Microbial Extracellular Polymeric Substances as Corrosion Inhibitors: A Review
Abstract
1. Introduction
2. Extracellular Polymeric Substances (EPSs)
2.1. Definition of EPSs
2.2. Microorganisms Producing EPSs
2.3. EPS Functions, Composition, and Properties
Microorganism | Substrate | EPS Composition (%) | Main Functional Groups | Extraction Techniques | References |
---|---|---|---|---|---|
B. licheniformis | Sucrose | PS: 89; P: 11 | Hydroxyl, Carboxyl | Ethanol precipitation | [65] |
B. megaterium TF10 | Glucose | PS: 76; P: 23 | Hydroxyl, Amide, Carboxyl, Primary Amine | Ethanol precipitation | [66] |
P. mirabilis TJ-1 | Glucose | PS: 63.1; P: 30.9 | Hydroxyl, Carboxyl | Ethanol precipitation | [77] |
Halomonas sp. AAD6 | Molasses | PS: 90; P: 0.5; NA: 5.4 | Hydroxyl, Carboxyl | Ethanol precipitation | [68] |
Chryseobacterium daeguense MBF-W6 | Glucose, tryptone | PS: 13.1; P: 32.4; NA: 6.8 | Carboxyl, Hydroxyl, Methoxyl | Ethanol precipitation | [69] |
A. indicus ATCC 9540 | Latifolia flower extract | PS: 97.7; P: 2.3 | O-acetyl, Orcinol, Carboxyl, Hydroxyl | Ethanol precipitation | [77] |
S. marcescens | Glucose | PS: 75; P: 20; NA: 5 | Hydroxyl, Carboxyl, Amide | Ethanol precipitation | [78] |
Serratia sp. | Sucrose | PS: 80; P:15; NA: 5 | Hydroxyl, Carboxyl, Pyruvate | Ultracentrifugation | [79] |
L. rhamnosus | Glucose | PS: 85; P: 15 | Hydroxyl, Carboxyl, Amide | Ethanol precipitation | [80] |
P. aeruginosa | Glycerol | PS: 70; P: 25; NA: 5 | Carboxyl, Hydroxyl, Pyruvate | Ultracentrifugation | [81] |
X. campestris | Glucose | PS: 95; P: 5 | Acetyl, Carboxyl, Hydroxyl | Ethanol precipitation | [73] |
L. mesenteroides | Sucrose | PS: 90; P: 10 | Hydroxyl, Carboxyl | Ethanol precipitation | [74] |
S. thermophilus | Lactose | PS: 80; P: 20 | Hydroxyl, Carboxyl, Phosphate | Dialysis and ethanol precipitation | [82] |
E. cloacae | Glucose | PS: 70; P: 25; NA: 5 | Hydroxyl, Carboxyl, Amide | Ethanol precipitation | [83] |
K. pneumoniae | Sucrose | PS: 85; P: 10; NA: 5 | Hydroxyl, Carboxyl, Pyruvate | Ethanol precipitation | [84] |
R. radiobacter | Glucose | PS: 80; P: 15; NA: 5 | Hydroxyl, Carboxyl, Amide | Ethanol precipitation | [85] |
3. Corrosion Inhibition by Microbial Extracellular Polymeric Substances
3.1. Effectiveness of EPSs in Corrosion Inhibition
3.2. Mechanisms of Corrosion Inhibition by EPSs
3.2.1. Formation of Protective Layer on Metal Surface
3.2.2. Complexation with Metal Ions
3.2.3. Microbial-Mediated Corrosion Inhibition Mechanisms
3.2.4. Synergistic Effects of EPSs and Corrosion Inhibitors
3.3. Main Factors Influencing EPS-Mediated Corrosion Inhibition
4. Challenges, Limitations, and Future Prospective of EPSs as Corrosion Inhibitors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vafadar, A.; Guzzomi, F.; Rassau, A.; Hayward, K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci. 2021, 11, 1213. [Google Scholar] [CrossRef]
- Schweitzer, P.E.P.A. Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Zarasvand, K.A.; Rai, V.R. Microorganisms: Induction and Inhibition of Corrosion in Metals. Int. Biodeterior. Biodegrad. 2014, 87, 66–74. [Google Scholar] [CrossRef]
- Enning, D.; Garrelfs, J. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem. Appl. Environ. Microbiol. 2014, 80, 1226–1236. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, J.; Mulder, J.; Wang, Q.; Liu, C.; He, N. High Environmental Costs behind Rapid Economic Development: Evidence from Economic Loss Caused by Atmospheric Acid Deposition. J. Environ. Manag. 2023, 334, 117511. [Google Scholar] [CrossRef]
- Singh, A.K. Microbially Induced Corrosion and Its Mitigation; Springer Briefs in Materials; Springer: Singapore, 2020; ISBN 978-981-15-8017-8. [Google Scholar]
- Ibrahim, A.; Hawboldt, K.; Bottaro, C.; Khan, F. Review and Analysis of Microbiologically Influenced Corrosion: The Chemical Environment in Oil and Gas Facilities. Corros. Eng. Sci. Technol. 2018, 53, 549–563. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Isahak, W.N.R.W.; Al-Azzawi, W.K. Corrosion Inhibitors: Natural and Synthetic Organic Inhibitors. Lubricants 2023, 11, 174. [Google Scholar] [CrossRef]
- Kamachi Mudali, U.; Jayaraj, J.; Raman, R.K.S.; Raj, B. Corrosion: An Overview of Types, Mechanism, and Requisites of Evaluation. In Non-Destructive Evaluation of Corrosion and Corrosion-Assisted Cracking; Singh, R., Raj, B., KamachiMudali, U., Singh, P., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 75–91. ISBN 978-1-118-35005-8. [Google Scholar]
- Ahmed, M.A.; Amin, S.; Mohamed, A.A. Current and Emerging Trends of Inorganic, Organic and Eco-Friendly Corrosion Inhibitors. RSC Adv. 2024, 14, 31877–31920. [Google Scholar] [CrossRef] [PubMed]
- Hossain, N.; Asaduzzaman Chowdhury, M.; Kchaou, M. An Overview of Green Corrosion Inhibitors for Sustainable and Environment Friendly Industrial Development. J. Adhes. Sci. Technol. 2021, 35, 673–690. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, R.; Zhang, Q.; Zhao, C.; Zhou, X.; Zheng, H.; Zhang, R.; Sun, Y.; Yan, Z. Application of Biomass Corrosion Inhibitors in Metal Corrosion Control: A Review. Molecules 2023, 28, 2832. [Google Scholar] [CrossRef]
- Sapkota, S.C.; Dahal, D.; Yadav, A.; Dhakal, D.; Sharma, R.K.; Saini, G. A Paradigm Shift in Corrosion Inhibition Using Botanical Extracts: From Conventional Methods to Advanced Methods for Reinforcing Steel. Innov. Infrastruct. Solut. 2025, 10, 104. [Google Scholar] [CrossRef]
