Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (660)

Search Parameters:
Keywords = film machine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2771 KiB  
Article
Numerical Simulation and Experimental Study of Millisecond Percussion Drilling in Titanium Alloy
by Liang Wang, Long Xu, Changjian Wu, Yefei Rong and Kaibo Xia
Materials 2025, 18(15), 3719; https://doi.org/10.3390/ma18153719 (registering DOI) - 7 Aug 2025
Abstract
This study addresses the challenge of drilling film-cooling holes in the turbine blades of aircraft engines. Titanium alloy TC4 was selected as the experimental material. The laser-drilling process was simulated with ANSYS to determine optimal parameters, which were subsequently applied in machining trials. [...] Read more.
This study addresses the challenge of drilling film-cooling holes in the turbine blades of aircraft engines. Titanium alloy TC4 was selected as the experimental material. The laser-drilling process was simulated with ANSYS to determine optimal parameters, which were subsequently applied in machining trials. An impact-drilling method was then used to evaluate how pulse width, pulse energy, and pulse count affect micro-hole entrance and exit diameters, taper, and roundness. Simulations revealed that pulse energy and pulse count predominantly govern entrance and exit diameters, whereas pulse count and pulse width exert a stronger influence on taper. Experiments confirmed that entrance and exit diameters increased as pulse energy rose from 2.0 J to 2.8 J; taper increased as pulse width widened from 0.6 ms to 1.4 ms; and entrance diameter, exit diameter, and taper all grew as pulse count rose from 40 to 60. Pulse width and pulse count also significantly affected hole roundness. Full article
25 pages, 6843 KiB  
Article
Design and Experimental Investigation of Pneumatic Drum-Sieve-Type Separator for Transforming Mixtures of Protaetia Brevitarsis Larvae
by Yuxin Yang, Changhe Niu, Xin Shi, Jianhua Xie, Yongxin Jiang and Deying Ma
AgriEngineering 2025, 7(8), 244; https://doi.org/10.3390/agriengineering7080244 - 1 Aug 2025
Viewed by 201
Abstract
In response to the need for separation and utilization of residual film mixtures after transformation of protaetia brevitarsis larvae, a pneumatic drum-sieve-type separator for transforming mixtures of protaetia brevitarsis larvae was designed. First, the suspension velocity of each component was determined by the [...] Read more.
In response to the need for separation and utilization of residual film mixtures after transformation of protaetia brevitarsis larvae, a pneumatic drum-sieve-type separator for transforming mixtures of protaetia brevitarsis larvae was designed. First, the suspension velocity of each component was determined by the suspension speed test. Secondly, the separation process of residual film, larvae, and insect sand was formulated on the basis of biological activities, shape differences, and aerodynamic response characteristics. Eventually, the main structural parameters and working parameters of the machine were determined. In order to optimize the separation effect, a single-factor experiment and a quadratic regression response surface experiment containing three factors and three levels were carried out, and the corresponding regression model was established. The experimental results showed that the effects of the air speed at the inlet, inclination angle of the sieve cylinder, and rotational speed of the sieve cylinder on the impurity rate of the residual film decreased in that order, and that the effects of the rotational speed of the sieve cylinder, inclination angle of the sieve cylinder, and air speed at the inlet on the inactivation rate of the larvae decreased in that order. Through parameter optimization, a better combination of working parameters was obtained: the rotational speed of the sieve cylinder was 24 r/min, the inclination angle of the sieve cylinder was −0.43°, and the air speed at the inlet was 5.32 m/s. The average values of residual film impurity rate and larval inactivation rate obtained from the material sieving test under these parameters were 8.74% and 3.18%, with the relative errors of the theoretically optimized values being less than 5%. The results of the study can provide a reference for the resource utilization of residual film and impurity mixtures and the development of equipment for the living body separation of protaetia brevitarsis. Full article
Show Figures

