Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (534)

Search Parameters:
Keywords = film methodology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3890 KiB  
Article
Visualization of Film Formation Process of Copolyesteramide Containing Phthalazine Moieties During Interfacial Polymerization
by Zeyuan Liu, Hailong Li, Qian Liu, Zhaoqi Wang, Danhui Wang, Peiqi Xu, Xigao Jian and Shouhai Zhang
Membranes 2025, 15(8), 233; https://doi.org/10.3390/membranes15080233 - 1 Aug 2025
Viewed by 180
Abstract
Interfacial polymerization (IP) has been widely utilized to synthesize composite membranes. However, precise control of this reaction remains a challenge due to the complexity of the IP process. Herein, an optical three-dimensional microscope was used to directly observe the IP process. To construct [...] Read more.
Interfacial polymerization (IP) has been widely utilized to synthesize composite membranes. However, precise control of this reaction remains a challenge due to the complexity of the IP process. Herein, an optical three-dimensional microscope was used to directly observe the IP process. To construct copolyesteramide containing phthalazine moiety films, rigid monomer 4-(4′-hydroxyphenyl)-2,3-phthalazin-1-one (DHPZ) and flexible monomer piperazine (PIP) were used as aqueous phase monomers, and trimesoyl chloride (TMC) served as the organic phase monomer. Multilayer cellular structures were observed for the copolyesteramide films during the IP process. The effects of multiple factors including the ratio between flexible and rigid monomers, co-solvents, and the addition of phase transfer catalysts on the film growth and the morphologies were investigated. This research aims to deepen our understanding of the IP process, especially for the principles which govern polymer film growth and morphology, to promote new methodologies for regulating interfacial polymerization in composite membrane preparation. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

15 pages, 2384 KiB  
Article
Optimization of TEMPO-Mediated Oxidation of Chitosan to Enhance Its Antibacterial and Antioxidant Activities
by Abdellah Mourak, Aziz Ait-Karra, Mourad Ouhammou, Abdoussadeq Ouamnina, Abderrahim Boutasknit, Mohamed El Hassan Bouchari, Najat Elhadiri and Abdelhakim Alagui
Polysaccharides 2025, 6(3), 65; https://doi.org/10.3390/polysaccharides6030065 - 28 Jul 2025
Viewed by 155
Abstract
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing [...] Read more.
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing the efficiency of the reaction. The structural modifications to the chitosan following oxidation were confirmed using Fourier-transform infrared spectroscopy (FTIR), alongside additional analytical techniques, which validated the successful introduction of carbonyl and carboxyl functional groups. Solvent-cast films were prepared from both native and oxidized chitosan in order to evaluate their functional performance. The antibacterial activity of these films was assessed against Gram-negative (Salmonella) and Gram-positive (Streptococcus faecalis) bacterial strains. The oxidized chitosan films exhibited significantly enhanced antibacterial effects, particularly at shorter incubation periods. In addition, antioxidant activity was evaluated using DPPH radical scavenging and ferrous ion chelation assays, which both revealed a marked improvement in radical scavenging ability and metal ion binding capacity in oxidized chitosan. These findings confirm that TEMPO-mediated oxidation effectively enhances the physicochemical and bioactive properties of chitosan, highlighting its potential for biomedical and environmental applications. Full article
Show Figures

