Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (858)

Search Parameters:
Keywords = fiber melting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4132 KiB  
Review
Mechanical Properties of Biodegradable Fibers and Fibrous Mats: A Comprehensive Review
by Ehsan Niknejad, Reza Jafari and Naser Valipour Motlagh
Molecules 2025, 30(15), 3276; https://doi.org/10.3390/molecules30153276 - 5 Aug 2025
Abstract
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer [...] Read more.
The growing demand for sustainable materials has led to increased interest in biodegradable polymer fibers and nonwoven mats due to their eco-friendly characteristics and potential to reduce plastic pollution. This review highlights how mechanical properties influence the performance and suitability of biodegradable polymer fibers across diverse applications. This covers synthetic polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polycaprolactone (PCL), polyglycolic acid (PGA), and polyvinyl alcohol (PVA), as well as natural polymers including chitosan, collagen, cellulose, alginate, silk fibroin, and starch-based polymers. A range of fiber production methods is discussed, including electrospinning, centrifugal spinning, spunbonding, melt blowing, melt spinning, and wet spinning, with attention to how each technique influences tensile strength, elongation, and modulus. The review also addresses advances in composite fibers, nanoparticle incorporation, crosslinking methods, and post-processing strategies that improve mechanical behavior. In addition, mechanical testing techniques such as tensile test machine, atomic force microscopy, and dynamic mechanical analysis are examined to show how fabrication parameters influence fiber performance. This review examines the mechanical performance of biodegradable polymer fibers and fibrous mats, emphasizing their potential as sustainable alternatives to conventional materials in applications such as tissue engineering, drug delivery, medical implants, wound dressings, packaging, and filtration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

16 pages, 10388 KiB  
Article
Highly-Oriented Polylactic Acid Fiber Reinforced Polycaprolactone Composite Produced by Infused Fiber Mat Process for 3D Printed Tissue Engineering Technology
by Zhipeng Deng, Chen Rao, Simin Han, Qungui Wei, Yichen Liang, Jialong Liu and Dazhi Jiang
Polymers 2025, 17(15), 2138; https://doi.org/10.3390/polym17152138 - 5 Aug 2025
Abstract
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced [...] Read more.
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced PCL (PLA/PCL) composite as the filament for 3D printed scaffolds to significantly enhance their mechanical performance: Special-made PLA short fiber mat was infused with PCL matrix and rolled into PLA/PCL filaments through a “Vacuum Assisted Resin Infusion” (VARI) process. The investigation revealed that the PLA fibers are highly oriented along the printing direction when using this filament for 3D printing due to the unique microstructure formed during the VARI process. At the same PLA fiber content, the percentage increase in Young’s modulus of the 3D printed strands using the filaments produced by the VARI process is 127.6% higher than the 3D printed strands using the filaments produced by the conventional melt blending process. The 3D printed tissue engineering scaffolds using the PLA/PCL composite filament with 11 wt% PLA fiber content also achieved an exceptional 84.2% and 143.3% increase in peak load and stiffness compared to the neat PCL counterpart. Full article
Show Figures

Graphical abstract

15 pages, 3303 KiB  
Article
Effect of Ozone on Nonwoven Polylactide/Natural Rubber Fibers
by Yulia V. Tertyshnaya, Svetlana G. Karpova and Maria V. Podzorova
Polymers 2025, 17(15), 2102; https://doi.org/10.3390/polym17152102 - 31 Jul 2025
Viewed by 140
Abstract
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber [...] Read more.
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber contents of 5, 10, and 15 wt.% were obtained, which were then subjected to ozone oxidation for 800 min. The effect of ozone treatment was estimated using various methods of physicochemical analysis. The visual effect was manifested in the form of a change in the color of PLA/NR fibers. The method of differential scanning calorimetry revealed a change in the thermophysical characteristics. The glass transition and cold crystallization temperatures of polylactide shifted toward lower temperatures, and the degree of crystallinity increased. It was found that in PLA/NR fiber samples, the degradation process predominates over the crosslinking process, as an increase in the melt flow rate by 1.5–1.6 times and a decrease in the correlation time determined by the electron paramagnetic resonance method were observed. The IR Fourier method recorded a change in the chemical structure during ozone oxidation. The intensity of the ether bond bands changed, and new bands appeared at 1640 and 1537 cm−1, which corresponded to the formation of –C=C– bonds. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