Figure 1

11 pages, 2733 KiB  
Article
Laser Texturing of Tungsten Carbide (WC-Co): Effects on Adhesion and Stress Relief in CVD Diamond Films
by Argemiro Pentian Junior, José Vieira da Silva Neto, Javier Sierra Gómez, Evaldo José Corat and Vladimir Jesus Trava-Airoldi
Surfaces 2025, 8(3), 54; https://doi.org/10.3390/surfaces8030054 - 30 Jul 2025
Viewed by 238
Abstract
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by [...] Read more.
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by chemical treatment (Murakami’s solution + aqua regia) to remove surface cobalt. Diamond films were grown via HFCVD and characterized by Raman spectroscopy, EDS, and Rockwell indentation. The results demonstrate that pyramidal texturing increased the surface area by a factor of 58, promoting effective mechanical interlocking and reducing compressive stresses to −1.4 GPa. Indentation tests revealed suppression of interfacial cracks, with propagation paths deflected toward textured regions. The pyramidal geometry exhibited superior cutting post-deposition cooling time for stress relief from 3 to 1 h. These findings highlight the potential of laser texturing for high-performance machining tool applications. Full article
Show Figures

Figure 1

22 pages, 7901 KiB  
Article
Research on the Load Characteristics of Aerostatic Spindle Considering Straightness Errors
by Guoqing Zhang, Yu Guo, Guangzhou Wang, Wenbo Wang, Youhua Li, Hechun Yu and Suxiang Zhang
Lubricants 2025, 13(8), 326; https://doi.org/10.3390/lubricants13080326 - 26 Jul 2025
Viewed by 213
Abstract
As the core component of ultra-precision machine tools, the manufacturing errors of aerostatic spindles are inevitable due to the limitations of machining and assembly processes, and these errors significantly affect the spindle’s static and dynamic performance. To address this issue, a force model [...] Read more.
As the core component of ultra-precision machine tools, the manufacturing errors of aerostatic spindles are inevitable due to the limitations of machining and assembly processes, and these errors significantly affect the spindle’s static and dynamic performance. To address this issue, a force model of the unbalanced air film, considering the straightness errors of the rotor’s radial and thrust surfaces, was constructed. Unlike conventional studies that rely solely on idealized error assumptions, this research integrates actual straightness measurement data into the simulation process, enabling a more realistic and precise prediction of bearing performance. Rotors with different tolerance specifications were fabricated, and static performance simulations were carried out based on the measured geometry data. An experimental setup was built to evaluate the performance of the aerostatic spindle assembled with these rotors. The experimental results were compared with the simulation outcomes, confirming the validity of the proposed model. To further quantify the influence of straightness errors on the static characteristics of aerostatic spindles, ideal functions were used to define representative manufacturing error profiles. The results show that a barrel-shaped error on the radial bearing surface can cause a load capacity variation of up to 46.6%, and its positive effect on air film load capacity is more significant than that of taper or drum shapes. For the thrust bearing surface, a concave-shaped error can lead to a load capacity variation of up to 13.4%, and its enhancement effect is superior to those of the two taper and convex-shaped errors. The results demonstrate that the straightness errors on the radial and thrust bearing surfaces are key factors affecting the radial and axial load capacities of the spindle. Full article
Show Figures