Figure 1

40 pages, 1654 KiB  
Review
Bioactive Plant-Derived Compounds as Novel Perspectives in Oral Cancer Alternative Therapy
by Gabriela Mitea, Verginica Schröder and Irina Mihaela Iancu
Pharmaceuticals 2025, 18(8), 1098; https://doi.org/10.3390/ph18081098 - 24 Jul 2025
Viewed by 433
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most serious forms of cancer in the world. The opportunities to decrease the mortality rate would lie in the possibility of earlier identification of this pathology, and at the same time, the immediate [...] Read more.
Background: Oral squamous cell carcinoma (OSCC) is one of the most serious forms of cancer in the world. The opportunities to decrease the mortality rate would lie in the possibility of earlier identification of this pathology, and at the same time, the immediate approach of anticancer therapy. Furthermore, new treatment strategies for OSCC are needed to improve existing therapeutic options. Bioactive compounds found in medicinal plants could be used to support these strategies. It is already known that they have an increased potential for action and a safety profile; therefore, they could improve the therapeutic effect of classical chemotherapeutic agents in combination therapies. Methodology: This research was based on an extensive review of recently published studies in scientific databases (PubMed, Scopus, and Web of Science). The selection criteria were based on experimental protocols investigating molecular mechanisms, synergistic actions with conventional anticancer agents, and novel formulation possibilities (e.g., nanoemulsions and mucoadhesive films) for the targeted delivery of bioactive compounds in OSCC. Particular attention was given to in vitro, in vivo, translational, and clinical studies that have proven therapeutic relevance. Results: Recent discoveries regarding the effect of bioactive compounds in the treatment of oral cancer were analyzed, with a view to integrating them into oncological practice for increasing therapeutic efficacy and reducing the occurrence of adverse reactions and treatment resistance. Conclusions: Significant progress has been achieved in this review, allowing us to appreciate that the valorization of these bioactive compounds is emerging. Full article
Show Figures

Graphical abstract

28 pages, 20978 KiB  
Article
From Painting to Cinema: Archetypes of the European Woman as a Cultural Mediator in the Western genre
by Olga Kosachova
Arts 2025, 14(4), 83; https://doi.org/10.3390/arts14040083 - 23 Jul 2025
Viewed by 430
Abstract
The Western genre has traditionally been associated with American identity and male-dominated narratives. However, recent decades have seen increasing attention to female protagonists, particularly the European woman as a cultural mediator within the frontier context. This study aims to identify the archetypes of [...] Read more.
The Western genre has traditionally been associated with American identity and male-dominated narratives. However, recent decades have seen increasing attention to female protagonists, particularly the European woman as a cultural mediator within the frontier context. This study aims to identify the archetypes of the European woman in the Western genre through a diachronic and comparative analysis of the visual language found in European painting from the late 17th to early 19th centuries and in 20th–21st century cinema. The research methodology combines narrative, visual, and semiotic analysis, with a focus on intermedial and intertextual parallels between visual art and film. The study identifies nine archetypal models corresponding to goddesses of the Greek pantheon and traces their transformation across different aesthetic systems. These archetypes, rooted in artistic traditions such as Baroque, Classicism, Romanticism, and others, reappear in Western films through compositional, symbolic, and iconographic strategies, demonstrating their persistence and ability to transcend temporal, medial, and geographical boundaries. The findings suggest that the woman in the Western genre is not merely a central character, but a visual sign that activates cultural memory and engages with deep archetypal structures embedded in the collective unconscious. Full article
(This article belongs to the Special Issue What is ‘Art’ Cinema?)
Show Figures

