VOC sensitivities in a heavily polluted megacity of central China: Effect of sporting events and emission reductions. Atmos. Chem. Phys. 2021, 21, 15239–15257. [Google Scholar] [CrossRef]
- Mork, D.; Delaney, S.; Dominici, F. Policy-induced air pollution health disparities: Statistical and data science considerations. Science 2024, 385, 391–396. [Google Scholar] [CrossRef]
- Su, F.; Xu, Q.; Wang, K.; Yin, S.; Wang, S.; Zhang, R.; Tang, X.; Ying, Q. On the effectiveness of short-term intensive emission controls on ozone and particulate matter in a heavily polluted megacity in central China. Atmos. Environ. 2021, 246, 118111. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, S.Y.; Wei, W.; Yang, X.W.; Wang, X.Q.; Jia, J.; Lang, J.L.; Lv, Z. Characteristics and emission-reduction measures evaluation of PM2.5 during the two major events: APEC and Parade. Sci. Total Environ. 2017, 595, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.Y.; Lv, Z.F.; Qi, L.J.; Wang, X.T.; Shi, M.S.; Liu, H. A big data approach to improving the vehicle emission inventory in China. Nat. Commun. 2020, 11, 2801. [Google Scholar] [CrossRef] [PubMed]
- Franco, V.; Kousoulidou, M.; Muntean, M.; Ntziachristos, L.; Hausberger, S.; Dilara, P. Road vehicle emission factors development: A review. Atmos. Environ. 2013, 70, 84–97. [Google Scholar] [CrossRef]
- Geng, Y.B.; Wang, Z.T.; Shen, L.; Zhao, J.N. Calculating of CO2 emission factors for Chinese cement production based on inorganic carbon and organic carbon. J. Clean. Prod. 2019, 217, 503–509. [Google Scholar] [CrossRef]
- Harrison, R.M.; Van Vu, T.; Jafar, H.; Shi, Z. More mileage in reducing urban air pollution from road traffic. Environ. Int. 2021, 149, 106329. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Geng, G.N.; Hong, C.P.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.Y.; Man, H.Y.; et al. Anthropogenic emission inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Ban, J.; Zhao, P.; Chen, M. Retrospective analysis of 2015–2017 wintertime PM2.5 in China: Response to emission regulations and the role of meteorology. Atmos. Chem. Phys. 2019, 19, 7409–7427. [Google Scholar] [CrossRef]
- Cheng, J.; Su, J.; Cui, T.; Li, X.; Dong, X.; Sun, F.; Yang, Y.; Tong, D.; Zheng, Y.; Li, Y. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: A model-based decomposition analysis. Atmos. Chem. Phys. 2019, 19, 6125–6146. [Google Scholar] [CrossRef]
- Grange, S.K.; Carslaw, D.C.; Lewis, A.C.; Boleti, E.; Hueglin, C. Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. Phys. 2018, 18, 6223–6239. [Google Scholar] [CrossRef]
- Vu, T.V.; Shi, Z.; Cheng, J.; Zhang, Q.; He, K.; Wang, S.; Harrison, R.M. Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique. Atmos. Chem. Phys. 2019, 19, 11303–11314. [Google Scholar] [CrossRef]
- Abadie, A. Using synthetic controls: Feasibility, data requirements, and methodological aspects. J. Econ. Lit. 2021, 59, 391–425. [Google Scholar] [CrossRef]
- Liu, B.; Bryson, J.R.; Sevinc, D.; Cole, M.A.; Elliott, R.J.; Bartington, S.E.; Bloss, W.J.; Shi, Z. Assessing the impacts of Birmingham’s clean air zone on air quality: Estimates from a machine learning and synthetic control approach. Environ. Resour. Econ. 2023, 86, 203–231. [Google Scholar] [CrossRef]
- Song, C.; Liu, B.; Cheng, K.; Cole, M.A.; Dai, Q.; Elliott, R.J.; Shi, Z. Attribution of air quality benefits to clean winter heating policies in China: Combining machine learning with causal inference. Environ. Sci. Technol. 2023, 57, 17707–17717. [Google Scholar] [CrossRef]
- Hilker, N.; Wang, J.M.; Jeong, C.-H.; Healy, R.M.; Sofowote, U.; Debosz, J.; Su, Y.; Noble, M.; Munoz, A.; Doerksen, G. Traffic-related air pollution near roadways: Discerning local impacts from background. Atmos. Meas. Tech. 2019, 12, 5247–5261. [Google Scholar] [CrossRef]
- Pandolfi, M.; Mooibroek, D.; Hopke, P.; van Pinxteren, D.; Querol, X.; Herrmann, H.; Alastuey, A.; Favez, O.; Hüglin, C.; Perdrix, E. Long-range and local air pollution: What can we learn from chemical speciation of particulate matter at paired sites? Atmos. Chem. Phys. 2020, 20, 409–429. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Yin, D.; He, J.; Liu, N.; Qu, J.; Xiao, J. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ. Int. 2016, 86, 92–106. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China. GB 3095-2012; Ambient Air Quality Standard. China Environmental Science Press: Beijing, China, 2012.