Figure 1

14 pages, 2195 KiB  
Article
Experimental and Simulation Analysis on Wet Slip Performance Between Tread Rubber and Road Surface
by Yang Wan, Benlong Su, Guochang Lin, Youshan Wang, Gege Huang and Jian Wu
J. Compos. Sci. 2025, 9(8), 394; https://doi.org/10.3390/jcs9080394 - 25 Jul 2025
Viewed by 347
Abstract
Optimisation of the anti-skid properties of tyres is a significant area of composite applications. For investigating the wet slip friction characteristics, the wet slip friction test of tread rubber and road surface was carried out using the comprehensive tire friction testing machine. The [...] Read more.
Optimisation of the anti-skid properties of tyres is a significant area of composite applications. For investigating the wet slip friction characteristics, the wet slip friction test of tread rubber and road surface was carried out using the comprehensive tire friction testing machine. The wet slip properties of different formulated rubbers under various working conditions such as different slip speeds, water film thicknesses and vertical loads were compared through the test. Subsequently, an orthogonal test programme was designed to investigate the degree of significant influence of each factor on the wet slip performance. A three-dimensional finite element model of tread rubber and road surface with water film was established in order to facilitate analysis of the wet slip properties. The simulation results were utilised to elucidate the pattern of the effects of different loads on the wet slip friction characteristics. Results indicate that the wet slip friction coefficient is subject to decrease in proportion to the magnitude of the vertical load; the friction coefficient of rubber block in wet slip condition exhibits a decline of approximately 26% in comparison with that of dry condition; the factor that exerts the most significant influence on the coefficient of friction is the vertical load, while the water film thickness exerts the least influence. The results obtained can serve as a reference source for the design of tire anti-skid performance enhancement. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

15 pages, 4855 KiB  
Article
An Investigation of the Surface-Regulating Mechanism of Tungsten Alloys Using the Electrochemical Polishing Process
by Yachun Mao, Yanqiu Xu, Shiru Le, Maozhong An, Zhijiang Wang and Yuhan Zhang
Solids 2025, 6(3), 39; https://doi.org/10.3390/solids6030039 - 24 Jul 2025
Viewed by 265
Abstract
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic [...] Read more.
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic polishing offers high efficiency, low workpiece wear, and simple processing. In this study, an electrolytic polishing method is adopted and a novel trisodium phosphate–sodium hydroxide electrolytic polishing electrolyte is developed to study the effects of temperature, voltage, polishing time, and solution composition on the surface roughness of a tungsten–nickel–iron alloy. The optimal voltage, temperature, and polishing time are determined to be 15 V, 55 °C, and 35 s, respectively, when the concentrations of trisodium phosphate and sodium hydroxide are 100 g·L−1 and 6 g·L−1. In addition, glycerol is introduced into the electrolyte as an additive. The calculated LUMO value of glycerol is −5.90 eV and the HOMO value is 0.40 eV. Moreover, electron enrichment in the hydroxyl region of glycerol can form an adsorption layer on the surface of the tungsten alloy, inhibit the formation of micro-pits, balance ion diffusion, and thus promote the formation of a smooth surface. At 100 mL·L−1 of glycerol, the roughness of the tungsten–nickel–iron alloy decreases significantly from 1.134 μm to 0.582 μm. The electrochemical polishing mechanism of the tungsten alloy in a trisodium phosphate electrolyte is further investigated and explained according to viscous film theory. This study demonstrates that the trisodium phosphate–sodium hydroxide–glycerol electrolyte is suitable for electropolishing tungsten–nickel–iron alloys. Overall, the results support the application of tungsten–nickel–iron alloy in the electronics, medical, and atomic energy industries. Full article
Show Figures