Figure 1

24 pages, 10648 KiB  
Article
Green-Synthesized Silver Nanoparticle-Loaded Antimicrobial Films: Preparation, Characterization, and Food Preservation
by Wenxi Yu, Qin Lei, Jingxian Jiang, Jianwei Yan, Xijian Yi, Juan Cheng, Siyu Ou, Wenjia Yin, Ziyan Li and Yuru Liao
Foods 2025, 14(14), 2509; https://doi.org/10.3390/foods14142509 - 17 Jul 2025
Viewed by 397
Abstract
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and [...] Read more.
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and concentration of AgNO3 were considered using a central composite design coupled with response surface methodology to obtain the optimum AgNPs (2 h, 75 °C, 2 mM). Analysis of substance concentration changes confirmed that the higher phenolic and flavonoid content in MRLE acted as reducing agents and stabilizers in AgNP synthesis, participating in the reaction rather than adsorbing to nanoparticles. TEM, XRD, and FTIR images revealed a spherical shape of the prepared AgNPs, with an average diameter of 8.23 ± 4.27 nm. The incorporation of AgNPs@MMT significantly enhanced the mechanical properties of the films, with the elongation at break and shear strength increasing by 65.19% and 52.10%, respectively, for the PAM2 sample. The films exhibited strong antimicrobial activity against both Escherichia coli (18.56 mm) and Staphylococcus aureus (20.73 mm). The films demonstrated effective food preservation capabilities, significantly reducing weight loss and extending the shelf life of packaged grapes and bananas. Molecular dynamics simulations reveal the diffusion behavior of AgNPs in different matrices, while the measured silver migration (0.25 ± 0.03 mg/kg) complied with EFSA regulations (10 mg/kg), confirming its food safety. These results demonstrate the film’s potential as an active packaging material for fruit preservation. Full article
Show Figures

Figure 1

13 pages, 1678 KiB  
Review
Recent Advances in Amyloids Structural Studies and Thin Film Applications
by Eugenia Pechkova, Stefano Fiordoro, Alberto Izzotti and Christian Riekel
Molecules 2025, 30(14), 2908; https://doi.org/10.3390/molecules30142908 - 9 Jul 2025
Viewed by 341
Abstract
Amyloids are protein-based biomaterials composed of fibrils with cross-β cores. Previously only associated with degenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, and diabetes, amyloids remain active and functional both in vivo and in vitro conditions, enabling a variety of applications in medicine, [...] Read more.
Amyloids are protein-based biomaterials composed of fibrils with cross-β cores. Previously only associated with degenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, and diabetes, amyloids remain active and functional both in vivo and in vitro conditions, enabling a variety of applications in medicine, nanotechnology, and biotechnology. This review aims to review the most advanced methods for amyloid fibril structural studies, with special attention on amyloid thin films. Selected advances of biomedical and biotechnological relevance will be outlined, and perspectives for future studies in the context of ongoing methodological progress will be discussed. Full article
Show Figures

Figure 1

23 pages, 2710 KiB  
Review
Recent Advances in Chemical Vapor Deposition of Hexagonal Boron Nitride on Insulating Substrates
by Hua Xu, Kai Li, Zuoquan Tan, Jiaqi Jia, Le Wang and Shanshan Chen
Nanomaterials 2025, 15(14), 1059; https://doi.org/10.3390/nano15141059 - 8 Jul 2025
Viewed by 617
Abstract
Direct chemical vapor deposition (CVD) growth of hexagonal boron nitride (h-BN) on insulating substrates offers a promising pathway to circumvent transfer-induced defects and enhance device integration. This comprehensive review systematically evaluates recent advances in CVD techniques for h-BN synthesis on insulating substrates, including [...] Read more.
Direct chemical vapor deposition (CVD) growth of hexagonal boron nitride (h-BN) on insulating substrates offers a promising pathway to circumvent transfer-induced defects and enhance device integration. This comprehensive review systematically evaluates recent advances in CVD techniques for h-BN synthesis on insulating substrates, including metal–organic CVD (MOCVD), low-pressure CVD (LPCVD), atmospheric-pressure CVD (APCVD), and plasma-enhanced CVD (PECVD). Key challenges, including precursor selection, high-temperature processing, achieving single-crystalline films, and maintaining phase purity, are critically analyzed. Special emphasis is placed on comparative performance metrics across different growth methodologies. Furthermore, crucial research directions for future development in this field are outlined. This review aims to serve as a reference for advancing h-BN synthesis toward practical applications in next-generation electronic and optoelectronic devices. Full article
Show Figures