- Fu, M.; Cheng, X.; Li, J.; Chen, S.; Dou, W.; Liu, G. Influence of Soluble, Loosely Bound and Tightly Bound Extracellular Polymeric Substances (EPS) Produced by Desulfovibrio Vulgaris on EH40 Steel Corrosion. Corros. Sci. 2023, 221, 111342. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, J.; Zeng, G.; Gu, Y.; Chen, Y.; Hu, Y.; Tang, B.; Zhou, J.; Yang, Y.; Shi, L. Exploiting Extracellular Polymeric Substances (EPS) Controlling Strategies for Performance Enhancement of Biological Wastewater Treatments: An Overview. Chemosphere 2017, 180, 396–411. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Krembs, C.; Eicken, H.; Junge, K.; Deming, J.W. High Concentrations of Exopolymeric Substances in Arctic Winter Sea Ice: Implications for the Polar Ocean Carbon Cycle and Cryoprotection of Diatoms. Deep Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 2163–2181. [Google Scholar] [CrossRef]
- Al-Sayegh, A.; Al-Wahaibi, Y.; Joshi, S.; Al-Bahry, S.; Elshafie, A.; Al-Bemani, A. Draft Genome Sequence of Bacillus Subtilis AS2, a Heavy Crude Oil-Degrading and Biosurfactant-Producing Bacterium Isolated from a Soil Sample. Genome Announc. 2017, 5, e00969-17. [Google Scholar] [CrossRef]
- Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Di Donato, P.; Finore, I.; Nicolaus, B.; Di Marco, G.; Michaud, L.; Lo Giudice, A. Production and Biotechnological Potential of Extracellular Polymeric Substances from Sponge-Associated Antarctic Bacteria. Appl. Environ. Microbiol. 2018, 84, e01624-17. [Google Scholar] [CrossRef]
- Carrión, O.; Delgado, L.; Mercade, E. New Emulsifying and Cryoprotective Exopolysaccharide from Antarctic Pseudomonas sp. ID1. Carbohydr. Polym. 2015, 117, 1028–1034. [Google Scholar] [CrossRef]
- Poli, A.; Anzelmo, G.; Nicolaus, B. Bacterial Exopolysaccharides from Extreme Marine Habitats: Production, Characterization and Biological Activities. Mar. Drugs 2010, 8, 1779–1802. [Google Scholar] [CrossRef]
- Singha, T.K. Microbial Extracellular Polymeric Substances: Production, Isolation and Applications. IOSR J. Pharm. 2012, 2, 271–281. [Google Scholar]
- Babiak, W.; Krzemińska, I. Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes. Energies 2021, 14, 4007. [Google Scholar] [CrossRef]
- Gomes, E.; De Souza, A.R.; Orjuela, G.L.; Da Silva, R.; De Oliveira, T.B.; Rodrigues, A. Applications and Benefits of Thermophilic Microorganisms and Their Enzymes for Industrial Biotechnology. In Gene Expression Systems in Fungi: Advancements and Applications; Schmoll, M., Dattenböck, C., Eds.; Fungal Biology; Springer International Publishing: Cham, Switzerland, 2016; pp. 459–492. ISBN 978-3-319-27949-7. [Google Scholar]
- Dick, G.J. The Microbiomes of Deep-Sea Hydrothermal Vents: Distributed Globally, Shaped Locally. Nat. Rev. Microbiol. 2019, 17, 271–283. [Google Scholar] [CrossRef]
- Sardari, R.R.; Kulcinskaja, E.; Ron, E.Y.; Björnsdóttir, S.; Friðjónsson, Ó.H.; Hreggviðsson, G.Ó.; Karlsson, E.N. Evaluation of the Production of Exopolysaccharides by Two Strains of the Thermophilic Bacterium Rhodothermus Marinus. Carbohydr. Polym. 2017, 156, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fuso, A.; Bancalari, E.; Castellone, V.; Caligiani, A.; Gatti, M.; Bottari, B. Feeding Lactic Acid Bacteria with Different Sugars: Effect on Exopolysaccharides (EPS) Production and Their Molecular Characteristics. Foods 2023, 12, 215. [Google Scholar] [CrossRef]
- Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Di Donato, P.; Nicolaus, B.; Di Marco, G.; Michaud, L.; Lo Giudice, A. Extracellular Polymeric Substances with Metal Adsorption Capacity Produced by Pseudoalteromonas sp. MER144 from Antarctic Seawater. Environ. Sci. Pollut. Res. 2018, 25, 4667–4677. [Google Scholar] [CrossRef] [PubMed]
- Mancuso Nichols, C.A.; Garon, S.; Bowman, J.P.; Raguénès, G.; Guezennec, J. Production of Exopolysaccharides by Antarctic Marine Bacterial Isolates. J. Appl. Microbiol. 2004, 96, 1057–1066. [Google Scholar] [CrossRef]
- Caruso, C.; Rizzo, C.; Mangano, S.; Poli, A.; Di Donato, P.; Nicolaus, B.; Finore, I.; Di Marco, G.; Michaud, L.; Giudice, A.L. Isolation, Characterization and Optimization of EPSs Produced by a Cold-Adapted Marinobacter Isolate from Antarctic Seawater. Antarct. Sci. 2019, 31, 69–79. [Google Scholar] [CrossRef]
- Finore, I.; Lama, L.; Di Donato, P.; Romano, I.; Tramice, A.; Leone, L.; Nicolaus, B.; Poli, A. Parageobacillus Thermantarcticus, an Antarctic Cell Factory: From Crop Residue Valorization by Green Chemistry to Astrobiology Studies. Diversity 2019, 11, 128. [Google Scholar] [CrossRef]
- Xiao, R.; Zheng, Y. Overview of Microalgal Extracellular Polymeric Substances (EPS) and Their Applications. Biotechnol. Adv. 2016, 34, 1225–1244. [Google Scholar] [CrossRef]
- García-Cubero, R.; Cabanelas, I.T.D.; Sijtsma, L.; Kleinegris, D.M.M.; Barbosa, M.J. Production of Exopolysaccharide by Botryococcus braunii CCALA 778 under Laboratory Simulated Mediterranean Climate Conditions. Algal Res. 2018, 29, 330–336. [Google Scholar] [CrossRef]
- Chen, B.; Li, F.; Liu, N.; Ge, F.; Xiao, H.; Yang, Y. Role of Extracellular Polymeric Substances from Chlorella Vulgaris in the Removal of Ammonium and Orthophosphate under the Stress of Cadmium. Bioresour. Technol. 2015, 190, 299–306. [Google Scholar] [CrossRef]
- Dhanya, B.E.; Athmika; Rekha, P.D. Characterization of an Exopolysaccharide Produced by Enterobacter sp. YU16-RN5 and Its Potential to Alleviate Cadmium Induced Cytotoxicity In Vitro. 3 Biotech 2021, 11, 491. [Google Scholar] [CrossRef]
- Chan, C.S.; Fakra, S.C.; Emerson, D.; Fleming, E.J.; Edwards, K.J. Lithotrophic Iron-Oxidizing Bacteria Produce Organic Stalks to Control Mineral Growth: Implications for Biosignature Formation. ISME J. 2011, 5, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Atalah, J.; Cáceres-Moreno, P.; Espina, G.; Blamey, J.M. Thermophiles and the Applications of Their Enzymes as New Biocatalysts. Bioresour. Technol. 2019, 280, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Shi, L.; Brown, R.N.; Xiong, Y.; Fredrickson, J.K.; Romine, M.F.; Marshall, M.J.; Lipton, M.S.; Beyenal, H. Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms: Characterization by Infrared Spectroscopy and Proteomics. Environ. Microbiol. 2011, 13, 1018–1031. [Google Scholar] [CrossRef]