Graphical abstract

22 pages, 9751 KiB  
Article
Investigation on the Coupling Effect of Bionic Micro-Texture Shape and Distribution on the Tribological Performance of Water-Lubricated Sliding Bearings
by Xiansheng Tang, Yunfei Lan, Sergei Bosiakov, Michael Zhuravkov, Tao He, Yang Xia and Yongtao Lyu
Lubricants 2025, 13(7), 305; https://doi.org/10.3390/lubricants13070305 - 14 Jul 2025
Viewed by 338
Abstract
Water-lubricated bearings (WLB), due to their pollution-free nature and low noise, are increasingly becoming critical components in aerospace, marine applications, high-speed railway transportation, precision machine tools, etc. However, in practice, water-lubricated bearings suffer severe friction and wear due to low-viscosity water, harsh conditions, [...] Read more.
Water-lubricated bearings (WLB), due to their pollution-free nature and low noise, are increasingly becoming critical components in aerospace, marine applications, high-speed railway transportation, precision machine tools, etc. However, in practice, water-lubricated bearings suffer severe friction and wear due to low-viscosity water, harsh conditions, and contaminants like sediment, which can compromise the lubricating film and shorten their lifespan. The implementation of micro-textures has been demonstrated to improve the tribological performance of water-lubricated bearings to a certain extent, leading to their widespread adoption for enhancing the frictional dynamics of sliding bearings. The shape, dimensions (including length, width, and depth), and distribution of these micro-textures have a significant influence on the frictional performance. Therefore, this study aims to explore the coupling effect of different micro-texture shapes and distributions on the frictional performance of water-lubricated sliding, using the computational fluid dynamics (CFD) analysis. The results indicate that strategically arranging textures across multiple regions can enhance the performance of the bearing. Specifically, placing linear groove textures in the outlet of the divergent zone and triangular textures in the divergent zone body maximize improvements in the load-carrying capacity and frictional performance. This specific configuration increases the load-carrying capacity by 7.3% and reduces the friction coefficient by 8.6%. Overall, this study provided critical theoretical and technical insights for the optimization of WLB, contributing to the advancement of clean energy technologies and the extension of critical bearing service life. Full article
(This article belongs to the Special Issue Water Lubricated Bearings)
Show Figures

Figure 1

22 pages, 795 KiB  
Review
Microbial Extracellular Polymeric Substances as Corrosion Inhibitors: A Review
by Naima Sayahi, Bouthaina Othmani, Wissem Mnif, Zaina Algarni, Moncef Khadhraoui and Faouzi Ben Rebah
Surfaces 2025, 8(3), 49; https://doi.org/10.3390/surfaces8030049 - 13 Jul 2025
Viewed by 393
Abstract
Microbial extracellular polymeric substances (EPSs) are emerging as sustainable alternatives to conventional corrosion inhibitors due to their eco-friendly nature, biodegradability, and functional versatility. Secreted by diverse microorganisms including bacteria, fungi, archaea, and algae, EPSs are composed mainly of polysaccharides, proteins, lipids, and nucleic [...] Read more.
Microbial extracellular polymeric substances (EPSs) are emerging as sustainable alternatives to conventional corrosion inhibitors due to their eco-friendly nature, biodegradability, and functional versatility. Secreted by diverse microorganisms including bacteria, fungi, archaea, and algae, EPSs are composed mainly of polysaccharides, proteins, lipids, and nucleic acids. These biopolymers, chiefly polysaccharides and proteins, are accountable for surface corrosion prevention through biofilm formation, allowing microbial survival and promoting their environmental adaptation. Usually, EPS-mediated corrosion inhibitions can take place via different mechanisms: protective film formation, metal ions chelation, electrochemical property alteration, and synergy with inorganic inhibitors. Even though efficacious EPS corrosion prevention has been demonstrated in several former studies, the application of such microbial inhibitors remains, so far, a controversial topic due to the variability in their composition and compatibility toward diverse metal surfaces. Thus, this review outlines the microbial origins, biochemical properties, and inhibition mechanisms of EPSs, emphasizing their advantages and challenges in industrial applications. Advances in synthetic biology, nanotechnology, and machine learning are also highlighted and could provide new opportunities to enhance EPS production and functionality. Therefore, the adoption of EPS-based corrosion inhibitors represents a promising strategy for environmentally sustainable corrosion control. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