- Carslaw, D.C. Davidcarslaw. Available online: http://github.com/davidcarslaw/ (accessed on 1 February 2023).
- Dai, Y.; Liu, B.; Tong, C.; Shi, Z. Aqpet—An R package for air quality policy evaluation. Environ. Model. Softw. 2024, 177, 106052. [Google Scholar] [CrossRef]
- LeDell, E.; Poirier, S. H2O AutoML: Scalable automatic machine learning. In Proceedings of the 7th ICML Workshop on Automated Machine Learning (AutoML 2020), San Diego, CA, USA, 18 July 2020. [Google Scholar]
- Zheng, Z.; Fiore, A.M.; Westervelt, D.M.; Milly, G.P.; Goldsmith, J.; Karambelas, A.; Curci, G.; Randles, C.A.; Paiva, A.R.; Wang, C. Automated machine learning to evaluate the information content of tropospheric trace gas columns for fine particle estimates over India: A modeling testbed. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003099. [Google Scholar] [CrossRef]
- Chi, Y.-Y.; Wang, Y.-Y.; Xu, J.-H. Estimating the impact of the license plate quota policy for ICEVs on new energy vehicle adoption by using synthetic control method. Energy Policy 2021, 149, 112022. [Google Scholar] [CrossRef]
- Gilchrist, D.; Emery, T.; Garoupa, N.; Spruk, R. Synthetic control method: A tool for comparative case studies in economic history. J. Econ. Surv. 2023, 37, 409–445. [Google Scholar] [CrossRef]
- Ben-Michael, E.; Feller, A.; Rothstein, J. The augmented synthetic control method. J. Am. Stat. Assoc. 2021, 116, 1789–1803. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, Y.; Zhong, Y.; Xu, S.; Liang, Y.; Liu, S.; He, X.; Zhu, J.; Shibamoto, T.; He, M. Spatio-temporal analysis of urban air pollutants throughout China during 2014–2019. Air Qual. Atmos. Health 2021, 14, 1619–1632. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Li, J.; Wang, Z.; Yang, W.; Chen, X.; Wei, Y. Sources of PM2.5 and its responses to emission reduction strategies in the Central Plains Economic Region in China: Implications for the impacts of COVID-19. Environ. Pollut. 2021, 288, 117783. [Google Scholar] [CrossRef]
- Henan Provincial Department of Ecological Environment. Available online: https://sthjt.henan.gov.cn/2018/02-06/1043833.html (accessed on 14 July 2024).
- The People’s Government of Henan Province. Available online: https://m.henan.gov.cn/2021/02-04/2091229.html (accessed on 18 November 2024).
- Wang, Y.; Duan, X.; Liang, T.; Wang, L.; Wang, L. Analysis of spatio-temporal distribution characteristics and socioeconomic drivers of urban air quality in China. Chemosphere 2022, 291, 132799. [Google Scholar] [CrossRef]
- Yin, D.; Zhao, S.; Qu, J. Spatial and seasonal variations of gaseous and particulate matter pollutants in 31 provincial capital cities, China. Air Qual. Atmos. Health 2017, 10, 359–370. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Zhang, Z.; Cheng, Y. Spatiotemporal variation and source analysis of air pollutants in the Harbin-Changchun (HC) region of China during 2014–2020. Environ. Sci. Ecotechnol. 2021, 8, 100126. [Google Scholar] [CrossRef]
- Ma, M.; Yao, G.; Guo, J.; Bai, K. Distinct spatiotemporal variation patterns of surface ozone in China due to diverse influential factors. J. Environ. Manag. 2021, 288, 112368. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, R.; Sun, S.; Gao, M.; Zheng, B.; Zhang, D.; Zhang, Y.; Carmichael, G.R.; Zhang, H. Aggravated air pollution and health burden due to traffic congestion in urban China. Atmos. Chem. Phys. 2023, 23, 2983–2996. [Google Scholar] [CrossRef]