Figure 1

11 pages, 2735 KiB  
Article
Tensile Properties and Mechanism of Carbon Fiber Triaxial Woven Fabric Composites
by Yunfei Rao, Chen Zhang and Miao Yi
Materials 2025, 18(13), 3154; https://doi.org/10.3390/ma18133154 - 3 Jul 2025
Viewed by 312
Abstract
The manufacturing methodologies for carbon fiber triaxial woven fabric composites demonstrate significant variability, resulting in the failure mechanisms under tensile loading conditions, and the fundamental role of interweaving points remains unclear. Moreover, the mechanisms of destruction under tensile loads have not been sufficiently [...] Read more.
The manufacturing methodologies for carbon fiber triaxial woven fabric composites demonstrate significant variability, resulting in the failure mechanisms under tensile loading conditions, and the fundamental role of interweaving points remains unclear. Moreover, the mechanisms of destruction under tensile loads have not been sufficiently studied. In this study, the resin transfer molding and resin film infusion were selected to fabricate carbon fiber triaxial woven fabric composites, with a specific focus on their effects on the tensile properties of carbon fiber triaxial woven composites. Compared with ordinary materials, the tensile load of carbon fiber triaxial woven fabric composites after yarn spreading has increased by more than 30%. The strength can reach 1133 MPa after yarn spreading of 3k carbon fiber, which was 39% higher than the original. Furthermore, acoustic emission monitoring shows that the counts of acoustic signals in the first half dropped from 10,000 to around 3000, mostly due to the reduction of resin and fiber/matrix debonding. The digital image correlation provided full-field strain analysis, which proved that the strain of the fibers at the interweaving points decreased significantly during the stretching process after yarn spreading. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 2702 KiB  
Article
Real-Time Depth Monitoring of Air-Film Cooling Holes in Turbine Blades via Coherent Imaging During Femtosecond Laser Machining
by Yi Yu, Ruijia Liu, Chenyu Xiao and Ping Xu
Photonics 2025, 12(7), 668; https://doi.org/10.3390/photonics12070668 - 2 Jul 2025
Viewed by 362
Abstract
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, [...] Read more.
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, thereby effectively preventing backside damage. To tackle this issue, a spectrum-domain coherent imaging technique has been developed. This innovative approach adapts the fundamental principle of fiber-based Michelson interferometry by integrating the air-film hole into a sample arm configuration. A broadband super-luminescent diode with a 830 nm central wavelength and a 26 nm spectral bandwidth serves as the coherence-optimized illumination source. An optimal normalized reflectivity of 0.2 is established to maintain stable interference fringe visibility throughout the drilling process. The system achieves a depth resolution of 11.7 μm through Fourier transform analysis of dynamic interference patterns. With customized optical path design specifically engineered for through-hole-drilling applications, the technique demonstrates exceptional sensitivity, maintaining detection capability even under ultralow reflectivity conditions (0.001%) at the hole bottom. Plasma generation during laser processing is investigated, with plasma density measurements providing optical thickness data for real-time compensation of depth measurement deviations. The demonstrated system represents an advancement in non-destructive in-process monitoring for high-precision laser machining applications. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