20 pages, 6540 KiB  
Article
Design and Numerical Simulation of a Device for Film–Soil Vibrating Conveying and Separation Based on DEM–MBD Coupling
by Shilong Shen, Jiaxi Zhang, Hu Zhang, Yongxin Jiang, Xin Zhou, Yichao Wang, Xuanfeng Liu and Haichun Zhang
Agriculture 2025, 15(14), 1501; https://doi.org/10.3390/agriculture15141501 - 12 Jul 2025
Viewed by 224
Abstract
To address the issue of poor film–soil separation in traditional subsoil residual film recovery machines, which leads to recovered film containing excessive soil, a film–soil conveying and separation device was designed. By establishing a mechanical model for the balanced conveyance of the film–soil [...] Read more.
To address the issue of poor film–soil separation in traditional subsoil residual film recovery machines, which leads to recovered film containing excessive soil, a film–soil conveying and separation device was designed. By establishing a mechanical model for the balanced conveyance of the film–soil composite, the range of conveyor chain inclination angles enabling stable transport was determined. Using RecurDyn 2023 simulation software, a sensitivity analysis was conducted on the effects of vibrating wheel speed, vibrating wheel mounting distance, and conveyor chain inclination angle on vibration characteristics. This analysis revealed that vibrating wheel speed and mounting distance have a significant impact on the vibrating mechanism. Based on the DEM–MBD (Discrete Element Method—Multi-Body Dynamics) coupling approach, a discrete element simulation model was built for the film–soil vibrating conveyor device, residual film, and soil. Using the primary conveyor chain speed, vibrating wheel speed, and mounting distance as experimental factors, and soil content rate and film leakage rate as experimental indicators, single-factor tests and a three-factor, five-level orthogonal rotational composite design test were performed. The results showed that, at a primary conveyor chain speed of 1.61 m/s, a vibrating wheel speed of 186.2 r/min, and a mounting distance of 688.2 mm, the soil content rate was 18.11% and the film leakage rate was 7.61%. The film–soil conveying and separation process was also analyzed via simulation. Field validation tests using the optimal parameter combination yielded relative errors of 3.43% and 5.51%, respectively, demonstrating effective film–soil separation. This research provides a theoretical foundation and equipment support for addressing residual film pollution in the cultivated layer of Xinjiang region. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 3914 KiB  
Article
Thermal Error Analysis of Hydrostatic Turntable System
by Jianlei Wang, Changhui Ke, Kaiyu Hu and Jun Zha
Machines 2025, 13(7), 598; https://doi.org/10.3390/machines13070598 - 10 Jul 2025
Viewed by 210
Abstract
The thermal error caused by the temperature rise in the service condition of the hydrostatic turntable system has a significant impact on the accuracy of the machine tool. The temperature rise is mainly caused by the friction heat of the bearing and the [...] Read more.
The thermal error caused by the temperature rise in the service condition of the hydrostatic turntable system has a significant impact on the accuracy of the machine tool. The temperature rise is mainly caused by the friction heat of the bearing and the heat of the oil pump. The amount of heat mainly depends on the working parameters, such as the oil supply pressure and the oil film gap. The unreasonable parameter setting will cause the reduction in the internal flow of the hydrostatic bearing and the increase in the oil pump power, which makes the heat of the lubricating oil increase and the heat dissipation capacity decrease during the movement. Based on the established hydrostatic turntable system, in order to explore the main influencing factors of its thermal error, the temperature field model of the component is established by calculating the thermal balance of the key components of the system. The thermal coupling analysis of the component is carried out by using the model, and the temperature rise, deformation and strain curves of the hydrostatic turntable system under different service conditions are obtained. The results show that with the increase in the temperature, the deformation and strain of the bearing increase monotonously. For every 1 °C increase, the total deformation of the bearing increases by about 0.285 μm. The higher the oil supply pressure, the higher the temperature rise in the system. The larger the oil film gap, the lower the temperature rise in the system. The oil supply pressure has a greater influence on the temperature rise and thermal deformation than the oil film gap. This study provides a valuable reference for reducing the thermal error generated by the hydraulic turntable of the ultra-precision lathe. Full article
Show Figures