- Akimoto, H.; Tanimoto, H. Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone–Challenges toward a denitrified society. Atmos. Environ. 2022, 277, 119033. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, N.; Zhang, R.; Yu, X.; Li, S.; Miao, Q. Composition analysis of PM2.5 at multiple sites in Zhengzhou, China: Implications for characterization and source apportionment at different pollution levels. Environ. Sci. Pollut. Res. 2021, 28, 59329–59344. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Li, Q.; Shi, W. Estimation and analysis of emissions from on-road vehicles in Mainland China for the period 2011–2015. Atmos. Environ. 2018, 191, 500–512. [Google Scholar] [CrossRef]
- Singh, V.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. High resolution vehicular PM10 emissions over megacity Delhi: Relative contributions of exhaust and non-exhaust sources. Sci. Total Environ. 2020, 699, 134273. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.; Liu, L.; Dore, A.J.; Tang, A.; Lu, L.; Wu, Q.; Zhang, Y.; Hao, T.; Pan, Y. Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors. Atmos. Environ. 2019, 210, 241–252. [Google Scholar] [CrossRef]
- Zhang, X.; Fung, J.C.; Lau, A.K.; Hossain, M.S.; Louie, P.K.; Huang, W. Air quality and synergistic health effects of ozone and nitrogen oxides in response to China’s integrated air quality control policies during 2015–2019. Chemosphere 2021, 268, 129385. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Han, M.; Ren, G.; Liu, G.; Wang, X.; Du, K.; Zhang, X.; Lin, H. A comprehensive investigation on source apportionment and multi-directional regional transport of volatile organic compounds and ozone in urban Zhengzhou. Chemosphere 2023, 334, 139001. [Google Scholar] [CrossRef]
- Chu, B.; Ding, Y.; Gao, X.; Li, J.; Zhu, T.; Yu, Y.; He, H. Coordinated control of fine-particle and ozone pollution by the substantial reduction of nitrogen oxides. Engineering 2022, 15, 13–16. [Google Scholar] [CrossRef]
- Lin, Z.; Ji, Y.; Lin, Y.; Yang, Y.; Gao, Y.; Wang, M.; Xiao, Y.; Zhao, J.; Feng, Y.; Yang, W. PM10 and PM2.5 chemical source profiles of road dust over China: Composition, spatio-temporal distribution, and source apportionment. Urban Clim. 2023, 51, 101672. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Wang, Z.; Wang, L.; Dao, X.; Zhu, L.; Pan, X.; Li, Y.; Sun, Y.; Ma, S. Source apportionment of PM2.5 in the most polluted Central Plains Economic Region in China: Implications for joint prevention and control of atmospheric pollution. J. Clean. Prod. 2021, 283, 124557. [Google Scholar] [CrossRef]
- Wu, Y.; Gu, B.; Erisman, J.W.; Reis, S.; Fang, Y.; Lu, X.; Zhang, X. PM2.5 pollution is substantially affected by ammonia emissions in China. Environ. Pollut. 2016, 218, 86–94. [Google Scholar] [CrossRef]
- Yang, J.; Liu, P.; Song, H.; Miao, C.; Wang, F.; Xing, Y.; Wang, W.; Liu, X.; Zhao, M. Effects of Anthropogenic Emissions from Different Sectors on PM2.5 Concentrations in Chinese Cities. Int. J. Environ. Res. Public Health 2021, 18, 10869. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, F.; Min, R.; Song, G.; Song, H.; Zhai, S.; Xia, H.; Zhang, H.; Ru, X. Contribution of local and surrounding anthropogenic emissions to a particulate matter pollution episode in Zhengzhou, Henan, China. Sci. Rep. 2023, 13, 8771. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Song, C.; Liu, B.; Lu, G.; Xu, J.; Van Vu, T.; Elliott, R.J.; Li, W.; Bloss, W.J.; Harrison, R.M. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 2021, 7, eabd6696. [Google Scholar] [CrossRef]
- Zhengzhou Municipal People’s Government. Available online: https://public.zhengzhou.gov.cn/02Q/305496.jhtml (accessed on 26 May 2024).
- Henan Economic Daily. Available online: https://mbd.baidu.com/newspage/data/landingsuper?rs=2631667997&ruk=70H0PN3umKgmwPe2On7efg&urlext=%7B%22cuid%22%3A%22lOSoi0iJ280m8S8T_u2rag8IvugC8HadluS18_a7S8Kr0qqSB%22%7D&isBdboxFrom=1&pageType=1&sid_for_share=&context=%7B%22nid%22%3A%22news_9406587344368166081%22,%22sourceFrom%22%3A%22search%22%7D (accessed on 26 May 2024).