23 pages, 4984 KiB  
Article
Design and Experiment of the Belt-Tooth Residual Film Recovery Machine
by Zebin Gao, Xinlei Zhang, Jiaxi Zhang, Yichao Wang, Jinming Li, Shilong Shen, Wenhao Dong and Xiaoxuan Wang
Agriculture 2025, 15(13), 1422; https://doi.org/10.3390/agriculture15131422 - 30 Jun 2025
Viewed by 289
Abstract
To address poor film pickup, incomplete soil–film separation, and high soil content in conventional residual film recovery machines, this study designed a belt-tooth type residual film recovery machine. Its core component integrates flexible belts with nail-teeth, providing both overload protection and efficient conveying. [...] Read more.
To address poor film pickup, incomplete soil–film separation, and high soil content in conventional residual film recovery machines, this study designed a belt-tooth type residual film recovery machine. Its core component integrates flexible belts with nail-teeth, providing both overload protection and efficient conveying. EDEM simulations compared film pickup performance across tooth profiles, identifying an optimal structure. Based on the kinematics and mechanical properties of residual film, a film removal mechanism and packing device were designed, incorporating partitioned packing belts to reduce soil content rate in the collected film. Using Box–Behnken experimental design, response surface methodology analyzed the effects of machine forward speed, film-lifting tooth penetration depth, and pickup belt inclination angle. Key findings show: forward speed, belt angle, and tooth depth (descending order) primarily influence recovery rate; while tooth depth, belt angle, and forward speed primarily affect soil content rate. Multi-objective optimization in Design-Expert determined optimal parameters: 5.2 km/h speed, 44 mm tooth depth, and 75° belt angle. Field validation achieved a 90.15% recovery rate and 5.86% soil content rate. Relative errors below 2.73% confirmed the regression model’s reliability. Compared with common models, the recovery rate has increased slightly, while the soil content rate has decreased by more than 4%, meeting the technical requirements for resource recovery of residual plastic film. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 1109 KiB  
Article
Optimization of the Green Conventional Extraction Method of Sericin from Silkworm
by Daniel Stiven Burgos Gomez, Maite Rada-Mendoza and Diana M. Chito-Trujillo
Polymers 2025, 17(13), 1823; https://doi.org/10.3390/polym17131823 - 30 Jun 2025
Viewed by 308
Abstract
In the silk production process, cocoons from Bombyx mori worm are degummed and separated from their components. This step generates large residual quantities of an aqueous solution containing various chemical substances, including sericin—a protein that, when discarded improperly, negatively impacts the environment. Sodium [...] Read more.
In the silk production process, cocoons from Bombyx mori worm are degummed and separated from their components. This step generates large residual quantities of an aqueous solution containing various chemical substances, including sericin—a protein that, when discarded improperly, negatively impacts the environment. Sodium bicarbonate and coconut soap are commonly used in the degumming process. The phosphates in the soap and the sodium bicarbonate increase the biological oxygen demand (BOD) and chemical oxygen demand (COD), leading to water contamination. In this study, a Box–Behnken experimental design was used to maximize the extraction of sericin through a conventional extraction under chemical-free conditions. From a total of 45 experiments, the optimal extraction conditions were identified as a solid-to-liquid ratio of 1:20 w/v, a temperature of 120 °C, and 90 min of extraction time. Sericin yields ranged from 9% to 18%. Infrared spectroscopic characterization of the extracted sericin confirmed the presence of protein-specific functional groups and common interactions associated with β-sheet structures. Fractions of high molecular weight (50 kDa to 200 kDa), identified by means of Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis, demonstrate the potential functionality of extracted sericin for the development of biopolymer films useful in biomedical and food industry applications. The optimized methodology is a good alternative to recycle the waste of sericulture chain for obtaining extracts enriched in sericin, as well as to promote the mechanization of artisanal production processes. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 1045 KiB  
Article
Audiovisual Inclusivity: Configuration and Structure of LGBTQIA+ Production on Streaming Platforms in Spain
by Julio Moreno-Díaz, Nerea Cuenca-Orellana and Natalia Martínez-Pérez
Arts 2025, 14(4), 72; https://doi.org/10.3390/arts14040072 - 26 Jun 2025
Viewed by 775
Abstract
This study presents an exhaustive analysis of LGBTQIA+ audiovisual production available on the main streaming platforms in Spain, covering both Spanish and international content. Using a sample of 1490 works from ten video-on-demand services (Apple TV+, Disney+, Filmin, FlixOlé, Max, Movistar Plus+, Netflix, [...] Read more.
This study presents an exhaustive analysis of LGBTQIA+ audiovisual production available on the main streaming platforms in Spain, covering both Spanish and international content. Using a sample of 1490 works from ten video-on-demand services (Apple TV+, Disney+, Filmin, FlixOlé, Max, Movistar Plus+, Netflix, Prime Video, Rakuten, and SkyShowtime), this study examines how the offered catalogues are configured and structured in response to the commercial dynamics of the LGBTQIA+ production market. Using quantitative methodology, the research addresses the industrial production models, the agents involved and the characteristics of the most widely offered narrative genres and formats, highlighting distribution patterns and visibility in the catalogues. The findings include a marked international abundance, a reflection of the global market guidelines and the hegemony of narratives aimed at transnational audiences. National productions, although less numerous, are a significant contribution to the audiovisual landscape, incorporating cultural identities with an LGBTQIA+ representation that is more aligned with local realities. The central role of independent producers is observed in production models where international agreements are outlined as a key strategy. In addition, it highlights the prevalence of genres such as drama and comedy, together with that of the film format. The visibility and representation of sexual and gender diversity indicates a positive commercial response, although with considerable challenges. Full article
(This article belongs to the Section Film and New Media)
Show Figures