- Berne, C.; Ducret, A.; Hardy, G.G.; Brun, Y.V. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. In Microbial Biofilms; Ghannoum, M., Parsek, M., Whiteley, M., Mukherjee, P.K., Eds.; ASM Press: Washington, DC, USA, 2015; pp. 163–199. ISBN 978-1-68367-091-9. [Google Scholar]
- Hendrickx, L.; Hausner, M.; Wuertz, S. Natural Genetic Transformation in Monoculture Acinetobacter sp. Strain BD413 Biofilms. Appl. Environ. Microbiol. 2003, 69, 1721–1727. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Oh, E.; Jeon, B. Enhanced Transmission of Antibiotic Resistance in Campylobacter Jejuni Biofilms by Natural Transformation. Antimicrob. Agents Chemother. 2014, 58, 7573–7575. [Google Scholar] [CrossRef]
- Kawaharada, Y.; Kelly, S.; Nielsen, M.W.; Hjuler, C.T.; Gysel, K.; Muszyński, A.; Carlson, R.W.; Thygesen, M.B.; Sandal, N.; Asmussen, M.H. Receptor-Mediated Exopolysaccharide Perception Controls Bacterial Infection. Nature 2015, 523, 308–312. [Google Scholar] [CrossRef]
- Cheng, H.-P.; Walker, G.C. Succinoglycan Is Required for Initiation and Elongation of Infection Threads during Nodulation of Alfalfa by Rhizobium meliloti. J. Bacteriol. 1998, 180, 5183–5191. [Google Scholar] [CrossRef]
- Ryder, C.; Byrd, M.; Wozniak, D.J. Role of Polysaccharides in Pseudomonas aeruginosa Biofilm Development. Curr. Opin. Microbiol. 2007, 10, 644–648. [Google Scholar] [CrossRef]
- Koczan, J.M.; McGrath, M.J.; Zhao, Y.; Sundin, G.W. Contribution of Erwinia amylovora Exopolysaccharides Amylovoran and Levan to Biofilm Formation: Implications in Pathogenicity. Phytopathology® 2009, 99, 1237–1244. [Google Scholar] [CrossRef]
- Dobbelaere, S.; Croonenborghs, A.; Thys, A.; Ptacek, D.; Vanderleyden, J.; Dutto, P.; Labandera-Gonzalez, C.; Caballero-Mellado, J.; Aguirre, J.F.; Kapulnik, Y. Responses of Agronomically Important Crops to Inoculation with Azospirillum. Funct. Plant Biol. 2001, 28, 871–879. [Google Scholar] [CrossRef]
- Sengupta, S.; Dey, S. Microbial Exo-Polysaccharides (EPS): Role in Agriculture and Environment. Agric. Food 2019, 1, 4–8. [Google Scholar]
- Gadd, G.M. Biosorption: Critical Review of Scientific Rationale, Environmental Importance and Significance for Pollution Treatment. J. Chem. Technol. Biotechnol. 2009, 84, 13–28. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Viscardi, S.; Ventorino, V.; Duran, P.; Maggio, A.; De Pascale, S.; Mora, M.L.; Pepe, O. Assessment of Plant Growth Promoting Activities and Abiotic Stress Tolerance of Azotobacter Chroococcum Strains for a Potential Use in Sustainable Agriculture. J. Soil Sci. Plant Nutr. 2016, 16, 848–863. [Google Scholar] [CrossRef]
- Yadav, P.; Singh, R.P.; Hashem, A.; Abd_Allah, E.F.; Santoyo, G.; Kumar, A.; Gupta, R.K. Enhancing Biocrust Development and Plant Growth through Inoculation of Desiccation-Tolerant Cyanobacteria in Different Textured Soils. Microorganisms 2023, 11, 2507. [Google Scholar] [CrossRef]
- Davenport, E.K.; Call, D.R.; Beyenal, H. Differential Protection from Tobramycin by Extracellular Polymeric Substances from Acinetobacter baumannii and Staphylococcus aureus Biofilms. Antimicrob. Agents Chemother. 2014, 58, 4755–4761. [Google Scholar] [CrossRef] [PubMed]
- Farber, B.F.; Kaplan, M.H.; Clogston, A.G. Staphylococcus Epidermidis Extracted Slime Inhibits the Antimicrobial Action of Glycopeptide Antibiotics. J. Infect. Dis. 1990, 161, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Costa, O.Y.; Raaijmakers, J.M.; Kuramae, E.E. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef]
- Lloret, J.; Wulff, B.B.H.; Rubio, J.M.; Downie, J.A.; Bonilla, I.; Rivilla, R. Exopolysaccharide II Production Is Regulated by Salt in the Halotolerant Strain Rhizobium meliloti EFB1. Appl. Environ. Microbiol. 1998, 64, 1024–1028. [Google Scholar] [CrossRef]
- Kumar, S.C.; Kumar, M.; Singh, R.; Saxena, A.K. Population and Genetic Diversity of Rhizobia Nodulating Chickpea in Indo-Gangetic Plains of India. Braz. J. Microbiol. 2024, 55, 4057–4075. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, B.; Kambourova, M.; Oner, E.T. Exopolysaccharides from Extremophiles: From Fundamentals to Biotechnology. Environ. Technol. 2010, 31, 1145–1158. [Google Scholar] [CrossRef]
- Miguel, P.S.B.; de Oliveira, M.N.V.; Delvaux, J.C.; de Jesus, G.L.; Borges, A.C.; Tótola, M.R.; Neves, J.C.L.; Costa, M.D. Diversity and Distribution of the Endophytic Bacterial Community at Different Stages of Eucalyptus Growth. Antonie Van Leeuwenhoek 2016, 109, 755–771. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.Y.; Wanger, G.; Leung, K.M.; Yuzvinsky, T.D.; Southam, G.; Yang, J.; Lau, W.M.; Nealson, K.H.; Gorby, Y.A. Electrical Transport along Bacterial Nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 2010, 107, 18127–18131. [Google Scholar] [CrossRef]
- Mouro, C.; Gomes, A.P.; Gouveia, I.C. Microbial Exopolysaccharides: Structure, Diversity, Applications, and Future Frontiers in Sustainable Functional Materials. Polysaccharides 2024, 5, 241–287. [Google Scholar] [CrossRef]
- Lehman, A.P.; Long, S.R. Exopolysaccharides from Sinorhizobium meliloti Can Protect against H2O2-Dependent Damage. J. Bacteriol. 2013, 195, 5362–5369. [Google Scholar] [CrossRef]
- Grobe, S.; Wingender, J.; Flemming, H.-C. Capability of Mucoid Pseudomonas aeruginosa to Survive in Chlorinated Water. Int. J. Hyg. Environ. Health 2001, 204, 139–142. [Google Scholar] [CrossRef]
- Ruas-Madiedo, P.; Hugenholtz, J.; Zoon, P. An Overview of the Functionality of Exopolysaccharides Produced by Lactic Acid Bacteria. Int. Dairy J. 2002, 12, 163–171. [Google Scholar] [CrossRef]