- Ali-Taleshi, M.S.; Bakhtiari, A.R.; Hopke, P.K. Meteorologically normalized spatial and temporal variations investigation using a machine learning-random forest model in criteria pollutants across Tehran, Iran. Urban Clim. 2024, 53, 101790. [Google Scholar] [CrossRef]
- Pültz, J.; Banzhaf, S.; Thürkow, M.; Kranenburg, R.; Schaap, M. Source attribution of particulate matter in Berlin. Atmos. Environ. 2023, 292, 119416. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Available online: https://www.mee.gov.cn/gkml/hbb/bgg/201601/t20160118_326596.htm (accessed on 20 July 2024).
- Beevers, S.D.; Westmoreland, E.; de Jong, M.C.; Williams, M.L.; Carslaw, D.C. Trends in NOx and NO2 emissions from road traffic in Great Britain. Atmos. Environ. 2012, 54, 107–116. [Google Scholar] [CrossRef]
- Huang, Y.; Unger, N.; Harper, K.; Heyes, C. Global climate and human health effects of the gasoline and diesel vehicle fleets. GeoHealth 2020, 4, e2019GH000240. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/201909/t20190904_732374.html (accessed on 20 July 2024).
- Ministry of Ecology and Environment of the People’s Republic of China. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202008/t20200810_793252.html (accessed on 20 July 2024).
- Anenberg, S.; Miller, J.; Henze, D.; Minjares, R. A Global Snapshot of the Air Pollution-Related Health Impacts of Transportation Sector Emissions in 2010 and 2015; International Council on Clean Transportation: Washington, DC, USA, 2019; pp. 1–48. [Google Scholar]
- Qu, W.; Wang, J.; Zhang, X.; Wang, Y.; Gao, S.; Zhao, C.; Sun, L.; Zhou, Y.; Wang, W.; Liu, X. Effect of weakened diurnal evolution of atmospheric boundary layer to air pollution over eastern China associated to aerosol, cloud–ABL feedback. Atmos. Environ. 2018, 185, 168–179. [Google Scholar] [CrossRef]
- Napi, N.M.; Abdullah, S.; Ahmed, A.; Mansor, A.A.; Ismail, M. Annual and diurnal trend of surface ozone (O3) in industrial area. IOP Conf. Ser. Earth Environ. Sci. 2020, 498, 012062. [Google Scholar]
- Su, F.; Xu, Q.; Yin, S.; Wang, K.; Liu, G.; Wang, P.; Kang, M.; Zhang, R.; Ying, Q. Contributions of local emissions and regional background to summertime ozone in central China. J. Environ. Manag. 2023, 338, 117778. [Google Scholar] [CrossRef]
- Henan Business Daily. Available online: http://hn.zhonghongwang.com/show-140-9600-1.html (accessed on 31 July 2024).
Serial Number | City | Longitude | Latitude | GDP (in Billions of Yuan) | Population (in Ten Thousands) |
---|---|---|---|---|---|
1 | Baoding | 115.5 | 38.9 | 3881 | 1170 |
2 | Cangzhou | 116.8 | 38.3 | 3588 | 759 |
3 | Changchun | 125.7 | 44.0 | 7002 | 910 |
4 | Dongying | 118.6 | 37.5 | 3899 | 220 |
5 | Eerduosi | 110.0 | 39.8 | 5850 | 222 |
6 | Haerbin | 126.6 | 45.9 | 5576 | 940 |
7 | Heze | 115.5 | 35.2 | 4465 | 864 |
8 | Jinan | 117.1 | 36.7 | 9443 | 883 |
9 | Langfang | 116.7 | 39.5 | 3526 | 480 |
10 | Lanzhou | 103.9 | 36.1 | 3487 | 443 |
11 | Linyi | 118.4 | 35.1 | 4600 | 1124 |
12 | Nanchang | 115.9 | 28.6 | 5596 | 555 |
13 | Qiangdao | 120.4 | 36.1 | 11,741 | 940 |
14 | Suqian | 118.3 | 34.0 | 3099 | 493 |
15 | Taiyuan | 112.6 | 37.9 | 4028 | 443 |