15 pages, 15023 KiB  
Article
Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability
by Yixin Li, Le Kang and Kai Cao
Polymers 2025, 17(15), 2086; https://doi.org/10.3390/polym17152086 - 30 Jul 2025
Viewed by 269
Abstract
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this [...] Read more.
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this problem. However, existing strategies usually produce nonporous composite scaffolds, where the interfiber pores are completely filled with hydrogel. This design can hinder oxygen and nutrient exchange between seeded cells and the culture medium, thereby limiting cell invasion and colonization within the scaffold. In this study, sodium alginate (SA) hydrogel was exclusively grafted onto the surface of the constituent fibers of the melt electrowritten scaffold while preserving the porous structure. The grafted hydrogel amount and pore size were precisely controlled by adjusting the SA concentration and the crosslinking ratio (SA: CaCl2). Experimental results demonstrated that the porous composite scaffolds exhibited superior swelling capacity, degradation ratio, mechanical properties, and biocompatibility. Notably, at an SA concentration of 0.5% and a crosslinking ratio of 2:1, the porous composite scaffold achieved optimal cell adhesion and viability. This study highlights the critical importance of preserving porous structures in composite scaffolds for tissue-engineering applications. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

24 pages, 10976 KiB  
Article
Fabrication and Characterization of a Novel 3D-Printable Bio-Composite from Polylactic Acid (PLA) and Ruminant-Digested Corn Stover
by Siyang Wu, Lixing Ren, Jiyan Xu, Jiale Zhao, Xiaoli Hu and Mingzhuo Guo
Polymers 2025, 17(15), 2077; https://doi.org/10.3390/polym17152077 - 29 Jul 2025
Viewed by 270
Abstract
To address the growing demand for sustainable materials in advanced manufacturing, the objective of this study was to develop and characterize a novel 3D-printable biocomposite using ruminant-digested corn stover (DCS) as a reinforcement for polylactic acid (PLA). The methodology involved systematically optimizing DCS [...] Read more.
To address the growing demand for sustainable materials in advanced manufacturing, the objective of this study was to develop and characterize a novel 3D-printable biocomposite using ruminant-digested corn stover (DCS) as a reinforcement for polylactic acid (PLA). The methodology involved systematically optimizing DCS particle size (80–140 mesh) and loading concentration (5–20 wt.%), followed by fabricating composite filaments via melt extrusion and 3D printing test specimens. The resulting materials were comprehensively characterized for their morphological, physical, and mechanical properties. The optimal formulation, achieved with 120-mesh particles at 15 wt.% loading, exhibited a 15.6% increase in tensile strength to 64.17 MPa and a 21.1% enhancement in flexural modulus to 4.19 GPa compared to neat PLA. In addition to the mechanical improvements, the biocomposite offers an advantageous density reduction, enabling the fabrication of lightweight structures for resource-efficient applications. Comprehensive characterization revealed effective interfacial integration and uniform fiber dispersion, validating biological preprocessing as a viable method for unlocking the reinforcement potential of this abundant biomass. While the composite exhibits characteristic trade-offs, such as reduced impact strength, the overall performance profile makes it a promising candidate for structural applications in sustainable manufacturing. This research establishes a viable pathway for agricultural waste valorization, demonstrating that biological preprocessing can convert agricultural residues into value-added engineering materials for the circular bioeconomy. Full article
(This article belongs to the Special Issue Natural Fiber Composites: Synthesis and Applications)
Show Figures