Figure 1

22 pages, 10839 KiB  
Article
A Parametric Study of Epoxy-Bonded CF/QF-BMI Composite Joints Using a Method Combining RBF Neural Networks and NSGA-II Algorithm
by Xiaobo Yang, Xingyu Zou, Jingyu Zhang, Ruiqing Guo, He Xiang, Lihua Zhan and Xintong Wu
Polymers 2025, 17(13), 1769; https://doi.org/10.3390/polym17131769 - 26 Jun 2025
Viewed by 369
Abstract
The epoxy-bonded joint between carbon-fiber-reinforced bismaleimide (CF-BMI) and quartz-fiber-reinforced bismaleimide (QF-BMI) composites can meet the structure–function integration requirements of next-generation aviation equipment, and the structural design of their bonding zones directly affects their service performance. Hence, in this study, the carbon-fiber-reinforced bismaleimide composite [...] Read more.
The epoxy-bonded joint between carbon-fiber-reinforced bismaleimide (CF-BMI) and quartz-fiber-reinforced bismaleimide (QF-BMI) composites can meet the structure–function integration requirements of next-generation aviation equipment, and the structural design of their bonding zones directly affects their service performance. Hence, in this study, the carbon-fiber-reinforced bismaleimide composite ZT7H/5429, the woven quartz-fiber-reinforced bismaleimide composite QW280/5429, and epoxy adhesive film J-116 were used as research materials to investigate the influence of the bonding area size on the mechanical properties, and this study proposes a novel design methodology combining radial basis function (RBF) neuron machine learning with the NSGA-II algorithm to enhance the mechanical properties of the bonded components. First, a finite element simulation model considering 3D hashin criteria and cohesion was established, and its accuracy was verified with experiments. Second, the RBF neuron model was trained using the finite element tensile strength and shear strength data from various adhesive layer parameter combinations. Then, the multi-objective parameter optimization of the surrogate model was accomplished through the NSGA-II algorithm. The research results demonstrate a high consistency between the finite element simulation results and experimental outcomes for the epoxy-bonded CF/QF-BMI composite joint. The stress distribution of the adhesive layers is similar under the different structural parameters of adhesive films, though the varying structural dimensions of the adhesive layers lead to distinct failure modes. The trained RBF neuron model controls the prediction error within 2.21%, accurately reflecting the service performance under various adhesive layer parameters. The optimized epoxy-bonded CF/QF-BMI composite joint exhibits 16.1% and 11.2% increases in the tensile strength and shear strength, respectively. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials, 2nd Edition)
Show Figures