- Go, L.C.; Holmes, W.; Depan, D.; Hernandez, R. Evaluation of Extracellular Polymeric Substances Extracted from Waste Activated Sludge as a Renewable Corrosion Inhibitor. PeerJ 2019, 7, e7193. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y.; Yu, Y.; Li, Q.; Wang, H.; Chen, R.; He, N. Production and Characterization of a Novel Bioflocculant from Bacillus licheniformis. Appl. Environ. Microbiol. 2010, 76, 2778–2782. [Google Scholar] [CrossRef]
- Yuan, S.-J.; Sun, M.; Sheng, G.-P.; Li, Y.; Li, W.-W.; Yao, R.-S.; Yu, H.-Q. Identification of Key Constituents and Structure of the Extracellular Polymeric Substances Excreted by Bacillus megaterium TF10 for Their Flocculation Capacity. Environ. Sci. Technol. 2011, 45, 1152–1157. [Google Scholar] [CrossRef]
- Poli, A.; Nicolaus, B.; Denizci, A.A.; Yavuzturk, B.; Kazan, D. Halomonas smyrnensis sp. Nov., a Moderately Halophilic, Exopolysaccharide-Producing Bacterium. Int. J. Syst. Evol. Microbiol. 2013, 63, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, K.; Li, B.; Yuan, H.; Yang, J. Production and Characterization of an Intracellular Bioflocculant by Chryseobacterium daeguense W6 Cultured in Low Nutrition Medium. Bioresour. Technol. 2010, 101, 1044–1048. [Google Scholar] [CrossRef]
- Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H.-Q.; Fredrickson, J.K. Extracellular Electron Transfer Mechanisms between Microorganisms and Minerals. Nat. Rev. Microbiol. 2016, 14, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Wang, D.; Lekbach, Y.; Xu, D. Extracellular Electron Transfer in Microbial Biocorrosion. Curr. Opin. Electrochem. 2021, 29, 100763. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, R.; Nielsen, S.; Joseph, S.D.; Huang, D.; Thomas, T. A Combination of Biochar–Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties. Front. Microbiol. 2016, 7, 372. [Google Scholar] [CrossRef]
- Oleksy, M.; Klewicka, E. Exopolysaccharides Produced by Lactobacillus sp.: Biosynthesis and Applications. Crit. Rev. Food Sci. Nutr. 2016, 58, 450–462. [Google Scholar] [CrossRef]
- Becker, A.; Katzen, F.; Pühler, A.; Ielpi, L. Xanthan Gum Biosynthesis and Application: A Biochemical/Genetic Perspective. Appl. Microbiol. Biotechnol. 1998, 50, 145–152. [Google Scholar] [CrossRef]
- Aman, A.; Siddiqui, N.N.; Qader, S.A.U. Characterization and Potential Applications of High Molecular Weight Dextran Produced by Leuconostoc mesenteroides AA1. Carbohydr. Polym. 2012, 87, 910–915. [Google Scholar] [CrossRef]
- Bhagat, N.; Raghav, M.; Dubey, S.; Bedi, N. Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance. J. Microbiol. Biotechnol. 2021, 31, 1045. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, Z.; Wang, X.; Yang, A.; Chen, L.; Zhao, J.; Leonard, D.; Jaffrezic-Renault, N. Production and Characterization of a Bioflocculant by Proteus Mirabilis TJ-1. Bioresour. Technol. 2008, 99, 6520–6527. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.V.; Salunkhe, R.B.; Patil, C.D.; Patil, D.M.; Salunke, B.K. Bioflocculant Exopolysaccharide Production by Azotobacter Indicus Using Flower Extract of Madhuca latifolia L. Appl. Biochem. Biotechnol. 2010, 162, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Adams, G.A.; Martin, S.M. Extracellular Polysaccharides of Serratia marcescens. Can. J. Biochem. 1964, 42, 1403–1413. [Google Scholar] [CrossRef]
- Bezawada, J.; Hoang, N.V.; More, T.T.; Yan, S.; Tyagi, N.; Tyagi, R.D.; Surampalli, R.Y. Production of Extracellular Polymeric Substances (EPS) by Serratia sp. 1 Using Wastewater Sludge as Raw Material and Flocculation Activity of the EPS Produced. J. Environ. Manag. 2013, 128, 83–91. [Google Scholar] [CrossRef]
- Rajoka, M.S.R.; Jin, M.; Haobin, Z.; Li, Q.; Shao, D.; Jiang, C.; Huang, Q.; Yang, H.; Shi, J.; Hussain, N. Functional Characterization and Biotechnological Potential of Exopolysaccharide Produced by Lactobacillus rhamnosus Strains Isolated from Human Breast Milk. LWT 2018, 89, 638–647. [Google Scholar] [CrossRef]
- Franklin, M.J.; Nivens, D.E.; Weadge, J.T.; Howell, P.L. Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl. Front. Microbiol. 2011, 2, 167. [Google Scholar] [CrossRef]
- Laws, A.; Gu, Y.; Marshall, V. Biosynthesis, Characterisation, and Design of Bacterial Exopolysaccharides from Lactic Acid Bacteria. Biotechnol. Adv. 2001, 19, 597–625. [Google Scholar] [CrossRef]
- Naik, M.M.; Pandey, A.; Dubey, S.K. Biological Characterization of Lead-Enhanced Exopolysaccharide Produced by a Lead Resistant Enterobacter Cloacae Strain P2B. Biodegradation 2012, 23, 775–783. [Google Scholar] [CrossRef]
- Benincasa, M.; Lagatolla, C.; Dolzani, L.; Milan, A.; Pacor, S.; Liut, G.; Tossi, A.; Cescutti, P.; Rizzo, R. Biofilms from Klebsiella Pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides. Microorganisms 2016, 4, 26. [Google Scholar] [CrossRef]
- Kavitake, D.; Marchawala, F.Z.; Delattre, C.; Shetty, P.H.; Pathak, H.; Andhare, P. Biotechnological Potential of Exopolysaccharide as a Bioemulsifier Produced by Rhizobium Radiobacter CAS Isolated from Curd. Bioact. Carbohydr. Diet. Fibre 2019, 20, 100202. [Google Scholar] [CrossRef]
- Freitas, F.; Alves, V.D.; Reis, M.A. Advances in Bacterial Exopolysaccharides: From Production to Biotechnological Applications. Trends Biotechnol. 2011, 29, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; van Hullebusch, E.D.; Neu, T.R.; Nielsen, P.H.; Seviour, T.; Stoodley, P.; Wingender, J.; Wuertz, S. The Biofilm Matrix: Multitasking in a Shared Space. Nat. Rev. Microbiol. 2023, 21, 70–86. [Google Scholar] [CrossRef]
- Su, W.; Tang, B.; Fu, F.; Huang, S.; Zhao, S.; Bin, L.; Ding, J.; Chen, C. A New Insight into Resource Recovery of Excess Sewage Sludge: Feasibility of Extracting Mixed Amino Acids as an Environment-Friendly Corrosion Inhibitor for Industrial Pickling. J. Hazard. Mater. 2014, 279, 38–45. [Google Scholar] [CrossRef]