Graphical abstract

11 pages, 2151 KiB  
Article
Fabrication of Antibacterial Poly(ethylene terephthalate)/Graphene Nanocomposite Fibers by In Situ Polymerization for Fruit Preservation
by Jiarui Wu, Qinhan Chen, Aobin Han, Min Liu, Wenhuan Zhong, Xiaojue Shao, Yan Jiang, Jing Lin, Zhenyang Luo, Jie Yang and Gefei Li
Molecules 2025, 30(15), 3109; https://doi.org/10.3390/molecules30153109 - 24 Jul 2025
Viewed by 205
Abstract
A novel polyester/graphene nanocomposite fiber was produced using the in situ polymerization protocol with carboxylated graphene and melt spinning technology. The resulting nanocomposite fibers were characterized by X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The fibers [...] Read more.
A novel polyester/graphene nanocomposite fiber was produced using the in situ polymerization protocol with carboxylated graphene and melt spinning technology. The resulting nanocomposite fibers were characterized by X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The fibers containing 0.2 wt% graphene fraction showed an excellent dispersity of graphene nanosheets in polymeric matrix. DSC test showed that the efficient polymer-chain grafting depresses the crystallization of PET chains. This graphene-contained PET fabric exhibited attractive antibacterial properties that can be employed in fruit preservation to ensure food safety. Full article
(This article belongs to the Special Issue Design and Application of Functional Supramolecular Materials)
Show Figures

Figure 1

12 pages, 4677 KiB  
Article
Lap Welding of Nickel-Plated Steel and Copper Sheets Using Coaxial Laser Beams
by Kuan-Wei Su, Yi-Hsuan Chen, Hung-Yang Chu and Ren-Kae Shiue
Materials 2025, 18(14), 3407; https://doi.org/10.3390/ma18143407 - 21 Jul 2025
Viewed by 257
Abstract
The laser heterogeneous lap welding of nickel-plated steel and Cu sheets has been investigated in this study. The YAG (Yttrium-Aluminum-Garnet) laser beam only penetrates the upper Ni-plated steel sheet and cannot weld the bottom Cu sheet due to the low absorption coefficient of [...] Read more.
The laser heterogeneous lap welding of nickel-plated steel and Cu sheets has been investigated in this study. The YAG (Yttrium-Aluminum-Garnet) laser beam only penetrates the upper Ni-plated steel sheet and cannot weld the bottom Cu sheet due to the low absorption coefficient of the YAG laser beam. Incorporating a blue-light and fiber laser into the coaxial laser beam significantly improves the quality of the weld fusion zone. The fiber laser beam can penetrate the upper nickel-plated steel sheet, and the blue-light laser beam can melt the bottom copper sheet. Introducing the blue-light laser to the coaxial laser beams overcomes the low reflectivity of the bottom copper sheet. The fiber/blue-light coaxial laser continuous welding can achieve the best integrity and defect-free welding. It shows potential in the mass production of the next generation of lithium batteries. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Metal and Non-Metallic Materials)
Show Figures