16 | Tianjin | 117.2 | 39.1 | 14,104 | 1560 |
17 | Weifang | 119.1 | 36.7 | 5689 | 934 |
18 | Xuzhou | 117.3 | 34.2 | 7151 | 892 |
19 | Yulin | 109.7 | 38.3 | 4136 | 370 |
20 | Zibo | 118.1 | 36.8 | 3642 | 471 |
Location | Sampling Period | Sampling Type | Traffic Increment | % Increase | Reference |
---|---|---|---|---|---|
Zhengzhou, China | 2019. 6.15–7.31 | PM2.5 | 10.8 | 39.7 | This study |
PM10 | 12.5 | 17.4 | |||
PM2.5–10 | 1.7 | 3.9 | |||
NO | 8.6 | 288.6 | |||
NO2 | 37.9 | 140.8 | |||
NOX | 39.8 | 127.4 | |||
2019. 8.1–9.16 | PM2.5 | 5.7 | 21.6 | ||
PM10 | 9.1 | 15.1 | |||
PM2.5–10 | 3.4 | 10.1 | |||
NO | 9.6 | 269.1 | |||
NO2 | 30.5 | 144.9 | |||
NOX | 38.4 | 149.7 | |||
2018–2019 | PM2.5 | 13.4 | 27.9 | ||
PM10 | 15.6 | 15.5 | |||
PM2.5–10 | 2.2 | 4.3 | |||
NO | 25.5 | 598.5 | |||
NO2 | 39.4 | 114.9 | |||
NOX | 75.1 | 174.0 | |||
Tehran, Iran | 2019 | PM2.5 | 1.04 | 5.16 | [72] |
PM10 | 7.98 | 11.5 | |||
CO | 0.01 | 2.31 | |||
NO | 3.22 | 17.1 | |||
NO2 | −1.02 | −1.21 | |||
NOX | 11.0 | 13.4 | |||
O3 | −0.38 | 0.62 | |||
SO2 | 0.45 | 8.88 | |||
London, Britain | 2016–2018 | PM2.5 | 5.1 | 48.6 | [27] |
PM10 | 8.1 | 48.5 | |||
PM2.5–10 | 3.0 | 48.4 | |||
NO2 | 54.9 | 170.0 | |||
NOX | 230.3 | 460.6 | |||
Paris, France | 2016–2018 | PM2.5 | 4.9 | 39.5 | |
PM10 | 15.0 | 71.1 | |||
PM2.5–10 | 10.1 | 116.1 | |||
NO2 | 58.6 | 192.1 | |||
NOX | n.a | n.a | |||
Berlin, Germany | 2016–2018 | PM2.5 | 1.9 | 11.9 | |
PM10 | 4.3 | 18.6 | |||
PM2.5–10 | 2.4 | 33.8 | |||
NO2 | 14.0 | 53.8 | |||
NOX | 46.6 | 129.8 | |||
Beijing, China | 2016–2018 | PM2.5 | 4.8 | 7.5 | |
PM10 | 7.2 | 7.2 | |||
PM2.5–10 | 2.3 | 6.4 | |||
NO2 | 18.7 | 37.9 | |||
NOX | n.a | n.a | |||
Hong Kong, China | 2016–2018 | PM2.5 | 4.8 | 22.7 | |
PM10 | 3.0 | 8.8 | |||
PM2.5–10 | −1.8 | −13.8 | |||
NO2 | 43.2 | 112.5 | |||
NOX | 127.2 | 219.7 | |||
Istanbul, Turkey | 2016–2018 | PM2.5 | 1.8 | 8.2 | |
PM10 | 11.2 | 32.0 | |||
PM2.5–10 | 9.4 | 71.8 | |||
NO2 | 38.3 | 116.8 | |||
NOX | n.a | n.a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Xu, R.; Liu, B.; Kong, M.; Yang, Y.; Shi, Z.; Zhang, R.; Dai, Y. Evaluating Policy Interventions for Air Quality During a National Sports Event with Machine Learning and Causal Framework. Atmosphere 2025, 16, 557. https://doi.org/10.3390/atmos16050557
Guo J, Xu R, Liu B, Kong M, Yang Y, Shi Z, Zhang R, Dai Y. Evaluating Policy Interventions for Air Quality During a National Sports Event with Machine Learning and Causal Framework. Atmosphere. 2025; 16(5):557. https://doi.org/10.3390/atmos16050557
Chicago/Turabian StyleGuo, Jing, Ruixin Xu, Bowen Liu, Mengdi Kong, Yue Yang, Zongbo Shi, Ruiqin Zhang, and Yuqing Dai. 2025. "Evaluating Policy Interventions for Air Quality During a National Sports Event with Machine Learning and Causal Framework" Atmosphere 16, no. 5: 557. https://doi.org/10.3390/atmos16050557
APA StyleGuo, J., Xu, R., Liu, B., Kong, M., Yang, Y., Shi, Z., Zhang, R., & Dai, Y. (2025). Evaluating Policy Interventions for Air Quality During a National Sports Event with Machine Learning and Causal Framework. Atmosphere, 16(5), 557. https://doi.org/10.3390/atmos16050557