- Chen, S.; Wu, T.; Zeng, F.; Chen, K.; Li, L.; Qu, Q. Streptococcus Mutans Soluble Extracellular Polymeric Substances and Sodium Molybdate as Mixed Corrosion Inhibitor for X70 Steel. J. Mater. Sci. 2023, 58, 2915–2934. [Google Scholar] [CrossRef]
- Finkenstadt, V.L.; Bucur, C.B.; Côté, G.L.; Evans, K.O. Bacterial Exopolysaccharides for Corrosion Resistance on Low Carbon Steel. J. Appl. Polym. Sci. 2017, 134, 45032. [Google Scholar] [CrossRef]
- Parthipan, P.; Sabarinathan, D.; Angaiah, S.; Rajasekar, A. Glycolipid Biosurfactant as an Eco-Friendly Microbial Inhibitor for the Corrosion of Carbon Steel in Vulnerable Corrosive Bacterial Strains. J. Mol. Liq. 2018, 261, 473–479. [Google Scholar] [CrossRef]
- Khan, M.S.; Yang, C.; Zhao, Y.; Pan, H.; Zhao, J.; Shahzad, M.B.; Kolawole, S.K.; Ullah, I.; Yang, K. An Induced Corrosion Inhibition of X80 Steel by Using Marine Bacterium Marinobacter salsuginis. Colloids Surf. B Biointerfaces 2020, 189, 110858. [Google Scholar] [CrossRef]
- Örnek, D.; Jayaraman, A.; Syrett, B.; Hsu, C.-H.; Mansfeld, F.; Wood, T. Pitting Corrosion Inhibition of Aluminum 2024 by Bacillus Biofilms Secreting Polyaspartate or γ-Polyglutamate. Appl. Microbiol. Biotechnol. 2002, 58, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, M.; Fan, Y.; Li, Z.; Cristiani, P.; Chen, X.; Xu, D.; Wang, F.; Gu, T. Marine Vibrio Spp. Protect Carbon Steel against Corrosion through Secreting Extracellular Polymeric Substances. NPJ Mater. Degrad. 2022, 6, 6. [Google Scholar] [CrossRef]
- Jin, J.; Wu, G.; Zhang, Z.; Guan, Y. Effect of Extracellular Polymeric Substances on Corrosion of Cast Iron in the Reclaimed Wastewater. Bioresour. Technol. 2014, 165, 162–165. [Google Scholar] [CrossRef]
- Pusparizkita, Y.M.; Schmahl, W.W.; Setiadi, T.; Ilsemann, B.; Reich, M.; Devianto, H.; Harimawan, A. Evaluation of Bio-Corrosion on Carbon Steel by Bacillus Megaterium in Biodiesel and Diesel Oil Mixture. J. Eng. Technol. Sci. 2020, 52, 370–384. [Google Scholar] [CrossRef]
- Suma, M.S.; Basheer, R.; Sreelekshmy, B.R.; Vipinlal, V.; Sha, M.A.; Jineesh, P.; Krishnan, A.; Archana, S.R.; Saji, V.S.; Shibli, S.M.A. Pseudomonas Putida RSS Biopassivation of Mild Steel for Long Term Corrosion Inhibition. Int. Biodeterior. Biodegrad. 2019, 137, 59–67. [Google Scholar] [CrossRef]
- Ruan, X.; Yang, L.; Wang, Y.; Dong, Y.; Xu, D.; Zhang, M. Biofilm-Induced Corrosion Inhibition of Q235 Carbon Steel by Tenacibaculum mesophilum D-6 and Bacillus sp. Y-6. Metals 2023, 13, 649. [Google Scholar] [CrossRef]
- Lou, Y.; Chang, W.; Cui, T.; Qian, H.; Huang, L.; Ma, L.; Hao, X.; Zhang, D. Microbiologically Influenced Corrosion Inhibition of Carbon Steel via Biomineralization Induced by Shewanella putrefaciens. NPJ Mater. Degrad. 2021, 5, 59. [Google Scholar] [CrossRef]
- Liu, H.; Chen, W.; Tan, Y.; Meng, G.; Liu, H.; Cheng, Y.; Liu, H. Characterizations of the Biomineralization Film Caused by Marine Pseudomonas stutzeri and Its Mechanistic Effects on X80 Pipeline Steel Corrosion. J. Mater. Sci. Technol. 2022, 125, 15–28. [Google Scholar] [CrossRef]
- Lu, S.; Chen, S.; Dou, W.; Wang, Y.; Sun, J.; Liu, G. Microbiologically Influenced Corrosion Inhibition of Two Marine Structural Steels Caused by Halomonas titanicae in Aerobic Environments. Eng. Fail. Anal. 2023, 154, 107668. [Google Scholar] [CrossRef]
- Ejileugha, C.; Ezealisiji, K.M.; Ezejiofor, A.N.; Orisakwe, O.E. Microbiologically Influenced Corrosion: Uncovering Mechanisms and Discovering Inhibitor—Metal and Metal Oxide Nanoparticles as Promising Biocorrosion Inhibitors. J. Bio-Tribo-Corros. 2021, 7, 109. [Google Scholar] [CrossRef]
- Muzammil, S.; Khurshid, M.; Nawaz, I.; Siddique, M.H.; Zubair, M.; Nisar, M.A.; Imran, M.; Hayat, S. Aluminium Oxide Nanoparticles Inhibit EPS Production, Adhesion and Biofilm Formation by Multidrug Resistant Acinetobacter baumannii. Biofouling 2020, 36, 492–504. [Google Scholar] [CrossRef]
- Videla, H.A.; Herrera, L.K. Understanding Microbial Inhibition of Corrosion. A Comprehensive Overview. Int. Biodeterior. Biodegrad. 2009, 63, 896–900. [Google Scholar] [CrossRef]
- Comte, S.; Guibaud, G.; Baudu, M. Relations between Extraction Protocols for Activated Sludge Extracellular Polymeric Substances (EPS) and EPS Complexation Properties: Part I. Comparison of the Efficiency of Eight EPS Extraction Methods. Enzym. Microb. Technol. 2006, 38, 237–245. [Google Scholar] [CrossRef]
- Liu, H.; Fang, H.H.P. Extraction of Extracellular Polymeric Substances (EPS) of Sludges. J. Biotechnol. 2002, 95, 249–256. [Google Scholar] [CrossRef]
- Ghafari, M.D.; Bahrami, A.; Rasooli, I.; Arabian, D.; Ghafari, F. Bacterial Exopolymeric Inhibition of Carbon Steel Corrosion. Int. Biodeterior. Biodegrad. 2013, 80, 29–33. [Google Scholar] [CrossRef]
- Chongdar, S.; Gunasekaran, G.; Kumar, P. Corrosion Inhibition of Mild Steel by Aerobic Biofilm. Electrochim. Acta 2005, 50, 4655–4665. [Google Scholar] [CrossRef]
- Ignatova-Ivanova, T.; Ivanov, R.; Iliev, I.; Ivanova, I. Study of the Anticorrosion Effect of Exopolysaccharides Produced by Lactobacillus Delbrueckii B5 Cultivated on Different Carbohydrates. Biotechnol. Biotechnol. Equip. 2012, 26, 224–227. [Google Scholar]
- Finkenstadt, V.L.; Côté, G.L.; Willett, J.L. Corrosion Protection of Low-Carbon Steel Using Exopolysaccharide Coatings from Leuconostoc mesenteroides. Biotechnol. Lett. 2011, 33, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gu, T.; Zhang, G.; Wang, W.; Dong, S.; Cheng, Y.; Liu, H. Corrosion Inhibition of Carbon Steel in CO2-Containing Oilfield Produced Water in the Presence of Iron-Oxidizing Bacteria and Inhibitors. Corros. Sci. 2016, 105, 149–160. [Google Scholar] [CrossRef]