Figure 1

33 pages, 4464 KiB  
Article
Physicochemical and Structural Characteristics of Date Seed and Starch Composite Powder as Prepared by Heating at Different Temperatures
by Muna Al-Mawali, Maha Al-Khalili, Mohammed Al-Khusaibi, Myo Tay Zar Myint, Htet Htet Kyaw, Mohammad Shafiur Rahman, Abdullahi Idris Muhammad and Nasser Al-Habsi
Polymers 2025, 17(14), 1993; https://doi.org/10.3390/polym17141993 - 21 Jul 2025
Viewed by 535
Abstract
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). [...] Read more.
Date seeds, a by-product of the pitted-date industry, are often discarded as waste. This study investigated the interaction between date seed powder and starch at different concentrations (0, 1, 5, 10, and 20 g/25 g composite) and temperatures (40 °C and 70 °C). The results revealed that the hygroscopicity of date seed powder (9.94 g/100 g) was lower than starch (13.39 g/100 g), and its water absorption (75.8%) was also lower than starch (88.3%), leading to a reduced absorbance capacity in composites. However, the solubility increased with a higher date seed content due to its greater solubility (17.8 g/L) compared to starch (1.6 g/L). A morphological analysis showed rough, agglomerated particles in date seed powder, while starch had smooth, spherical shapes. This study also found that the composites formed larger particles at 40 °C and porous structures at 70 °C. Crystallinity decreased from 41.6% to 12.8% (40 °C) and from 24.0% to 11.3% (70 °C). A thermal analysis revealed three endothermic peaks (glass transitions and solid melting), with an additional oil-melting peak in high-seed samples. FTIR spectra showed changes in peak intensities and locations upon seed incorporation. Overall, these findings revealed that, the incorporation of date seed powder–starch composites into bakery formulations offers a promising strategy for developing fiber-enriched products, positioning them as functional ingredients with added nutritional value. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 3201 KiB  
Article
Effect of Screw Configuration on the Recyclability of Natural Fiber-Based Composites
by Vlasta Chyzna, Steven Rowe, James Finnerty, Trevor Howard, Christopher Doran, Shane Connolly, Noel Gately, Alexandre Portela, Alan Murphy, Declan M. Devine and Declan Mary Colbert
Fibers 2025, 13(7), 98; https://doi.org/10.3390/fib13070098 - 18 Jul 2025
Viewed by 397
Abstract
The burgeoning crisis of plastic waste accumulation necessitates innovative approaches towards sustainable packaging solutions. Polylactic acid (PLA), a leading biopolymer, emerges as a promising candidate in this realm, especially for environmentally friendly packaging. PLA is renowned for its compostable properties, offering a strategic [...] Read more.
The burgeoning crisis of plastic waste accumulation necessitates innovative approaches towards sustainable packaging solutions. Polylactic acid (PLA), a leading biopolymer, emerges as a promising candidate in this realm, especially for environmentally friendly packaging. PLA is renowned for its compostable properties, offering a strategic avenue to mitigate plastic waste. However, its dependency on specific industrial composting conditions, characterized by elevated temperatures, humidity, and thermophilic microbes, limits its utility for household composting. This study aims to bridge the research gap in PLA’s recyclability and explore its feasibility in mechanical recycling processes. The research focuses on assessing the mechanical characteristics of PLA and PLA-based composites post-recycling. Specifically, we examined the effects of two extrusion methods—conical and parallel—on PLA and its composites containing 20 wt.% basalt fibers (BF). The recycling process encompassed repeated cycles of hot melt extrusion (HME), followed by mechanical grinding to produce granules. These granules were then subjected to injection moulding (IM) after 1, 3 and 5 recycling cycles. The tensile properties of the resulting IM-produced bars provided insights into the material’s durability and stability. The findings reveal that both PLA and PLA/BF composites retain their mechanical integrity through up to 5 cycles of mechanical recycling. This resilience underscores PLA’s potential for integration into existing recycling streams, addressing the dual challenges of environmental sustainability and waste management. The study contributes to the broader understanding of PLA’s lifecycle and opens new possibilities for its application in eco-friendly packaging, beyond the limits of composting. The implications of these findings extend towards enhancing the circularity of biopolymers and reducing the environmental footprint of plastic packaging. Full article
Show Figures