Figure 1

16 pages, 717 KiB  
Review
Modification of Cellulose Nanocrystals Using Polydopamine for the Modulation of Biodegradable Packaging, Polymeric Films: A Mini Review
by Amanda L. Souza, Victor G. L. Souza, Meirielly Jesus, Fernando Mata, Taila V. de Oliveira and Nilda de F. F. Soares
Sustainability 2025, 17(12), 5633; https://doi.org/10.3390/su17125633 - 18 Jun 2025
Cited by 1 | Viewed by 690
Abstract
This review delves into environmentally conscious sustainable packaging materials, focusing on biodegradable polymers and innovative surface modification methodologies. Synthetic plastics have revolutionized various industries due to their physical attributes and affordability, particularly in packaging applications. Nonetheless, the substantial volume of plastic waste, especially [...] Read more.
This review delves into environmentally conscious sustainable packaging materials, focusing on biodegradable polymers and innovative surface modification methodologies. Synthetic plastics have revolutionized various industries due to their physical attributes and affordability, particularly in packaging applications. Nonetheless, the substantial volume of plastic waste, especially from non-biodegradable sources, has provoked heightened environmental apprehensions. Notably, polymers derived from natural sources, such as cellulose, are classified as biopolymers and esteemed for their ecological benevolence. Among these, cellulose and its derivatives stand out as renewable and abundant substances, holding promise for sustainable packaging solutions. Nano-sized cellulose fibers’ incorporation into biodegradable films garners interest due to their remarkable surface area, robust mechanical strength, and other commendable properties. Surface modification techniques, such as a polydopamine (PDA) coating, have been explored to improve the dispersion, interfacial compatibility, and mechanical performance of cellulose nanocrystals (CNC) when incorporated into biodegradable polymer films. In this sense, PDA, derived from mussel proteins’ dopamine component, displays exceptional adhesion to diverse surfaces and has been extensively scrutinized for its distinctive attributes. Therefore, the core focus of this review was to approach ecologically friendly packaging materials, specifically investigating the synergy between CNC and PDA. The unparalleled adhesive characteristics of PDA serve as a catalyst for enhancing CNC, thereby elevating the performance of biodegradable polymers with potential implications across various domains. Full article
Show Figures

Figure 1

18 pages, 4146 KiB  
Article
From Cinema to Sufism: The Artistic and Mystical Life of Turkish Screenwriter Ayşe Şasa (1941–2014)
by Büşra Çakmaktaş
Religions 2025, 16(6), 787; https://doi.org/10.3390/rel16060787 - 17 Jun 2025
Viewed by 472
Abstract
This article examines the contributions of Turkish screenwriter Ayşe Şasa (1941–2014) to Turkish cinema and visual culture through her engagement with Sufism and metaphysical themes. It explores how Şasa draws on esoteric Sufi concepts such as the oneness of being (waḥdat al-wujūd [...] Read more.
This article examines the contributions of Turkish screenwriter Ayşe Şasa (1941–2014) to Turkish cinema and visual culture through her engagement with Sufism and metaphysical themes. It explores how Şasa draws on esoteric Sufi concepts such as the oneness of being (waḥdat al-wujūd), asceticism (zuhd), and inspiration (ilhām), using cinema as a vehicle for spiritual inquiry and the quest for truth (ḥaqīqa). Her films—including Hear the Reed (Dinle Neyden), The Night That Never Was (Hiçbir Gece), and My Friend the Devil (Arkadaşım Şeytan)—are explored through thematic and interpretive approaches that uncover their Sufi dimensions. The methodological approach combines Gillian Rose’s visual methodology, Klaus Krippendorff’s content analysis, and Arthur Asa Berger’s interpretive model. Rose’s framework facilitates an exploration of symbolic narrative in Şasa’s films and writings, while Krippendorff’s methods identify recurring metaphysical motifs. Berger’s approach uncovers layered meanings in visual and narrative elements. Through narrative structure, symbolic imagery, color, setting, costume, light, and sound, Şasa constructs a spiritually resonant cinematic esthetic that challenges the secular paradigms of modern cinema. Ultimately, this article argues that Şasa develops a distinct cinematic language grounded in Sufi metaphysics, enriching Turkish visual culture with a profound spiritual and moral sensibility. Full article
Show Figures

Figure 1

Back to TopTop