- Liu, H.; Gu, T.; Asif, M.; Zhang, G.; Liu, H. The Corrosion Behavior and Mechanism of Carbon Steel Induced by Extracellular Polymeric Substances of Iron-Oxidizing Bacteria. Corros. Sci. 2017, 114, 102–111. [Google Scholar] [CrossRef]
- Ismail, K.M.; Gehrig, T.; Jayaraman, A.; Wood, T.K.; Trandem, K.; Arps, P.J.; Earthman, J.C. Corrosion Control of Mild Steel by Aerobic Bacteria under Continuous Flow Conditions. Corrosion 2002, 58, 417–423. [Google Scholar] [CrossRef]
- Videla, H.A.; Herrera, L.K. Microbiologically Influenced Corrosion: Looking to the Future. Int. Microbiol. 2005, 8, 169. [Google Scholar]
- Zuo, R.; Wood, T.K. Inhibiting Mild Steel Corrosion from Sulfate-Reducing and Iron-Oxidizing Bacteria Using Gramicidin-S-Producing Biofilms. Appl. Microbiol. Biotechnol. 2004, 65, 747–753. [Google Scholar] [CrossRef]
- Li, S.; Qu, Q.; Li, L.; Xia, K.; Li, Y.; Zhu, T. Bacillus Cereus S-EPS as a Dual Bio-Functional Corrosion and Scale Inhibitor in Artificial Seawater. Water Res. 2019, 166, 115094. [Google Scholar] [CrossRef] [PubMed]
- Arthur, D.E.; Jonathan, A.; Ameh, P.O.; Anya, C. A Review on the Assessment of Polymeric Materials Used as Corrosion Inhibitor of Metals and Alloys. Int. J. Ind. Chem. 2013, 4, 2. [Google Scholar] [CrossRef]
- Scheerder, J.; Breur, R.; Slaghek, T.; Holtman, W.; Vennik, M.; Ferrari, G. Exopolysaccharides (EPS) as Anti-Corrosive Additives for Coatings. Prog. Org. Coat. 2012, 75, 224–230. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, D.; Wang, J.; Wang, Y.; Li, W.; Xu, J. Electroactive Polymeric Coating with Enhanced Anticorrosion Performance Based on Polyaniline and Graphene Oxide. ACS Appl. Mater. Interfaces 2018, 10, 40317–40327. [Google Scholar]
- Zhang, J.; Li, Z.; Sun, W.; Li, X.; Cui, M.; Zhou, E.; Wang, F.; Xu, D. Extracellular Polysaccharides of Tenacibaculum mesophilum D-6 Play a Major Role During Its Corrosion Protection for X80 Carbon Steel in Seawater. Corros. Sci. 2025, 249, 112811. [Google Scholar] [CrossRef]
- Dong, Z.H.; Liu, T.; Liu, H.F. Influence of EPS Isolated from Thermophilic Sulphate-Reducing Bacteria on Carbon Steel Corrosion. Biofouling 2011, 27, 487–495. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Zhang, P.; Tang, Y.; Zhou, M.; Jiang, W.; Zhang, X.; Wu, G.; Zhou, Y. Tissue-Engineered Bone Immobilized with Human Adipose Stem Cells-Derived Exosomes Promotes Bone Regeneration. ACS Appl. Mater. Interfaces 2018, 10, 5240–5254. [Google Scholar] [CrossRef]
- Guo, Z.; Pan, S.; Liu, T.; Zhao, Q.; Wang, Y.; Guo, N.; Chang, X.; Liu, T.; Dong, Y.; Yin, Y. Bacillus Subtilis Inhibits Vibrio Natriegens-Induced Corrosion via Biomineralization in Seawater. Front. Microbiol. 2019, 10, 1111. [Google Scholar] [CrossRef]
- Videla, H.A.; Herrera, L.K. Corrosión de Origen Microbiológico: Mirando al Futuro. Int. Microbiol. 2005, 8, 169–180. [Google Scholar]
- Ford, T.; Mitchell, R. The Ecology of Microbial Corrosion. In Advances in Microbial Ecology; Marshall, K.C., Ed.; Springer: Boston, MA, USA, 1990; Volume 11, pp. 231–262. ISBN 978-1-4684-7614-9. [Google Scholar]
- Xu, H.; Wang, Y.; Li, X.; Zhang, M.; Chen, Q.; Zhou, L.; Wu, Z.; Liu, J.; Liu, X.; Gao, M. Synergistic effect of extracellular polymeric substances and carbon layer on electron utilization of Fe@C during anaerobic treatment of refractory wastewater. Water Res. 2023, 231, 119609. [Google Scholar] [CrossRef]
- Hao, J.; Li, P.; Zhang, X.; Wang, L.; Chen, Y.; Zhou, D.; Liu, Q.; Feng, S. Overview of Recent Developments in Composite Epoxy Resin in Organic Coating on Steel (2020–2024). Materials 2025, 18, 1531. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.; Nguyen, T.T.; Tran, H.Q.; Le, V.T.; Dang, N.T.; Pham, V.C.; Doan, T.H.; Bui, X.H. Synthesis and Corrosion Inhibition Potential of Cerium/Tetraethylenepentamine Dithiocarbamate Complex on AA2024-T3 in 3.5% NaCl. Materials 2022, 15, 6631. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Wang, X.; Zhou, Y.; Li, H.; Zhou, X.; Hu, L.; Zhang, T. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corros. Sci. 2017, 127, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Gong, S.; Song, C.; Tian, H.; Yan, Z.; Wang, S. Roles of Microbial Extracellular Polymeric Substances in Corrosion and Scale Inhibition of Circulating Cooling Water. ACS EST Water 2023, 3, 743–755. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Duan, J.; Shi, X.; Zhang, Y.; Guan, F.; Sand, W.; Hou, B. Extracellular Polymeric Substances and Biocorrosion/Biofouling: Recent Advances and Future Perspectives. Int. J. Mol. Sci. 2022, 23, 5566. [Google Scholar] [CrossRef]
- Lavanya, M. A Brief Insight into Microbial Corrosion and Its Mitigation with Eco-Friendly Inhibitors. J. Bio Tribo Corros. 2021, 7, 125. [Google Scholar] [CrossRef]
- Moradi, M.; Song, Z.; Xiao, T. Exopolysaccharide Produced by Vibrio neocaledonicus sp. as a Green Corrosion Inhibitor: Production and Structural Characterization. J. Mater. Sci. Technol. 2018, 34, 2447–2457. [Google Scholar] [CrossRef]
- Gece, G.; Bilgiç, S. A Theoretical Study on the Inhibition Efficiencies of Some Amino Acids as Corrosion Inhibitors of Nickel. Corros. Sci. 2010, 52, 3435–3443. [Google Scholar] [CrossRef]
- Zhang, D.-Q.; Cai, Q.-R.; He, X.-M.; Gao, L.-X.; Zhou, G.-D. Inhibition Effect of Some Amino Acids on Copper Corrosion in HCl Solution. Mater. Chem. Phys. 2008, 112, 353–358. [Google Scholar] [CrossRef]
- Stadler, R.; Wei, L.; Fürbeth, W.; Grooters, M.; Kuklinski, A. Influence of Bacterial Exopolymers on Cell Adhesion of Desulfovibrio vulgaris on High Alloyed Steel: Corrosion Inhibition by Extracellular Polymeric Substances (EPS). Mater. Corros. 2010, 61, 1008–1016. [Google Scholar] [CrossRef]