Figure 1

22 pages, 6500 KiB  
Article
The Effect of Bio-Based Polyamide 10.10 and Treated Fly Ash on Glass-Fiber-Reinforced Polyamide 6 Properties
by George-Mihail Teodorescu, Zina Vuluga, Toma Fistoș, Sofia Slămnoiu-Teodorescu, Jenica Paceagiu, Cristian-Andi Nicolae, Augusta Raluca Gabor, Marius Ghiurea, Cătălina Gîfu and Rodica Mariana Ion
Polymers 2025, 17(14), 1950; https://doi.org/10.3390/polym17141950 - 16 Jul 2025
Viewed by 260
Abstract
Increased concern for human health and the environment has pushed various industries to adopt new approaches towards satisfying modern regulations. Strategies to achieve these approaches include utilizing lightweight materials, repurposing waste materials, and substituting synthetic polymers with bio-based counterparts. This study investigates the [...] Read more.
Increased concern for human health and the environment has pushed various industries to adopt new approaches towards satisfying modern regulations. Strategies to achieve these approaches include utilizing lightweight materials, repurposing waste materials, and substituting synthetic polymers with bio-based counterparts. This study investigates the effects of treated fly ash (C) and bio-based polyamide 10.10 (PA10) on the thermal, morphological, and mechanical properties of glass fiber (GF)-reinforced polyamide 6 (PA6). Our main objective was to develop a composite that would allow for the partial replacement of glass fiber in reinforced polyamide 6 composites (PA6-30G) while maintaining a favorable balance of mechanical properties. Composites processed via melt processing demonstrated enhanced mechanical properties compared to PA6-30G. Notably, significant improvements were observed in impact strength and tensile strain at break. The addition of PA10 resulted in increases of 18% in impact strength and 35% in tensile strain relative to PA6-30G. Complementary, structural and morphological analyses confirmed strong interfacial interactions within the composite matrix. These findings indicate that a PA6/PA10 hybrid composite may represent a viable alternative material for potential automotive applications. Full article
Show Figures

Figure 1

20 pages, 2740 KiB  
Article
Antistatic Melt-Electrowritten Biodegradable Mesh Implants for Enhanced Pelvic Organ Prolapse Repair
by Daniela Cruz, Francisca Vaz, Evangelia Antoniadi, Ana Telma Silva, Joana Martins, Fábio Pinheiro, Nuno Miguel Ferreira, Luís B. Bebiano, Rúben F. Pereira, António Fernandes and Elisabete Silva
Appl. Sci. 2025, 15(14), 7763; https://doi.org/10.3390/app15147763 - 10 Jul 2025
Viewed by 344
Abstract
Pelvic organ prolapse (POP) is a health condition that can significantly impact patients’ quality of life. Unfortunately, most available treatments present drawbacks such as high recurrence rates, risk of complications, poor tissue integration, and the need for reintervention. One promising alternative is the [...] Read more.
Pelvic organ prolapse (POP) is a health condition that can significantly impact patients’ quality of life. Unfortunately, most available treatments present drawbacks such as high recurrence rates, risk of complications, poor tissue integration, and the need for reintervention. One promising alternative is the use of biodegradable implantable meshes, which can support the organs, guide tissue regeneration, and be fully absorbed without damaging the surrounding tissues. In this study, biodegradable polycaprolactone (PCL) meshes were fabricated using melt electrowritten (MEW), incorporating the antistatic agent Hostastat® FA 38 (HT) to address these limitations. The goal was to produce microscaffolds with suitable biophysical properties, particularly more stable fiber deposition and reduced fiber diameter. Different HT concentrations (0.03, 0.06, and 0.1 wt%) were investigated to assess their influence on the fiber diameter and mechanical properties of the PCL meshes. Increasing HT concentration significantly reduced fiber diameter by 14–17%, 39–45%, and 65–66%, depending on mesh geometry (square or sinusoidal). At 0.06 wt%, PCL/HT meshes showed a 24.10% increase in tensile strength and a 55.59% increase in Young’s Modulus compared to pure PCL meshes of similar diameter. All formulations demonstrated cell viability >90%. Differential scanning calorimetry (DSC) revealed preserved thermal stability and changes in crystallinity with HT addition. These findings indicate that the antistatic agent yields promising results, enabling the production of thinner, more stable fibers with higher tensile strength and Young’s Modulus than PCL meshes, without adding cellular toxicity. Developing a thinner and more stable mesh that mimics vaginal tissue mechanics could offer an innovative solution for POP repair. Full article
Show Figures