Figure 1

42 pages, 15713 KiB  
Article
A Novel Method for Determining the Contact Pattern Area in Gear Meshing Based on Computer Processing of Pressure Measurement Film Images
by Paweł Fudali, Patrycja Ewa Jagiełowicz, Adam Kalina, Piotr Połowniak, Mariusz Sobolak and Waldemar Witkowski
Materials 2025, 18(14), 3230; https://doi.org/10.3390/ma18143230 - 8 Jul 2025
Viewed by 414
Abstract
The contact pattern between gear teeth is one of the most significant indicators of proper gear operation. This paper presents an analysis of the contact pattern of gears with a sinusoidal profile. The gear geometry was obtained through direct solid simulation of the [...] Read more.
The contact pattern between gear teeth is one of the most significant indicators of proper gear operation. This paper presents an analysis of the contact pattern of gears with a sinusoidal profile. The gear geometry was obtained through direct solid simulation of the machining process. Generally, analytical, numerical, and experimental methods are used for contact pattern analysis in gearboxes. This article presents contact pattern investigations using numerical methods and a novel experimental method that utilizes pressure measurement films. A proprietary program using image analysis was used for the contact pattern analysis. The numerical studies utilized the Finite Element Method (FEM) and the CAD method. The results obtained from the presented methods show good convergence. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

45 pages, 1648 KiB  
Review
Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review
by Raja Subramani, Ronit Rosario Leon, Rajeswari Nageswaren, Maher Ali Rusho and Karthik Venkitaraman Shankar
Lubricants 2025, 13(7), 298; https://doi.org/10.3390/lubricants13070298 - 7 Jul 2025
Viewed by 863
Abstract
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity [...] Read more.
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity of parts manufactured by AM are the biggest functional deployment challenges, especially in wear susceptibility or load-carrying applications. The current review provides a comprehensive overview of the tribological challenges and surface engineering solutions inherent in FDM and SLA processes. The overview begins with a comparative overview of material systems, process mechanics, and failure modes, highlighting prevalent wear mechanisms, such as abrasion, adhesion, fatigue, and delamination. The effect of influential factors (layer thickness, raster direction, infill density, resin curing) on wear behavior and surface integrity is critically evaluated. Novel post-processing techniques, such as vapor smoothing, thermal annealing, laser polishing, and thin-film coating, are discussed for their potential to endow surface durability and reduce friction coefficients. Hybrid manufacturing potential, where subtractive operations (e.g., rolling, peening) are integrated with AM, is highlighted as a path to functionally graded, high-performance surfaces. Further, the review highlights the growing use of finite element modeling, digital twins, and machine learning algorithms for predictive control of tribological performance at AM parts. Through material-level innovations, process optimization, and surface treatment techniques integration, the article provides actionable guidelines for researchers and engineers aiming at performance improvement of FDM and SLA-manufactured parts. Future directions, such as smart tribological, sustainable materials, and AI-based process design, are highlighted to drive the transition of AM from prototyping to end-use applications in high-demand industries. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

16 pages, 2895 KiB  
Article
Flat vs. Curved: Machine Learning Classification of Flexible PV Panel Geometries
by Ahmad Manasrah, Yousef Jaradat, Mohammad Masoud, Mohammad Alia, Khaled Suwais and Piero Bevilacqua
Energies 2025, 18(13), 3529; https://doi.org/10.3390/en18133529 - 4 Jul 2025
Viewed by 335
Abstract
As the global demand for clean and sustainable energy grows, photovoltaics (PVs) have become an important technology in this industry. Thin-film and flexible PV modules offer noticeable advantages for irregular surface mounts and mobile applications. This study investigates the use of four machine [...] Read more.
As the global demand for clean and sustainable energy grows, photovoltaics (PVs) have become an important technology in this industry. Thin-film and flexible PV modules offer noticeable advantages for irregular surface mounts and mobile applications. This study investigates the use of four machine learning models to detect different flexible PV module geometries based on power output data. Three identical flexible PV modules were mounted in flat, concave, and convex configurations and connected to batteries via solar chargers. The experimental results showed that all geometries fully charged their batteries within 6–7 h on a sunny day with the flat, concave-, and convex-shaped modules achieving a peak power of 95 W. On a cloudy day, the concave and convex modules recorded peak outputs of 72 W and 65 W, respectively. Simulation results showed that the XGBoost model delivered the best classification performance, showing 93% precision with the flat-mounted module and 98% recall across all geometries. In comparison, the KAN model recorded the lowest precision (78%) with the curved geometries. A calibration analysis on the ML models showed that Random Forest and XGBoost were well calibrated for the flat-mounted module. However, they also showed overconfidence and underconfidence issues with the curved module geometries. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