- Soares da Silva, R.d.C.F.; Selva Filho, A.A.P.; Faccioli, Y.E.S.; Silva, Y.K.; Oliveira, K.W.; Araujo, G.P.; Rocha e Silva, N.M.P.; Converti, A.; Sarubbo, L.A. Application of Pseudomonas Cepacia CCT 6659 Biosurfactant as a Metal Corrosion Inhibitor in a Constructed Accelerated Corrosion Chamber (ACC). Fermentation 2024, 10, 602. [Google Scholar] [CrossRef]
- Raja, P.B.; Ismail, M.; Ghoreishiamiri, S.; Mirza, J.; Ismail, M.C.; Kakooei, S.; Rahim, A.A. Reviews on Corrosion Inhibitors: A Short View. Chem. Eng. Commun. 2016, 203, 1145–1156. [Google Scholar] [CrossRef]
- Moradi, M.; Xiao, T.; Song, Z. Investigation of Corrosion Inhibitory Process of Marine Vibrio neocaledonicus sp. Bacterium for Carbon Steel. Corros. Sci. 2015, 100, 186–193. [Google Scholar] [CrossRef]
- Go, L.C.; Depan, D.; Holmes, W.E.; Gallo, A.; Knierim, K.; Bertrand, T.; Hernandez, R. Kinetic and Thermodynamic Analyses of the Corrosion Inhibition of Synthetic Extracellular Polymeric Substances. PeerJ Mater. Sci. 2020, 2, e4. [Google Scholar] [CrossRef]
- Jia, R.; Unsal, T.; Xu, D.; Lekbach, Y.; Gu, T. Microbiologically Influenced Corrosion and Current Mitigation Strategies: A State of the Art Review. Int. Biodeterior. Biodegrad. 2019, 137, 42–58. [Google Scholar] [CrossRef]
- Zuo, R. Biofilms: Strategies for Metal Corrosion Inhibition Employing Microorganisms. Appl. Microbiol. Biotechnol. 2007, 76, 1245–1253. [Google Scholar] [CrossRef]
- Yadav, M.K.; Song, J.H.; Vasquez, R.; Lee, J.S.; Kim, I.H.; Kang, D.-K. Methods for Detection, Extraction, Purification, and Characterization of Exopolysaccharides of Lactic Acid Bacteria—A Systematic Review. Foods 2024, 13, 3687. [Google Scholar] [CrossRef]
- Sellami, M.; Oszako, T.; Miled, N.; Ben Rebah, F. Industrial Wastewater as Raw Material for Exopolysaccharide Production by Rhizobium leguminosarum. Braz. J. Microbiol. 2015, 46, 407–413. [Google Scholar] [CrossRef]
- Wu, X.; Wu, X.; Zhou, X.; Gu, Y.; Zhou, H.; Shen, L.; Zeng, W. The Roles of Extracellular Polymeric Substances of Pandoraea sp. XY-2 in the Removal of Tetracycline. Bioprocess Biosyst. Eng. 2020, 43, 1951–1960. [Google Scholar] [CrossRef]
- Liu, T.; Guo, Z.; Zeng, Z.; Guo, N.; Lei, Y.; Liu, T.; Sun, S.; Chang, X.; Yin, Y.; Wang, X. Marine Bacteria Provide Lasting Anticorrosion Activity for Steel via Biofilm-Induced Mineralization. ACS Appl. Mater. Interfaces 2018, 10, 40317–40327. [Google Scholar] [CrossRef]
- Verma, C.; Ebenso, E.E.; Quraishi, M.A.; Hussain, C.M. Recent Developments in Sustainable Corrosion Inhibitors: Design, Performance and Industrial Scale Applications. Mater. Adv. 2021, 2, 3806–3850. [Google Scholar] [CrossRef]
- Sellami, M.; Frikha, F.; Aribi, A.; Taktak, I.; Miled, N.; Rebah, F.B. Optimization of Wastewater Based Media for Biopolymers Production by Rhizobium leguminosarum. Environ. Eng. Manag. J. (EEMJ) 2018, 17, 1329–1335. [Google Scholar]
- Korniy, S.A.; Zin, I.M.; Danyliak, M.-O.M.; Rizun, Y.Y. Eco-Friendly Metal Corrosion Inhibitors Based on Natural Polymers (A Review). Mater. Sci. 2023, 58, 567–578. [Google Scholar] [CrossRef]
- Seviour, R.J.; McNeil, B.; Fazenda, M.L.; Harvey, L.M. Operating Bioreactors for Microbial Exopolysaccharide Production. Crit. Rev. Biotechnol. 2011, 31, 170–185. [Google Scholar] [CrossRef]
Function | Description of EPS Function | Examples of Microorganisms | References |
---|---|---|---|
Adhesion and cohesion | Making microorganisms stick together, attachment to surfaces, biofilm formation, the creation of a stable, gel-like network through interactions (hydrogen bonds and electrostatic forces), and maintaining microbial communities intact. | P. putida, B. subtilis | [17,39] |
Genetic material transfer | Facilitating the exchange of genetic material between microorganisms; ExDNA within EPSs increases the frequency of gene transfer in biofilms compared to free cells. | A. baumannii | [40,41] |
Symbiosis | Specific EPS structures are necessary for successful infection and nodule formation in legumes. | B. japonicum, M. loti | [42,43] |
Pathogenicity and virulence | The enhancement of the virulence of certain bacteria by protecting them from host defenses (reactive oxygen species, immune responses, EPS overproduction in certain bacteria protects against hydrogen peroxide damage); acting as mechanical barriers against plant-derived toxins. | P. aeruginosa, X. campestris | [44,45] |
Reserves of carbon | Serving as a carbon source for microorganisms during nutrient scarcity. Some bacteria, like Rhizobium, can metabolize the produced EPSs to survive under carbon-limited conditions. | A. brasilense, S. meliloti | [46,47] |
Drought protection | Retaining water, helping microorganisms to survive under dry conditions, and holding moisture and nutrients to support microbial survival during dry periods. | A. chroococcum, N. calcicola | [50,51] |
Trap of nutrients | EPSs capture and retain nutrients and hold extracellular enzymes, creating a localized digestion system that benefits microbial communities. | P. polymyxa, A. variabilis | [48,49] |
Salt tolerance | Helping microorganisms in tolerating high salt concentrations, reducing sodium uptake in plants, and preventing nutrient imbalances and osmotic stress. | H. elongata, S. meliloti EFBI | [55,56] |
Temperature protection | Protecting microorganisms from extreme temperatures (preventing freezing damage, adaptation to high-temperature settings, etc.). | Geobacillus thermodenitrificans, Thermus thermophilus | [16,57] |
Protection against antimicrobials | Reducing the effectiveness of antimicrobial agents in biofilms by binding to them or slowing their diffusion. | S. epidermidis, A. baumannii | [52,53] |
Heavy metal adsorption | Binding heavy metals (Ca, Co, Pb, etc.) via adsorption; the metal-binding capacity depends on factors like pH and EPS composition. | C. metallidurans, P. putida | [58,59] |