Figure 1

23 pages, 17945 KiB  
Article
Real-Time Temperature Effects on Dynamic Impact Mechanical Properties of Hybrid Fiber-Reinforced High-Performance Concrete
by Pengcheng Huang, Yan Li, Fei Ding, Xiang Liu, Xiaoxi Bi and Tao Xu
Materials 2025, 18(14), 3241; https://doi.org/10.3390/ma18143241 - 9 Jul 2025
Viewed by 264
Abstract
Metallurgical equipment foundations exposed to prolonged 300–500 °C environments are subject to explosion risks, necessitating materials that are resistant to thermo-shock-coupled loads. This study investigated the real-time dynamic compressive behavior of high-performance concrete (HPC) reinforced with steel fibers (SFs), polypropylene fibers (PPFs), polyvinyl [...] Read more.
Metallurgical equipment foundations exposed to prolonged 300–500 °C environments are subject to explosion risks, necessitating materials that are resistant to thermo-shock-coupled loads. This study investigated the real-time dynamic compressive behavior of high-performance concrete (HPC) reinforced with steel fibers (SFs), polypropylene fibers (PPFs), polyvinyl alcohol fibers (PVAFs), and their hybrid systems under thermo-shock coupling using real-time high-temperature (200–500 °C) SHPB tests. The results revealed temperature-dependent dynamic responses: SFs exhibited a V-shaped trend in compressive strength evolution (minimum at 400 °C), while PPFs/PVAFs showed inverted V-shaped trends (peaking at 300 °C). Hybrid systems demonstrated superior performance: SF-PVAF achieved stable dynamic strength at 200–400 °C (dynamic increase factor, DIF ≈ 1.65) due to synergistic toughening via SF bridging and PVAF melt-induced pore energy absorption. Microstructural analysis confirmed that organic fiber pores and SF crack-bridging collaboratively optimized failure modes, reducing brittle fracture. A temperature-adaptive design strategy is proposed: SF-PVAF hybrids are prioritized for temperatures of 200–400 °C, while SF-PPF combinations are recommended for 400–500 °C environments, providing critical guidance for explosion-resistant HPC in extreme thermal–industrial settings. Full article
Show Figures

Figure 1

19 pages, 4947 KiB  
Article
Injection Molding Simulation of Polycaprolactone-Based Carbon Nanotube Nanocomposites for Biomedical Implant Manufacturing
by Krzysztof Formas, Jarosław Janusz, Anna Kurowska, Aleksandra Benko, Wojciech Piekarczyk and Izabella Rajzer
Materials 2025, 18(13), 3192; https://doi.org/10.3390/ma18133192 - 6 Jul 2025
Viewed by 439
Abstract
This study consisted of the injection molding simulation of polycaprolactone (PCL)-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) for biomedical implant manufacturing. The simulation was additionally supported by experimental validation. The influence of varying MWCNT concentrations (0.5%, 5%, and 10% by weight) on [...] Read more.
This study consisted of the injection molding simulation of polycaprolactone (PCL)-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) for biomedical implant manufacturing. The simulation was additionally supported by experimental validation. The influence of varying MWCNT concentrations (0.5%, 5%, and 10% by weight) on key injection molding parameters, i.e., melt flow behavior, pressure distribution, temperature profiles, and fiber orientation, was analyzed with SolidWorks Plastics software. The results proved the low CNT content (0.5 wt.%) to be endowed with stable filling times, complete mold cavity filling, and minimal frozen regions. Thus, this formulation produced defect-free modular filament sticks suitable for subsequent 3D printing. In contrast, higher CNT loadings (particularly 10 wt.%) led to longer fill times, incomplete cavity filling, and early solidification due to increased melt viscosity and thermal conductivity. Experimental molding trials with the 0.5 wt.% CNT composites confirmed the simulation findings. Following minor adjustments to processing parameters, high-quality, defect-free sticks were produced. Overall, the PCL/MWCNT composites with 0.5 wt.% nanotube content exhibited optimal injection molding performance and functional properties, supporting their application in modular, patient-specific biomedical 3D printing. Full article
Show Figures