18 pages, 2702 KiB  
Article
Real-Time Depth Monitoring of Air-Film Cooling Holes in Turbine Blades via Coherent Imaging During Femtosecond Laser Machining
by Yi Yu, Ruijia Liu, Chenyu Xiao and Ping Xu
Photonics 2025, 12(7), 668; https://doi.org/10.3390/photonics12070668 - 2 Jul 2025
Viewed by 369
Abstract
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, [...] Read more.
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, thereby effectively preventing backside damage. To tackle this issue, a spectrum-domain coherent imaging technique has been developed. This innovative approach adapts the fundamental principle of fiber-based Michelson interferometry by integrating the air-film hole into a sample arm configuration. A broadband super-luminescent diode with a 830 nm central wavelength and a 26 nm spectral bandwidth serves as the coherence-optimized illumination source. An optimal normalized reflectivity of 0.2 is established to maintain stable interference fringe visibility throughout the drilling process. The system achieves a depth resolution of 11.7 μm through Fourier transform analysis of dynamic interference patterns. With customized optical path design specifically engineered for through-hole-drilling applications, the technique demonstrates exceptional sensitivity, maintaining detection capability even under ultralow reflectivity conditions (0.001%) at the hole bottom. Plasma generation during laser processing is investigated, with plasma density measurements providing optical thickness data for real-time compensation of depth measurement deviations. The demonstrated system represents an advancement in non-destructive in-process monitoring for high-precision laser machining applications. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

16 pages, 2558 KiB  
Article
Alterations in Tear Proteomes of Adults with Pre-Diabetes and Type 2 Diabetes Mellitus but Without Diabetic Retinopathy
by Guoting Qin, Cecilia Chao, Shara Duong, Jennyffer Smith, Hong Lin, Wendy W. Harrison and Chengzhi Cai
Proteomes 2025, 13(3), 29; https://doi.org/10.3390/proteomes13030029 - 1 Jul 2025
Viewed by 401
Abstract
Background: Type 2 diabetes mellitus (T2DM) is an epidemic chronic disease that affects millions of people worldwide. This study aims to explore the impact of T2DM on the tear proteome, specifically investigating whether alterations occur before the development of diabetic retinopathy. Methods: Flush [...] Read more.
Background: Type 2 diabetes mellitus (T2DM) is an epidemic chronic disease that affects millions of people worldwide. This study aims to explore the impact of T2DM on the tear proteome, specifically investigating whether alterations occur before the development of diabetic retinopathy. Methods: Flush tear samples were collected from healthy subjects and subjects with preDM and T2DM. Tear proteins were processed and analyzed by mass spectrometry-based shotgun proteomics using a data-independent acquisition parallel acquisition serial fragmentation (diaPASEF) approach. Machine learning algorithms, including random forest, lasso regression, and support vector machine, and statistical tools were used to identify potential biomarkers. Results: Machine learning models identified 17 proteins with high importance in classification. Among these, five proteins (cystatin-S, S100-A11, submaxillary gland androgen-regulated protein 3B, immunoglobulin lambda variable 3–25, and lambda constant 3) exhibited differential abundance across these three groups. No correlations were identified between proteins and clinical assessments of the ocular surface. Notably, the 17 important proteins showed superior prediction accuracy in distinguishing all three groups (healthy, preDM, and T2DM) compared to the five proteins that were statistically significant. Conclusions: Alterations in the tear proteome profile were observed in adults with preDM and T2DM before the clinical diagnosis of ocular abnormality, including retinopathy. Full article
Show Figures

Graphical abstract

Back to TopTop