Biofilm formation | Providing structural support and enabling chemical communication among microorganisms, controlling interactions between predators and prey within biofilm, and regulating biofilm stability, microbial community dynamics, and ecological balance. | P. fluorescens, B. cereus | [17,60] |
Enzyme retention | Retaining extracellular enzymes, creating a localized system for breaking down nutrients, and helping the efficient use of available resources by microorganisms. | B. licheniformis, P. aeruginosa | [44,48] |
Soil aggregation | Improving soil structure by enhancing aggregation and moisture retention, which is beneficial for plant growth and microbial activity in the soil. | B. subtilis, A. brasilense | [47,54] |
Cryoprotection | EPSs protect microorganisms in freezing environments by altering ice formation and reducing salinity, improving microbial survival in extreme cold. | P. arcticus, P. haloplanktis | [16,28] |
Antioxidant properties | Protecting microorganisms from oxidative damage. | S. meliloti | [61] |
Chlorine resistance | Helping bacteria to resist chlorine-based disinfection. | P. aeruginosa | [62] |
Microorganism | EPS | Metal | Corrosive Medium | Maximum Corrosion Inhibition (%) | Corrosion Rate (m/year) | Reference |
---|---|---|---|---|---|---|
P. mosselii F01 | Glycolipid | Carbon Steel API 5LX | HCl | 87 | - | [91] |
M. salsuginis | Proteins and carbohydrates | X80 carbon steel | NaCl | 91.16 | - | [92] |
B. licheniformis | γ-polyglutamate | Aluminum 2024 | - | 90 | - | [93] |
S. mutans | Polysaccharide | X70 steel | NaCl | 82 | - | [90] |
Lactic Acid Bacteria | Various exopolysaccharides | Carbon steel | NaCl | - | 0.315–0.992 | [89] |
Vibrio sp. EF187016 | - | X80 carbon steel | NaCl | 68 | - | [94] |
Microorganisms from wastewater sludge | - | Carbon steel | NaCl | 78.89 | - | [63] |
Microorganisms from wastewater treatment plant | Proteins and polysaccharides | Cast iron | - | 66.40 | - | [95] |
P. putida | Various compounds | A3 carbon steel | - | 59.63 | - | [96] |
B. megaterium | Various compounds | A3 carbon steel | - | 35.04 | - | [97] |
Iron-oxidizing bacteria from sludge | Proteins and polysaccharides | Q235 mild carbon steel | NaCl | - | - | [98] |
P. stutzeri | Polysaccharide | X80 pipeline steel | Seawater | 72 | - | [99] |
S. putrefaciens | Polysaccharide and calcite | Carbon steel | Seawater | 75 | - | [100] |
Halomonas sp. | Polysaccharides | Mild steel | NaCl | 80 | - | [101] |
K. pneumoniae | Biofilm-forming EPS | Stainless steel | - | 85 | - | [102] |
A. baumannii | Biofilm EPS | Carbon steel | - | 83 | - | [103] |
Mechanism | Description | Main Influencing Factors | References |
---|---|---|---|
Protective film formation | EPSs adsorb onto metal surfaces, forming a compact physical barrier that prevents the penetration of corrosive agents (e.g., O2, Cl−). | EPS concentration, functional groups (carboxyl, amino, hydroxyl), film thickness, environmental factors (pH, temperature) | [90,94,109] |
Metal ion complexation | Functional groups in EPSs chelate metal ions, reducing dissolution and inhibiting formation of corrosive oxides. | Carboxyl/amino group availability, pH (ionization favored in acidic media) | [90,110,111] |
Oxygen consumption by biofilm | Aerobic microbes in biofilms consume oxygen, limiting its availability for cathodic reactions. | Presence of aerobic bacteria, biofilm thickness, environment | [94,112] |
Neutralization of corrosive agents | EPSs and microbial metabolites (e.g., organic acids) reduce the reactivity of corrosive agents. | Metabolic activity, compound production, environmental conditions | [113,114] |
Inhibition of corrosive microbes | The production of antimicrobial substances by EPS-producing microbes inhibits sulfate-reducing and iron-oxidizing bacteria. | Antimicrobial production, strain-specific activity, environmental factors | [91,115] |
Stabilization of corrosion products | EPSs enhance the adhesion and stability of corrosion product layers (e.g., iron oxides, phosphates). | EPS–mineral interactions, biofilm integrity | [3,107] |
Inhibition of CaCO3 crystal growth | EPSs chelate Ca2+ ions, hindering the nucleation and growth of calcium carbonate crystals. | Carboxyl group presence, calcium ion availability | [116] |
Electrochemical modifications | EPSs alter the electrochemical behavior at the metal–biofilm interface, inhibiting anodic and cathodic reactions. | EPS concentration, surface charge, electrochemical activity | [89,117] |
Synergy with corrosion inhibitors | EPSs enhance the effectiveness of traditional inhibitors by promoting the formation of protective complexes. | Type of inhibitor, EPS composition, pH | [90,118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayahi, N.; Othmani, B.; Mnif, W.; Algarni, Z.; Khadhraoui, M.; Rebah, F.B. Microbial Extracellular Polymeric Substances as Corrosion Inhibitors: A Review. Surfaces 2025, 8, 49. https://doi.org/10.3390/surfaces8030049
Sayahi N, Othmani B, Mnif W, Algarni Z, Khadhraoui M, Rebah FB. Microbial Extracellular Polymeric Substances as Corrosion Inhibitors: A Review. Surfaces. 2025; 8(3):49. https://doi.org/10.3390/surfaces8030049
Chicago/Turabian StyleSayahi, Naima, Bouthaina Othmani, Wissem Mnif, Zaina Algarni, Moncef Khadhraoui, and Faouzi Ben Rebah. 2025. "Microbial Extracellular Polymeric Substances as Corrosion Inhibitors: A Review" Surfaces 8, no. 3: 49. https://doi.org/10.3390/surfaces8030049
APA StyleSayahi, N., Othmani, B., Mnif, W., Algarni, Z., Khadhraoui, M., & Rebah, F. B. (2025). Microbial Extracellular Polymeric Substances as Corrosion Inhibitors: A Review. Surfaces, 8(3), 49. https://doi.org/10.3390/surfaces8030049