Graphical abstract

19 pages, 3482 KiB  
Article
Enhancing the Energy Absorption Performance of 3D-Printed CF/TPU Composite Materials by Introducing a “Rigid–Elastic” Structure Through Multi-Scale Synergies
by Xuanyu Zhou, He Ouyang, Yuan Zhang, Ziqiang Zhu, Zhen Wang, Zirui Cheng, Yubing Hu and Yanan Zhang
Polymers 2025, 17(13), 1880; https://doi.org/10.3390/polym17131880 - 6 Jul 2025
Viewed by 614
Abstract
Thermoplastic polyurethane (TPU) combines elastomeric and thermoplastic properties but suffers from insufficient rigidity and strength for structural applications. Herein, we developed novel carbon fiber-reinforced TPU (CF/TPU) composites filaments and utilize melt extrusion for 3D printing to maintain elasticity, while achieving enhanced stiffness and [...] Read more.
Thermoplastic polyurethane (TPU) combines elastomeric and thermoplastic properties but suffers from insufficient rigidity and strength for structural applications. Herein, we developed novel carbon fiber-reinforced TPU (CF/TPU) composites filaments and utilize melt extrusion for 3D printing to maintain elasticity, while achieving enhanced stiffness and strength through multi scale-the control of fiber content and optimization of printing parameters, reaching a rigid–elastic balance. A systematic evaluation of CF content (0–25%) and printing parameters revealed optimal performance to be at 220–230 °C and 40 mm/s for ensuring proper flow to wet fibers without polymer degradation. Compared with TPU, 20% CF/TPU exhibited 63.65%, 105.51%, and 93.69% improvements in tensile, compressive, and impact strength, respectively, alongside 70.88% and 72.92% enhancements in compression and impact energy absorption. This work establishes a fundamental framework for developing rigid–elastic hybrid materials with tailored energy absorption capabilities through rational material design and optimized additive manufacturing processes. Full article
(This article belongs to the Special Issue Research on Additive Manufacturing of Polymer Composites)
Show Figures

Figure 1

19 pages, 6386 KiB  
Article
Process–Structure Co-Optimization of Glass Fiber-Reinforced Polymer Automotive Front-End Module
by Ziming Chen, Pengcheng Guo, Longjian Tan, Tuo Ye and Luoxing Li
Materials 2025, 18(13), 3121; https://doi.org/10.3390/ma18133121 - 1 Jul 2025
Viewed by 388
Abstract
For automotive GFRP structural components, beyond structural design, the warpage, residual stress/strain, and fiber orientation inevitably induced during the injection molding process significantly compromise their service performance. These factors also diminish the reliability of performance assessments. Thus, it is imperative to develop a [...] Read more.
For automotive GFRP structural components, beyond structural design, the warpage, residual stress/strain, and fiber orientation inevitably induced during the injection molding process significantly compromise their service performance. These factors also diminish the reliability of performance assessments. Thus, it is imperative to develop a process–structure co-optimization approach for GFRP components. In this paper, the performance of a front-end module is evaluated through topological structure design, injection molding process optimization, and simulation with mapped injection molding history, followed by experimental validation and analysis. Under ±1000 N loading, the initial design shows excessive displacement at the latch mounting points (2.254 mm vs. <2.0 mm limit), which is reduced to 1.609 mm after topology optimization. By employing a sequential valve control system, the controls of the melt line and fiber orientation are is superior to thatose of conventional gating systems. The optimal process parameter combination is determined through orthogonal experiments, reducing the warpage to 1.498 mm with a 41.5% reduction compared to the average warpage of the orthogonal tests. The simulation results incorporating injection molding data mapping (fiber orientation, residual stress–strain) show closer agreement with experimental measurements. When the measured displacement exceeded 0.65 mm, the average relative error Er, range R, and variance s2 between the experimental results and mapped simulations were 11.78%, 14%, and 0.002462, respectively, validating the engineering applicability of this method. The methodology and workflow can provide methodological support for the design and performance assessment of GFRP automotive body structures, which enhances structural rigidity, improves control over injection molding process defects, and elevates the reliability of performance evaluation. Full article
Show Figures

Figure 1

Back to TopTop